code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def convert_to_string(self, productions):
symbols = []
for production in tf.unstack(productions, axis=1):
(lhs, rhs) = self.production_rules[tf.argmax(input=production, axis=(- 1))]
if (not symbols):
if (lhs != self.start_symbol):
raise ValueError('`productions` must begin with `self.start_symbol`.')
symbols = rhs
else:
index = symbols.index(lhs)
symbols = ((symbols[:index] + rhs) + symbols[(index + 1):])
string = ''.join(symbols)
return string
|
Converts a sequence of productions into a string of terminal symbols.
Args:
productions: Tensor of shape [1, num_productions, num_production_rules].
Slices along the `num_productions` dimension represent one-hot vectors.
Returns:
str that concatenates all terminal symbols from `productions`.
Raises:
ValueError: If the first production rule does not begin with
`self.start_symbol`.
|
codesearchnet
|
def save(self, path, check=True):
with open(path, 'w') as f:
if check:
if ("LOCATION" not in self._data or
self._data["LOCATION"] is None):
raise ValueError('location is not valid.')
if ("DESIGN CONDITIONS" not in self._data or
self._data["DESIGN CONDITIONS"] is None):
raise ValueError('design_conditions is not valid.')
if ("TYPICAL/EXTREME PERIODS" not in self._data or
self._data["TYPICAL/EXTREME PERIODS"] is None):
raise ValueError(
'typical_or_extreme_periods is not valid.')
if ("GROUND TEMPERATURES" not in self._data or
self._data["GROUND TEMPERATURES"] is None):
raise ValueError('ground_temperatures is not valid.')
if ("HOLIDAYS/DAYLIGHT SAVINGS" not in self._data or
self._data["HOLIDAYS/DAYLIGHT SAVINGS"] is None):
raise ValueError(
'holidays_or_daylight_savings is not valid.')
if ("COMMENTS 1" not in self._data or
self._data["COMMENTS 1"] is None):
raise ValueError('comments_1 is not valid.')
if ("COMMENTS 2" not in self._data or
self._data["COMMENTS 2"] is None):
raise ValueError('comments_2 is not valid.')
if ("DATA PERIODS" not in self._data or
self._data["DATA PERIODS"] is None):
raise ValueError('data_periods is not valid.')
if ("LOCATION" in self._data and
self._data["LOCATION"] is not None):
f.write(self._data["LOCATION"].export() + "\n")
if ("DESIGN CONDITIONS" in self._data and
self._data["DESIGN CONDITIONS"] is not None):
f.write(self._data["DESIGN CONDITIONS"].export() + "\n")
if ("TYPICAL/EXTREME PERIODS" in self._data and
self._data["TYPICAL/EXTREME PERIODS"] is not None):
f.write(self._data["TYPICAL/EXTREME PERIODS"].export() + "\n")
if ("GROUND TEMPERATURES" in self._data and
self._data["GROUND TEMPERATURES"] is not None):
f.write(self._data["GROUND TEMPERATURES"].export() + "\n")
if ("HOLIDAYS/DAYLIGHT SAVINGS" in self._data and
self._data["HOLIDAYS/DAYLIGHT SAVINGS"] is not None):
f.write(
self._data["HOLIDAYS/DAYLIGHT SAVINGS"].export() +
"\n")
if ("COMMENTS 1" in self._data and
self._data["COMMENTS 1"] is not None):
f.write(self._data["COMMENTS 1"].export() + "\n")
if ("COMMENTS 2" in self._data and
self._data["COMMENTS 2"] is not None):
f.write(self._data["COMMENTS 2"].export() + "\n")
if ("DATA PERIODS" in self._data and
self._data["DATA PERIODS"] is not None):
f.write(self._data["DATA PERIODS"].export() + "\n")
for item in self._data["WEATHER DATA"]:
f.write(item.export(False) + "\n")
|
Save WeatherData in EPW format to path.
Args:
path (str): path where EPW file should be saved
|
juraj-google-style
|
def get_priority(priority):
if isinstance(priority, int):
if ((priority < 0) or (priority > 100)):
raise ValueError('priority must be between 0 and 100')
return priority
elif isinstance(priority, Priority):
return priority.value
elif isinstance(priority, str):
return Priority[priority.upper()].value
else:
raise TypeError('priority must be an integer or Priority enum value')
|
Get priority value.
Args:
priority (int or str or :obj:`Priority`): Priority.
Returns:
int: The priority value.
|
codesearchnet
|
def inception_resnet_v2_arg_scope(weight_decay=0.00004,
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_regularizer=slim.l2_regularizer(weight_decay)):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
}
with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params) as scope:
return scope
|
Returns the scope with the default parameters for inception_resnet_v2.
Args:
weight_decay: the weight decay for weights variables.
batch_norm_decay: decay for the moving average of batch_norm momentums.
batch_norm_epsilon: small float added to variance to avoid dividing by zero.
Returns:
a arg_scope with the parameters needed for inception_resnet_v2.
|
juraj-google-style
|
def _relation_exists(cls, connection, relation):
schema_name, table_name = relation.split('.')
exists_query =
with connection.cursor() as cursor:
cursor.execute(exists_query, [schema_name, table_name])
result = cursor.fetchall()
return result == [(1,)]
|
Returns True if relation exists in the postgres db. Otherwise returns False.
Args:
connection: connection to postgres database who stores mpr data.
relation (str): name of the table, view or materialized view.
Note:
relation means table, view or materialized view here.
Returns:
boolean: True if relation exists, False otherwise.
|
juraj-google-style
|
def ParseNameSpace(self, parser_mediator, cache=None, database=None, table=None, **unused_kwargs):
if (database is None):
raise ValueError('Missing database value.')
if (table is None):
raise ValueError('Missing table value.')
strings = cache.GetResults('strings')
if (not strings):
esedb_table = database.get_table_by_name('string')
strings = self._GetDictFromStringsTable(parser_mediator, esedb_table)
cache.StoreDictInCache('strings', strings)
for esedb_record in table.records:
if parser_mediator.abort:
break
record_values = self._GetRecordValues(parser_mediator, table.name, esedb_record)
event_data = FileHistoryNamespaceEventData()
event_data.file_attribute = record_values.get('fileAttrib', None)
event_data.identifier = record_values.get('id', None)
event_data.parent_identifier = record_values.get('parentId', None)
event_data.usn_number = record_values.get('usn', None)
event_data.original_filename = strings.get(event_data.identifier, None)
created_timestamp = record_values.get('fileCreated')
if created_timestamp:
date_time = dfdatetime_filetime.Filetime(timestamp=created_timestamp)
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
modified_timestamp = record_values.get('fileModified')
if modified_timestamp:
date_time = dfdatetime_filetime.Filetime(timestamp=modified_timestamp)
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
if ((not created_timestamp) and (not modified_timestamp)):
date_time = dfdatetime_semantic_time.SemanticTime('Not set')
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_NOT_A_TIME)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Parses the namespace table.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
cache (Optional[ESEDBCache]): cache.
database (Optional[pyesedb.file]): ESE database.
table (Optional[pyesedb.table]): table.
Raises:
ValueError: if the database or table value is missing.
|
codesearchnet
|
def create_storage_client(pipeline_options, use_credentials=True):
if use_credentials:
credentials = auth.get_service_credentials(pipeline_options)
else:
credentials = None
if credentials:
google_cloud_options = pipeline_options.view_as(GoogleCloudOptions)
from google.api_core import client_info
beam_client_info = client_info.ClientInfo(user_agent='apache-beam/%s (GPN:Beam)' % beam_version.__version__)
extra_headers = {'x-goog-custom-audit-job': google_cloud_options.job_name if google_cloud_options.job_name else 'UNKNOWN'}
if google_cloud_options.gcs_custom_audit_entries is not None:
extra_headers.update(google_cloud_options.gcs_custom_audit_entries)
return storage.Client(credentials=credentials.get_google_auth_credentials(), project=google_cloud_options.project, client_info=beam_client_info, extra_headers=extra_headers)
else:
return storage.Client.create_anonymous_client()
|
Create a GCS client for Beam via GCS Client Library.
Args:
pipeline_options(apache_beam.options.pipeline_options.PipelineOptions):
the options of the pipeline.
use_credentials(bool): whether to create an authenticated client based
on pipeline options or an anonymous client.
Returns:
A google.cloud.storage.client.Client instance.
|
github-repos
|
def __ginibre_matrix(nrow, ncol=None, seed=None):
if ncol is None:
ncol = nrow
if seed is not None:
np.random.seed(seed)
G = np.random.normal(size=(nrow, ncol)) + \
np.random.normal(size=(nrow, ncol)) * 1j
return G
|
Return a normally distributed complex random matrix.
Args:
nrow (int): number of rows in output matrix.
ncol (int): number of columns in output matrix.
seed (int): Optional. To set a random seed.
Returns:
ndarray: A complex rectangular matrix where each real and imaginary
entry is sampled from the normal distribution.
|
juraj-google-style
|
def send_log_messages(self, messages: List[LogMessage]) -> None:
errors = upload_rows(self._bq_client, self._table_metadata, cast(List[Dict], messages))
if errors:
for error in errors:
self._fallback_logger.send_log_message({'log_type': LogType.SYSTEM.value, 'error': error})
raise RuntimeError('BigQuery logging failed: Check Cloud Logs.')
|
Sends multiple log messages to BigQuery.
Args:
* messages: list of LogMessage dictionaries
Returns:
* None
Raises:
* RuntimeError: if BigQuery insert fails
|
github-repos
|
def netmiko_save_config(
task: Task, cmd: str = "", confirm: bool = False, confirm_response: str = ""
) -> Result:
conn = task.host.get_connection("netmiko", task.nornir.config)
if cmd:
result = conn.save_config(
cmd=cmd, confirm=confirm, confirm_response=confirm_response
)
else:
result = conn.save_config(confirm=confirm, confirm_response=confirm_response)
return Result(host=task.host, result=result, changed=True)
|
Execute Netmiko save_config method
Arguments:
cmd(str, optional): Command used to save the configuration.
confirm(bool, optional): Does device prompt for confirmation before executing save operation
confirm_response(str, optional): Response send to device when it prompts for confirmation
Returns:
:obj: `nornir.core.task.Result`:
* result (``str``): String showing the CLI output from the save operation
|
juraj-google-style
|
def create_tree(tree):
config.LOGGER.info("\nCreating tree on Kolibri Studio...")
channel_id, channel_link = tree.upload_tree()
return channel_link, channel_id
|
create_tree: Upload tree to Kolibri Studio
Args:
tree (ChannelManager): manager to handle communication to Kolibri Studio
Returns: channel id of created channel and link to channel
|
juraj-google-style
|
def _resize_for_patching(self, image: 'torch.Tensor', target_resolution: tuple, interpolation: 'F.InterpolationMode', input_data_format: ChannelDimension) -> 'torch.Tensor':
new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format)
resized_image = F.resize(image, (new_height, new_width), interpolation=interpolation)
return resized_image
|
Resizes an image to a target resolution while maintaining aspect ratio.
Args:
image ("torch.Tensor"):
The input image.
target_resolution (tuple):
The target resolution (height, width) of the image.
interpolation (`InterpolationMode`):
Resampling filter to use if resizing the image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
"torch.Tensor": The resized and padded image.
|
github-repos
|
def overlap(ival0, ival1):
min0, max0 = ival0
min1, max1 = ival1
return max(0, min(max0, max1) - max(min0, min1)) > 0
|
Determine if two interval tuples have overlap.
Args:
iv0 ((int,int)): An interval tuple
iv1 ((int,int)); An interval tuple
Returns:
(bool): True if the intervals overlap, otherwise False
|
juraj-google-style
|
def write_hex(fout, buf, offset, width=16):
skipped_zeroes = 0
for (i, chunk) in enumerate(chunk_iter(buf, width)):
if (chunk == (b'\x00' * width)):
skipped_zeroes += 1
continue
elif (skipped_zeroes != 0):
fout.write(' -- skipped zeroes: {}\n'.format(skipped_zeroes))
skipped_zeroes = 0
fout.write('{:016x} '.format(((i * width) + offset)))
column = ' '.join([' '.join(['{:02x}'.format(c) for c in subchunk]) for subchunk in chunk_iter(chunk, 8)])
w = (((width * 2) + (width - 1)) + ((width
if (len(column) != w):
column += (' ' * (w - len(column)))
fout.write(column)
fout.write(' |')
for c in chunk:
if (c in PRINTABLE_CHARS):
fout.write(chr(c))
else:
fout.write('.')
if (len(chunk) < width):
fout.write((' ' * (width - len(chunk))))
fout.write('|')
fout.write('\n')
|
Write the content of 'buf' out in a hexdump style
Args:
fout: file object to write to
buf: the buffer to be pretty printed
offset: the starting offset of the buffer
width: how many bytes should be displayed per row
|
codesearchnet
|
def most_specific_convertible_shape(self, other):
other = as_shape(other)
if ((self._dims is None) or (other.dims is None) or (self.ndims != other.ndims)):
return unknown_shape()
dims = ([Dimension(None)] * self.ndims)
for (i, (d1, d2)) in enumerate(zip(self._dims, other.dims)):
if ((d1 is not None) and (d2 is not None) and (d1 == d2)):
dims[i] = d1
return TensorShape(dims)
|
Returns the most specific TensorShape convertible with `self` and `other`.
* TensorShape([None, 1]) is the most specific TensorShape convertible with
both TensorShape([2, 1]) and TensorShape([5, 1]). Note that
TensorShape(None) is also convertible with above mentioned TensorShapes.
* TensorShape([1, 2, 3]) is the most specific TensorShape convertible with
both TensorShape([1, 2, 3]) and TensorShape([1, 2, 3]). There are more
less specific TensorShapes convertible with above mentioned TensorShapes,
e.g. TensorShape([1, 2, None]), TensorShape(None).
Args:
other: Another `TensorShape`.
Returns:
A `TensorShape` which is the most specific convertible shape of `self`
and `other`.
|
codesearchnet
|
def search(self, query, verbose=0):
if (verbose > 0):
print(('searching ' + query))
query = query.lower()
qgram = ng(query, self.slb)
qocument = set()
for q in qgram:
if (q in self.ngrams.keys()):
for i in self.ngrams[q]:
qocument.add(i)
self.qocument = qocument
results = {}
for i in qocument:
for j in self.D[i].keys():
if (not (j in results.keys())):
results[j] = 0
results[j] = (results[j] + self.D[i][j])
sorted_results = sorted(results.items(), key=operator.itemgetter(1), reverse=True)
return [self.elements[f[0]] for f in sorted_results]
|
Searches files satisfying query
It first decompose the query in ngrams, then score each document containing
at least one ngram with the number. The ten document having the most ngrams
in common with the query are selected.
Args:
query (str): what to search;
results_number (int): number of results to return (default: 10)
|
codesearchnet
|
def abi_to_fasta(input, output):
direcs = [input]
zip_files = list_files(input, ['zip'])
if zip_files:
direcs.extend(_process_zip_files(zip_files))
for d in direcs:
files = list_files(d, ['ab1', 'abi'])
seqs = [SeqIO.read(open(f, 'rb'), 'abi') for f in files]
fastas = ['>{}\n{}'.format(s.id, str(s.seq)) for s in seqs]
ofile = (os.path.basename(os.path.normpath(d)) + '.fasta')
opath = os.path.join(output, ofile)
open(opath, 'w').write('\n'.join(fastas))
|
Converts ABI or AB1 files to FASTA format.
Args:
input (str): Path to a file or directory containing abi/ab1 files or
zip archives of abi/ab1 files
output (str): Path to a directory for the output FASTA files
|
codesearchnet
|
def parse_response(response, encoding='utf-8'):
return requests_toolbelt.multipart.decoder.MultipartDecoder.from_response(
response, encoding
).parts
|
Parse a multipart Requests.Response into a tuple of BodyPart objects.
Args:
response: Requests.Response
encoding:
The parser will assume that any text in the HTML body is encoded with this
encoding when decoding it for use in the ``text`` attribute.
Returns:
tuple of BodyPart
Members: headers (CaseInsensitiveDict), content (bytes), text (Unicode),
encoding (str).
|
juraj-google-style
|
def detect_intent_knowledge(project_id, session_id, language_code,
knowledge_base_id, texts):
import dialogflow_v2beta1 as dialogflow
session_client = dialogflow.SessionsClient()
session_path = session_client.session_path(project_id, session_id)
print('Session path: {}\n'.format(session_path))
for text in texts:
text_input = dialogflow.types.TextInput(
text=text, language_code=language_code)
query_input = dialogflow.types.QueryInput(text=text_input)
knowledge_base_path = dialogflow.knowledge_bases_client \
.KnowledgeBasesClient \
.knowledge_base_path(project_id, knowledge_base_id)
query_params = dialogflow.types.QueryParameters(
knowledge_base_names=[knowledge_base_path])
response = session_client.detect_intent(
session=session_path, query_input=query_input,
query_params=query_params)
print('=' * 20)
print('Query text: {}'.format(response.query_result.query_text))
print('Detected intent: {} (confidence: {})\n'.format(
response.query_result.intent.display_name,
response.query_result.intent_detection_confidence))
print('Fulfillment text: {}\n'.format(
response.query_result.fulfillment_text))
print('Knowledge results:')
knowledge_answers = response.query_result.knowledge_answers
for answers in knowledge_answers.answers:
print(' - Answer: {}'.format(answers.answer))
print(' - Confidence: {}'.format(
answers.match_confidence))
|
Returns the result of detect intent with querying Knowledge Connector.
Args:
project_id: The GCP project linked with the agent you are going to query.
session_id: Id of the session, using the same `session_id` between requests
allows continuation of the conversation.
language_code: Language of the queries.
knowledge_base_id: The Knowledge base's id to query against.
texts: A list of text queries to send.
|
juraj-google-style
|
def upload_predictions(self, file_path, tournament=1):
self.logger.info("uploading predictions...")
auth_query =
arguments = {'filename': os.path.basename(file_path),
'tournament': tournament}
submission_resp = self.raw_query(auth_query, arguments,
authorization=True)
submission_auth = submission_resp['data']['submission_upload_auth']
with open(file_path, 'rb') as fh:
requests.put(submission_auth['url'], data=fh.read())
create_query =
arguments = {'filename': submission_auth['filename'],
'tournament': tournament}
create = self.raw_query(create_query, arguments, authorization=True)
self.submission_id = create['data']['create_submission']['id']
return self.submission_id
|
Upload predictions from file.
Args:
file_path (str): CSV file with predictions that will get uploaded
tournament (int): ID of the tournament (optional, defaults to 1)
Returns:
str: submission_id
Example:
>>> api = NumerAPI(secret_key="..", public_id="..")
>>> api.upload_predictions()
'93c46857-fed9-4594-981e-82db2b358daf'
|
juraj-google-style
|
def connect(self, uuid_value, wait=None):
if self.connected:
raise HardwareError('Cannot connect when we are already connected')
if (uuid_value not in self._scanned_devices):
self.scan(wait=wait)
with self._scan_lock:
if (uuid_value not in self._scanned_devices):
raise HardwareError('Could not find device to connect to by UUID', uuid=uuid_value)
connstring = self._scanned_devices[uuid_value]['connection_string']
self.connect_direct(connstring)
|
Connect to a specific device by its uuid
Attempt to connect to a device that we have previously scanned using its UUID.
If wait is not None, then it is used in the same was a scan(wait) to override
default wait times with an explicit value.
Args:
uuid_value (int): The unique id of the device that we would like to connect to.
wait (float): Optional amount of time to force the device adapter to wait before
attempting to connect.
|
codesearchnet
|
def add_dict_to_hash(a_hash, a_dict):
if a_dict is None:
return
for k, v in a_dict.items():
a_hash.update(b'\x00' + k.encode('utf-8') + b'\x00' + v.encode('utf-8'))
|
Adds `a_dict` to `a_hash`
Args:
a_hash (`Hash`): the secure hash, e.g created by hashlib.md5
a_dict (dict[string, [string]]): the dictionary to add to the hash
|
juraj-google-style
|
def WriteTaskCompletion(self, aborted=False):
self._RaiseIfNotWritable()
if self._storage_type != definitions.STORAGE_TYPE_TASK:
raise IOError('Unsupported storage type.')
self._task.aborted = aborted
task_completion = self._task.CreateTaskCompletion()
self._storage_file.WriteTaskCompletion(task_completion)
|
Writes task completion information.
Args:
aborted (Optional[bool]): True if the session was aborted.
Raises:
IOError: if the storage type is not supported or
when the storage writer is closed.
OSError: if the storage type is not supported or
when the storage writer is closed.
|
juraj-google-style
|
def prepare_framework_container_def(model, instance_type, s3_operations):
deploy_image = model.image
if not deploy_image:
region_name = model.sagemaker_session.boto_session.region_name
deploy_image = fw_utils.create_image_uri(
region_name, model.__framework_name__, instance_type, model.framework_version, model.py_version)
base_name = utils.base_name_from_image(deploy_image)
model.name = model.name or utils.name_from_base(base_name)
bucket = model.bucket or model.sagemaker_session._default_bucket
script = os.path.basename(model.entry_point)
key = '{}/source/sourcedir.tar.gz'.format(model.name)
if model.source_dir and model.source_dir.lower().startswith('s3:
code_dir = model.source_dir
model.uploaded_code = fw_utils.UploadedCode(s3_prefix=code_dir, script_name=script)
else:
code_dir = 's3:
model.uploaded_code = fw_utils.UploadedCode(s3_prefix=code_dir, script_name=script)
s3_operations['S3Upload'] = [{
'Path': model.source_dir or script,
'Bucket': bucket,
'Key': key,
'Tar': True
}]
deploy_env = dict(model.env)
deploy_env.update(model._framework_env_vars())
try:
if model.model_server_workers:
deploy_env[sagemaker.model.MODEL_SERVER_WORKERS_PARAM_NAME.upper()] = str(model.model_server_workers)
except AttributeError:
pass
return sagemaker.container_def(deploy_image, model.model_data, deploy_env)
|
Prepare the framework model container information. Specify related S3 operations for Airflow to perform.
(Upload `source_dir`)
Args:
model (sagemaker.model.FrameworkModel): The framework model
instance_type (str): The EC2 instance type to deploy this Model to. For example, 'ml.p2.xlarge'.
s3_operations (dict): The dict to specify S3 operations (upload `source_dir`).
Returns:
dict: The container information of this framework model.
|
juraj-google-style
|
def _sanitize_input_structure(input_structure):
input_structure = input_structure.copy()
input_structure.remove_spin()
input_structure = input_structure.get_primitive_structure(use_site_props=False)
if ('magmom' in input_structure.site_properties):
input_structure.remove_site_property('magmom')
return input_structure
|
Sanitize our input structure by removing magnetic information
and making primitive.
Args:
input_structure: Structure
Returns: Structure
|
codesearchnet
|
def process_exception_message(exception):
exception_message = str(exception)
for replace_char in ['\t', '\n', '\\n']:
exception_message = exception_message.replace(replace_char, '' if replace_char != '\t' else ' ')
return exception_message.replace('section', 'alias')
|
Process an exception message.
Args:
exception: The exception to process.
Returns:
A filtered string summarizing the exception.
|
juraj-google-style
|
async def connect(self, conn_id, connection_string):
id_number = int(connection_string)
if id_number not in self.devices:
raise DeviceAdapterError(conn_id, 'connect', 'device not found')
if self._get_conn_id(connection_string) is not None:
raise DeviceAdapterError(conn_id, 'connect', 'device already connected')
dev = self.devices[id_number]
if dev.connected:
raise DeviceAdapterError(conn_id, 'connect', 'device already connected')
dev.connected = True
self._setup_connection(conn_id, connection_string)
self._track_property(conn_id, 'device', dev)
|
Asynchronously connect to a device
Args:
conn_id (int): A unique identifer that will refer to this connection
connection_string (string): A DeviceAdapter specific string that can be used to connect to
a device using this DeviceAdapter.
callback (callable): A function that will be called when the connection attempt finishes as
callback(conection_id, adapter_id, success: bool, failure_reason: string or None)
|
juraj-google-style
|
def _with_inner_rank(self, inner_rank):
rank = self.rank
if rank is None:
raise ValueError('Rank must be known to adjust inner_rank')
elif rank < 2:
if inner_rank == rank:
return self
raise ValueError('Cannot change inner_rank if rank < 2')
else:
new_num_row_partitions = rank - inner_rank
return self._with_num_row_partitions(new_num_row_partitions)
|
Returns the same shape but a different inner_rank.
All dimensions that are to be represented in the inner_shape must be dense.
See inner_rank.
Args:
inner_rank: the new inner_rank of the shape.
Returns:
the same shape but a different inner_rank
Raises:
ValueError if the new dense rank is invalid, or the old rank is unknown.
|
github-repos
|
def _RunScripts(self, run_dir=None):
with _CreateTempDir(self.script_type, run_dir=run_dir) as dest_dir:
try:
self.logger.info('Starting %s scripts.', self.script_type)
script_dict = self.retriever.GetScripts(dest_dir)
self.executor.RunScripts(script_dict)
finally:
self.logger.info('Finished running %s scripts.', self.script_type)
|
Retrieve metadata scripts and execute them.
Args:
run_dir: string, the base directory location of the temporary directory.
|
codesearchnet
|
def _check_params(self, parameters):
a_valid_fn = []
if self.target_fn is None:
if callable(self):
a_valid_fn.append(self.__call__)
else:
raise TypeError('invalid argument: tested object is not callable,\
please provide a valid target_fn')
elif isinstance(self.target_fn, types.FunctionType) \
or isinstance(self.target_fn, types.MethodType):
a_valid_fn.append(self.target_fn)
else:
a_valid_fn.append(self.target_fn.__call__)
if not isinstance(parameters, str):
for p in parameters:
for fn in a_valid_fn:
if has_arg(fn, p):
pass
else:
raise ValueError('{} is not a valid parameter'.format(p))
else:
raise TypeError('invalid argument: list or dictionnary expected')
|
Checks for mistakes in 'parameters'
Args :
parameters: dict, parameters to be checked
Raises :
ValueError: if any parameter is not a valid argument for the target function
or the target function is not defined
TypeError: if argument parameters is not iterable
|
juraj-google-style
|
def Glob2Regex(glob_pattern):
if not glob_pattern:
raise ValueError('Missing glob pattern.')
regex_pattern = []
glob_pattern_index = 0
glob_pattern_length = len(glob_pattern)
while glob_pattern_index < glob_pattern_length:
character = glob_pattern[glob_pattern_index]
glob_pattern_index += 1
if character == '*':
regex_pattern.append('.*')
elif character == '?':
regex_pattern.append('.')
elif character != '[':
regex_character = re.escape(character)
regex_pattern.append(regex_character)
else:
glob_group_index = glob_pattern_index
if (glob_group_index < glob_pattern_length and
glob_pattern[glob_group_index] == '!'):
glob_group_index += 1
if (glob_group_index < glob_pattern_length and
glob_pattern[glob_group_index] == ']'):
glob_group_index += 1
while (glob_group_index < glob_pattern_length and
glob_pattern[glob_group_index] != ']'):
glob_group_index += 1
if glob_group_index >= glob_pattern_length:
regex_pattern.append('\\[')
continue
glob_group = glob_pattern[glob_pattern_index:glob_group_index]
glob_pattern_index = glob_group_index + 1
glob_group = glob_group.replace('\\', '\\\\')
if py2to3.PY_3_7_AND_LATER:
glob_group = glob_group.replace('|', '\\|')
regex_pattern.append('[')
if glob_group[0] == '!':
regex_pattern.append('^')
glob_group = glob_group[1:]
elif glob_group[0] == '^':
regex_pattern.append('\\')
regex_pattern.append(glob_group)
regex_pattern.append(']')
return ''.join(regex_pattern)
|
Converts a glob pattern to a regular expression.
This function supports basic glob patterns that consist of:
* matches everything
? matches any single character
[seq] matches any character in sequence
[!seq] matches any character not in sequence
Args:
glob_pattern (str): glob pattern.
Returns:
str: regular expression pattern.
Raises:
ValueError: if the glob pattern cannot be converted.
|
juraj-google-style
|
def update_parameters(parameters, grads, learning_rate=1.2):
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
W1 -= (learning_rate * dW1)
b1 -= (learning_rate * db1)
W2 -= (learning_rate * dW2)
b2 -= (learning_rate * db2)
parameters = {'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
return parameters
|
Updates parameters using the gradient descent update rule given above
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients
Returns:
parameters -- python dictionary containing your updated parameters
|
codesearchnet
|
def cube(width, height, depth, center=(0.0, 0.0, 0.0), normals=True, uvs=True) -> VAO:
width, height, depth = width / 2.0, height / 2.0, depth / 2.0
pos = numpy.array([
center[0] + width, center[1] - height, center[2] + depth,
center[0] + width, center[1] + height, center[2] + depth,
center[0] - width, center[1] - height, center[2] + depth,
center[0] + width, center[1] + height, center[2] + depth,
center[0] - width, center[1] + height, center[2] + depth,
center[0] - width, center[1] - height, center[2] + depth,
center[0] + width, center[1] - height, center[2] - depth,
center[0] + width, center[1] + height, center[2] - depth,
center[0] + width, center[1] - height, center[2] + depth,
center[0] + width, center[1] + height, center[2] - depth,
center[0] + width, center[1] + height, center[2] + depth,
center[0] + width, center[1] - height, center[2] + depth,
center[0] + width, center[1] - height, center[2] - depth,
center[0] + width, center[1] - height, center[2] + depth,
center[0] - width, center[1] - height, center[2] + depth,
center[0] + width, center[1] - height, center[2] - depth,
center[0] - width, center[1] - height, center[2] + depth,
center[0] - width, center[1] - height, center[2] - depth,
center[0] - width, center[1] - height, center[2] + depth,
center[0] - width, center[1] + height, center[2] + depth,
center[0] - width, center[1] + height, center[2] - depth,
center[0] - width, center[1] - height, center[2] + depth,
center[0] - width, center[1] + height, center[2] - depth,
center[0] - width, center[1] - height, center[2] - depth,
center[0] + width, center[1] + height, center[2] - depth,
center[0] + width, center[1] - height, center[2] - depth,
center[0] - width, center[1] - height, center[2] - depth,
center[0] + width, center[1] + height, center[2] - depth,
center[0] - width, center[1] - height, center[2] - depth,
center[0] - width, center[1] + height, center[2] - depth,
center[0] + width, center[1] + height, center[2] - depth,
center[0] - width, center[1] + height, center[2] - depth,
center[0] + width, center[1] + height, center[2] + depth,
center[0] - width, center[1] + height, center[2] - depth,
center[0] - width, center[1] + height, center[2] + depth,
center[0] + width, center[1] + height, center[2] + depth,
], dtype=numpy.float32)
if normals:
normal_data = numpy.array([
-0, 0, 1,
-0, 0, 1,
-0, 0, 1,
0, 0, 1,
0, 0, 1,
0, 0, 1,
1, 0, 0,
1, 0, 0,
1, 0, 0,
1, 0, 0,
1, 0, 0,
1, 0, 0,
0, -1, 0,
0, -1, 0,
0, -1, 0,
0, -1, 0,
0, -1, 0,
0, -1, 0,
-1, -0, 0,
-1, -0, 0,
-1, -0, 0,
-1, -0, 0,
-1, -0, 0,
-1, -0, 0,
0, 0, -1,
0, 0, -1,
0, 0, -1,
0, 0, -1,
0, 0, -1,
0, 0, -1,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
], dtype=numpy.float32)
if uvs:
uvs_data = numpy.array([
1, 0,
1, 1,
0, 0,
1, 1,
0, 1,
0, 0,
1, 0,
1, 1,
0, 0,
1, 1,
0, 1,
0, 0,
1, 1,
0, 1,
0, 0,
1, 1,
0, 0,
1, 0,
0, 1,
0, 0,
1, 0,
0, 1,
1, 0,
1, 1,
1, 0,
1, 1,
0, 1,
1, 0,
0, 1,
0, 0,
1, 1,
0, 1,
1, 0,
0, 1,
0, 0,
1, 0
], dtype=numpy.float32)
vao = VAO("geometry:cube")
vao.buffer(pos, '3f', ['in_position'])
if normals:
vao.buffer(normal_data, '3f', ['in_normal'])
if uvs:
vao.buffer(uvs_data, '2f', ['in_uv'])
return vao
|
Creates a cube VAO with normals and texture coordinates
Args:
width (float): Width of the cube
height (float): Height of the cube
depth (float): Depth of the cube
Keyword Args:
center: center of the cube as a 3-component tuple
normals: (bool) Include normals
uvs: (bool) include uv coordinates
Returns:
A :py:class:`demosys.opengl.vao.VAO` instance
|
juraj-google-style
|
def list_dir(root, prefix=False):
root = os.path.expanduser(root)
directories = list(filter((lambda p: os.path.isdir(os.path.join(root, p))), os.listdir(root)))
if (prefix is True):
directories = [os.path.join(root, d) for d in directories]
return directories
|
List all directories at a given root
Args:
root (str): Path to directory whose folders need to be listed
prefix (bool, optional): If true, prepends the path to each result, otherwise
only returns the name of the directories found
|
codesearchnet
|
def create_assembly_instance(self, assembly_uri, part_uri, configuration):
payload = {
"documentId": part_uri["did"],
"elementId": part_uri["eid"],
"versionId": part_uri["wvm"],
"isAssembly": False,
"isWholePartStudio": True,
"configuration": self.encode_configuration(part_uri["did"], part_uri["eid"], configuration)
}
return self._api.request('post', '/api/assemblies/d/' + assembly_uri["did"] + '/' + assembly_uri["wvm_type"] +
'/' + assembly_uri["wvm"] + '/e/' + assembly_uri["eid"] + '/instances', body=payload)
|
Insert a configurable part into an assembly.
Args:
- assembly (dict): eid, wid, and did of the assembly into which will be inserted
- part (dict): eid and did of the configurable part
- configuration (dict): the configuration
Returns:
- requests.Response: Onshape response data
|
juraj-google-style
|
def save_wav_file(filename, wav_data, sample_rate):
with tf.compat.v1.Session(graph=tf.Graph()) as sess:
wav_filename_placeholder = tf.compat.v1.placeholder(tf.string, [])
sample_rate_placeholder = tf.compat.v1.placeholder(tf.int32, [])
wav_data_placeholder = tf.compat.v1.placeholder(tf.float32, [None, 1])
wav_encoder = tf.audio.encode_wav(wav_data_placeholder, sample_rate_placeholder)
wav_saver = io_ops.write_file(wav_filename_placeholder, wav_encoder)
sess.run(wav_saver, feed_dict={wav_filename_placeholder: filename, sample_rate_placeholder: sample_rate, wav_data_placeholder: np.reshape(wav_data, (-1, 1))})
|
Saves audio sample data to a .wav audio file.
Args:
filename: Path to save the file to.
wav_data: 2D array of float PCM-encoded audio data.
sample_rate: Samples per second to encode in the file.
|
github-repos
|
def autodiff_tree(func, wrt, motion, mode, preserve_result, check_dims, verbose):
import tangent
namespace = {'tangent': tangent, 'numpy': numpy}
done = set()
final = gast.Module(body=[])
namespace.update(six.get_function_globals(func))
(node, required) = autodiff_ast(func, wrt, motion, mode, preserve_result, check_dims, verbose)
final.body.extend(node.body)
to_do = set(required)
if ((motion == 'split') and (mode == 'reverse')):
done.add((func, wrt))
to_do -= done
while to_do:
(func, wrt) = to_do.pop()
namespace.update(six.get_function_globals(func))
(node, required) = autodiff_ast(func=func, wrt=wrt, motion='split', mode=mode, preserve_result=True, check_dims=False, verbose=verbose)
final.body.extend(node.body)
done.add((func, wrt))
to_do.update(required)
to_do -= done
return (final, namespace)
|
Perform AD on all functions in a call tree.
This function walks the call tree and differentiates each function in it. It
also ensures that the global namespaces that each function in the call tree
was in are merged.
The `tangent` and `numpy` packages are added to the namespace here, so that
the gradient templates can assume that they are present.
Args:
See `grad`.
Returns:
final: A single module which contains the primals and adjoints of all the
functions in the call tree.
namespace: A merged dictionary with all the variables in the global
namespaces of each function. The primals and adjoints need access to
these in order to execute.
|
codesearchnet
|
def _translate(pattern, case_sensitive=True):
if (not case_sensitive):
pattern = pattern.lower()
(i, n) = (0, len(pattern))
res = ''
while (i < n):
c = pattern[i]
i = (i + 1)
if (c == '*'):
res = (res + '[^/]*')
elif (c == '?'):
res = (res + '.')
elif (c == '['):
j = i
if ((j < n) and (pattern[j] == '!')):
j = (j + 1)
if ((j < n) and (pattern[j] == ']')):
j = (j + 1)
while ((j < n) and (pattern[j] != ']')):
j = (j + 1)
if (j >= n):
res = (res + '\\[')
else:
stuff = pattern[i:j].replace('\\', '\\\\')
i = (j + 1)
if (stuff[0] == '!'):
stuff = ('^' + stuff[1:])
elif (stuff[0] == '^'):
stuff = ('\\' + stuff)
res = ('%s[%s]' % (res, stuff))
else:
res = (res + re.escape(c))
return res
|
Translate a wildcard pattern to a regular expression.
There is no way to quote meta-characters.
Arguments:
pattern (str): A wildcard pattern.
case_sensitive (bool): Set to `False` to use a case
insensitive regex (default `True`).
Returns:
str: A regex equivalent to the given pattern.
|
codesearchnet
|
def snapshot(self, wiki=False, streamed=False, action=None, chunk_size=1024, **kwargs):
path = ('/projects/%s/snapshot' % self.get_id())
result = self.manager.gitlab.http_get(path, streamed=streamed, raw=True, **kwargs)
return utils.response_content(result, streamed, action, chunk_size)
|
Return a snapshot of the repository.
Args:
wiki (bool): If True return the wiki repository
streamed (bool): If True the data will be processed by chunks of
`chunk_size` and each chunk is passed to `action` for
treatment.
action (callable): Callable responsible of dealing with chunk of
data
chunk_size (int): Size of each chunk
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabGetError: If the content could not be retrieved
Returns:
str: The uncompressed tar archive of the repository
|
codesearchnet
|
class DPTPreActResidualLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.use_batch_norm = config.use_batch_norm_in_fusion_residual
use_bias_in_fusion_residual = config.use_bias_in_fusion_residual if config.use_bias_in_fusion_residual is not None else not self.use_batch_norm
self.activation1 = nn.ReLU()
self.convolution1 = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=use_bias_in_fusion_residual)
self.activation2 = nn.ReLU()
self.convolution2 = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=use_bias_in_fusion_residual)
if self.use_batch_norm:
self.batch_norm1 = nn.BatchNorm2d(config.fusion_hidden_size)
self.batch_norm2 = nn.BatchNorm2d(config.fusion_hidden_size)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
residual = hidden_state
hidden_state = self.activation1(hidden_state)
hidden_state = self.convolution1(hidden_state)
if self.use_batch_norm:
hidden_state = self.batch_norm1(hidden_state)
hidden_state = self.activation2(hidden_state)
hidden_state = self.convolution2(hidden_state)
if self.use_batch_norm:
hidden_state = self.batch_norm2(hidden_state)
return hidden_state + residual
|
ResidualConvUnit, pre-activate residual unit.
Args:
config (`[DPTConfig]`):
Model configuration class defining the model architecture.
|
github-repos
|
def _FormatPropertyName(self, property_name):
fix_key = re.sub('(.)([A-Z][a-z]+)', '\\1_\\2', property_name)
return re.sub('([a-z0-9])([A-Z])', '\\1_\\2', fix_key).lower()
|
Formats a camel case property name as snake case.
Args:
property_name (str): property name in camel case.
Returns:
str: property name in snake case.
|
codesearchnet
|
def wait_for_js(function):
@functools.wraps(function)
def wrapper(*args, **kwargs):
if len(args) < 1:
return function(*args, **kwargs)
else:
self = args[0]
if hasattr(self, 'wait_for_js'):
self.wait_for_js()
return function(*args, **kwargs)
return wrapper
|
Method decorator that waits for JavaScript dependencies before executing `function`.
If the function is not a method, the decorator has no effect.
Args:
function (callable): Method to decorate.
Returns:
Decorated method
|
juraj-google-style
|
def AddKeywordsForName(self, name, keywords):
data_store.DB.IndexAddKeywordsForName(self.urn, name, keywords)
|
Associates keywords with name.
Records that keywords are associated with name.
Args:
name: A name which should be associated with some keywords.
keywords: A collection of keywords to associate with name.
|
juraj-google-style
|
def IsErrorSuppressedByNolint(category, linenum):
return (linenum in _error_suppressions.get(category, set()) or
linenum in _error_suppressions.get(None, set()))
|
Returns true if the specified error category is suppressed on this line.
Consults the global error_suppressions map populated by
ParseNolintSuppressions/ResetNolintSuppressions.
Args:
category: str, the category of the error.
linenum: int, the current line number.
Returns:
bool, True iff the error should be suppressed due to a NOLINT comment.
|
juraj-google-style
|
def load_ini(self, ini_file):
if (ini_file and (not os.path.exists(ini_file))):
self.log.critical(f'Settings file specified but not found. {ini_file}')
sys.exit(1)
if (not ini_file):
ini_file = f'{self.cwd}/settings.ini'
if os.path.exists(ini_file):
config = configparser.RawConfigParser(allow_no_value=True)
config.read(ini_file)
for (key, value) in self.spec.items():
entry = None
if (value['type'] == str):
entry = config.get('settings', option=key.lower(), fallback=None)
elif (value['type'] == bool):
entry = config.getboolean('settings', option=key.lower(), fallback=None)
elif (value['type'] == int):
entry = config.getint('settings', option=key.lower(), fallback=None)
elif (value['type'] == float):
entry = config.getfloat('settings', option=key.lower(), fallback=None)
elif (value['type'] in [list, dict]):
entries = config.get('settings', option=key.lower(), fallback=None)
if entries:
try:
entry = json.loads(entries)
except json.decoder.JSONDecodeError as _err:
self.log.critical(f'Error parsing json from ini file. {entries}')
sys.exit(1)
if (entry is not None):
setattr(self, key.upper(), entry)
|
Load the contents from the ini file
Args:
ini_file (str): The file from which the settings should be loaded
|
codesearchnet
|
def ProduceEventWithEventData(self, event, event_data):
if event.timestamp is None:
raise errors.InvalidEvent('Event timestamp value not set.')
if event.timestamp < self._INT64_MIN or event.timestamp > self._INT64_MAX:
raise errors.InvalidEvent('Event timestamp value out of bounds.')
event_data_hash = event_data.GetAttributeValuesHash()
if event_data_hash != self._last_event_data_hash:
event_data = copy.deepcopy(event_data)
self.ProcessEvent(
event_data, parser_chain=self.GetParserChain(),
file_entry=self._file_entry)
self._storage_writer.AddEventData(event_data)
self._last_event_data_hash = event_data_hash
self._last_event_data_identifier = event_data.GetIdentifier()
if self._last_event_data_identifier:
event.SetEventDataIdentifier(self._last_event_data_identifier)
event.parser = self.GetParserChain()
self._storage_writer.AddEvent(event)
self._number_of_events += 1
self.last_activity_timestamp = time.time()
|
Produces an event.
Args:
event (EventObject): event.
event_data (EventData): event data.
Raises:
InvalidEvent: if the event timestamp value is not set or out of bounds.
|
juraj-google-style
|
def _create_slots(self, var_list):
pass
|
Create all slots needed by the variables.
Args:
var_list: A list of `Variable` objects.
|
github-repos
|
def decode(image, symbols=None):
pixels, width, height = _pixel_data(image)
results = []
with _image_scanner() as scanner:
if symbols:
disable = set(ZBarSymbol).difference(symbols)
for symbol in disable:
zbar_image_scanner_set_config(
scanner, symbol, ZBarConfig.CFG_ENABLE, 0
)
for symbol in symbols:
zbar_image_scanner_set_config(
scanner, symbol, ZBarConfig.CFG_ENABLE, 1
)
with _image() as img:
zbar_image_set_format(img, _FOURCC['L800'])
zbar_image_set_size(img, width, height)
zbar_image_set_data(img, cast(pixels, c_void_p), len(pixels), None)
decoded = zbar_scan_image(scanner, img)
if decoded < 0:
raise PyZbarError('Unsupported image format')
else:
results.extend(_decode_symbols(_symbols_for_image(img)))
return results
|
Decodes datamatrix barcodes in `image`.
Args:
image: `numpy.ndarray`, `PIL.Image` or tuple (pixels, width, height)
symbols: iter(ZBarSymbol) the symbol types to decode; if `None`, uses
`zbar`'s default behaviour, which is to decode all symbol types.
Returns:
:obj:`list` of :obj:`Decoded`: The values decoded from barcodes.
|
juraj-google-style
|
def is_tracking_shield_displayed(self):
with self.selenium.context(self.selenium.CONTEXT_CHROME):
if (self.window.firefox_version >= 63):
el = self.root.find_element(*self._tracking_protection_shield_locator)
return (el.get_attribute('active') is not None)
el = self.root.find_element(By.ID, 'tracking-protection-icon')
return bool(el.get_attribute('state'))
|
Tracking Protection shield.
Returns:
bool: True or False if the Tracking Shield is displayed.
|
codesearchnet
|
def stack50(op, delay):
n = 50
delays = delay + tf.range(0, n, dtype=float) / 10000.0
start_t = time.time()
func = tf.function(lambda: tf.stack([op(delays[i]) for i in range(n)]))
r_numpy = func().numpy()
end_t = time.time()
print('')
print('Total time = %5.3f seconds using %s' % (end_t - start_t, str(op)))
print('Returned values from the ops:')
np.set_printoptions(precision=4, suppress=True)
print(r_numpy)
sys.stdout.flush()
|
Create a tf.stack of 50 sleep ops.
Args:
op: The sleep op, either sleep_op.SyncSleep or sleep_op.AsyncSleep.
delay: Each op should finish at least float `delay` seconds after it starts.
|
github-repos
|
def generate(self, past_values: torch.Tensor) -> SamplePatchTSMixerRegressionOutput:
num_parallel_samples = self.num_parallel_samples
outputs = self(past_values=past_values, target_values=None, output_hidden_states=False)
distribution = self.distribution_output.distribution(outputs.regression_outputs)
samples = [distribution.sample() for _ in range(num_parallel_samples)]
samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets)
return SamplePatchTSMixerRegressionOutput(sequences=samples)
|
Generate sequences of sample predictions from a model with a probability distribution head.
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the target values.
Return:
[`SamplePatchTSMixerRegressionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
number of samples, num_targets)`.
|
github-repos
|
def is_subtype_of(self, other: trace.TraceType) -> bool:
if type(self) is not type(other):
return False
is_subtype = True
def check_attribute(attribute_self, attribute_other):
nonlocal is_subtype
if not is_subtype:
return
if isinstance(attribute_self, trace.TraceType):
if not attribute_self.is_subtype_of(attribute_other):
is_subtype = False
return
elif attribute_self != attribute_other:
is_subtype = False
try:
nest.map_structure(check_attribute, self._serialize(), other._serialize())
except (ValueError, TypeError):
return False
return is_subtype
|
Returns True if `self` is a subtype of `other`.
Implements the tf.types.experimental.func.TraceType interface.
If not overridden by a subclass, the default behavior is to assume the
TypeSpec is covariant upon attributes that implement TraceType and
invariant upon rest of the attributes as well as the structure and type
of the TypeSpec.
Args:
other: A TraceType object.
|
github-repos
|
def inquire_property(name, doc=None):
def inquire_property(self):
if (not self._started):
msg = 'Cannot read {0} from a security context whose establishment has not yet been started.'
raise AttributeError(msg)
return getattr(self._inquire(**{name: True}), name)
return property(inquire_property, doc=doc)
|
Creates a property based on an inquire result
This method creates a property that calls the
:python:`_inquire` method, and return the value of the
requested information.
Args:
name (str): the name of the 'inquire' result information
Returns:
property: the created property
|
codesearchnet
|
def fit2dArrayToFn(arr, fn, mask=None, down_scale_factor=None, output_shape=None, guess=None, outgrid=None):
if (mask is None):
mask = np.ones(shape=arr.shape, dtype=bool)
if (down_scale_factor is None):
if (mask.sum() > 1000):
down_scale_factor = 0.3
else:
down_scale_factor = 1
if (down_scale_factor != 1):
arr2 = zoom(arr, down_scale_factor)
mask = zoom(mask, down_scale_factor, output=bool)
else:
arr2 = arr
(x, y) = np.where(mask)
z = arr2[mask]
(parameters, cov_matrix) = curve_fit(fn, (x, y), z, p0=guess)
perr = np.sqrt(np.diag(cov_matrix))
if (outgrid is not None):
(yy, xx) = outgrid
rebuilt = fn((yy, xx), *parameters)
else:
if (output_shape is None):
output_shape = arr.shape
fx = (arr2.shape[0] / output_shape[0])
fy = (arr2.shape[1] / output_shape[1])
rebuilt = np.fromfunction((lambda x, y: fn(((x * fx), (y * fy)), *parameters)), output_shape)
return (rebuilt, parameters, perr)
|
Fit a 2d array to a 2d function
USE ONLY MASKED VALUES
* [down_scale_factor] map to speed up fitting procedure, set value smaller than 1
* [output_shape] shape of the output array
* [guess] must be scaled using [scale_factor]
Returns:
Fitted map, fitting params (scaled), error
|
codesearchnet
|
def annotations_from_file(filename):
import edflib
e = edflib.EdfReader(filename, annotations_mode='all')
return e.read_annotations()
|
Get a list of event annotations from an EDF (European Data Format file
or EDF+ file, using edflib.
Args:
filename: EDF+ file
Returns:
list: annotation events, each in the form [start_time, duration, text]
|
codesearchnet
|
def get_missing_services(self, services):
required_services = set(services)
provided_services = set(self._services.keys())
missing_services = required_services.difference(provided_services)
return sorted(missing_services)
|
Check if all required services are provided
Args:
services: List with the service names which are required
Returns:
List with missing services
|
codesearchnet
|
def new(cls, access_token, environment='prod'):
api_client = ApiClient.new(access_token, environment)
return cls(api_client)
|
Create new storage service client.
Arguments:
environment(str): The service environment to be used for the client.
'prod' or 'dev'.
access_token(str): The access token used to authenticate with the
service
Returns:
A storage_service.Client instance
|
juraj-google-style
|
def from_tokenizer(cls, tokenizer: GPT2Tokenizer, *args, **kwargs):
merges = [' '.join(m) for m in tokenizer.bpe_ranks.keys()]
vocab = tokenizer.get_vocab()
return cls(vocab, merges, *args, **kwargs)
|
Creates TFGPT2Tokenizer from GPT2Tokenizer
Args:
tokenizer (GPT2Tokenizer)
Examples:
```python
from transformers import AutoTokenizer, TFGPT2Tokenizer
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
tf_tokenizer = TFGPT2Tokenizer.from_tokenizer(tokenizer)
```
|
github-repos
|
def notify(self, cuuid, event_data):
euuid = str(uuid.uuid1())
if ('encryption' in self.registry[cuuid]):
client_key = self.registry[cuuid]['encryption']
else:
client_key = None
logger.debug(('<%s> <%s> Sending NOTIFY event to client with event data: %s' % (str(cuuid), str(euuid), pformat(event_data))))
try:
ip_address = self.registry[cuuid]['host']
except KeyError:
logger.warning(('<%s> <%s> Host not found in registry! Transmit Canceled' % (str(cuuid), str(euuid))))
return False
try:
port = self.registry[cuuid]['port']
except KeyError:
logger.warning(('<%s> <%s> Port not found! Transmit Canceled' % (str(cuuid), str(euuid))))
return False
packet = serialize_data({'method': 'NOTIFY', 'event_data': event_data, 'euuid': euuid}, self.compression, self.encryption, client_key)
address = (ip_address, port)
self.event_uuids[euuid] = 0
logger.debug(('<%s> Currently processing events: %s' % (cuuid, pformat(self.event_uuids))))
logger.debug(('<%s> New NOTIFY event being processed:' % cuuid))
logger.debug(('<%s> EUUID: %s' % (cuuid, euuid)))
logger.debug(('<%s> Event Data: %s' % (cuuid, pformat(event_data))))
self.listener.send_datagram(packet, address)
self.listener.call_later(self.timeout, self.retransmit, {'euuid': euuid, 'response': packet, 'cuuid': cuuid})
|
This function will send a NOTIFY event to a registered client.
NOTIFY messages are nearly identical to EVENT messages, except that
NOTIFY messages are always sent from server -> client. EVENT messages
are always sent from client -> server. In addition to this difference,
NOTIFY messages are not processed by a middleware to determine if
they are legal or not, since all messages from the server should be
considered LEGAL.
Args:
cuuid (string): The client uuid to send the event data to.
event_data (any): The event data that we will be sending to the
client.
Returns:
None
|
codesearchnet
|
def _parse_trunk_groups(self, config):
values = re.findall('switchport trunk group ([^\\s]+)', config, re.M)
return dict(trunk_groups=values)
|
Scans the specified config and parses the trunk group values
Args:
config (str): The interface configuraiton blcok
Returns:
A dict object with the trunk group values that can be merged
into the resource dict
|
codesearchnet
|
def PauliX(local_space, states=None):
(local_space, states) = _get_pauli_args(local_space, states)
(g, e) = states
return (LocalSigma.create(g, e, hs=local_space) + LocalSigma.create(e, g, hs=local_space))
|
r"""Pauli-type X-operator
.. math::
\hat{\sigma}_x = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
on an arbitrary two-level system.
Args:
local_space (str or int or .LocalSpace): Associated Hilbert space.
If :class:`str` or :class:`int`, a :class:`LocalSpace` with a
matching label will be created.
states (None or tuple[int or str]): The labels for the basis states
for the two levels on which the operator acts. If None, the two
lowest levels are used.
Returns:
Operator: Local X-operator as a linear combination of
:class:`LocalSigma`
|
codesearchnet
|
def __init__(
self, resolver_context, compression_method=None, file_object=None):
if file_object is not None and compression_method is None:
raise ValueError(
'File-like object provided without corresponding compression '
'method.')
super(CompressedStream, self).__init__(resolver_context)
self._compression_method = compression_method
self._file_object = file_object
self._file_object_set_in_init = bool(file_object)
self._compressed_data = b''
self._current_offset = 0
self._decompressor = None
self._realign_offset = True
self._uncompressed_data = b''
self._uncompressed_data_offset = 0
self._uncompressed_data_size = 0
self._uncompressed_stream_size = None
|
Initializes a file-like object.
If the file-like object is chained do not separately use the parent
file-like object.
Args:
resolver_context (Context): resolver context.
compression_method (Optional[str]): method used to the compress the data.
file_object (Optional[file]): parent file-like object.
Raises:
ValueError: if file_object provided but compression_method is not.
|
juraj-google-style
|
def register_test_preprocessor(cls, test_names: Union[str, List]):
if isinstance(test_names, str):
test_names = [test_names]
def apply(preprocessor):
for test_name in test_names:
if test_name not in cls._test_preprocessor:
cls._test_preprocessor[test_name] = []
cls._test_preprocessor[test_name].append(preprocessor)
return preprocessor
return apply
|
Decorator to register a preprocessor function for specific tests.
This decorator is used to associate a preprocessor function with one or
more test names. The preprocessor function will be called before the
corresponding test is executed, allowing for modification of the test
specification or environment setup.
Args:
test_names: A string or a list of strings representing the names of the
tests for which the preprocessor should be registered. The test names
should match the names generated by `parse_test_methods`.
Returns:
A decorator function that takes the preprocessor function as an argument
and registers it.
|
github-repos
|
def __init__(self, num_classes=1000):
super(Xception, self).__init__()
self.num_classes = num_classes
self.conv1 = nn.Conv2d(3, 32, 3,2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32,64,3,bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.block1=Block(64,128,2,2,start_with_relu=False,grow_first=True)
self.block2=Block(128,256,2,2,start_with_relu=True,grow_first=True)
self.block3=Block(256,728,2,2,start_with_relu=True,grow_first=True)
self.block4=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block5=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block6=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block7=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block8=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block9=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block10=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block11=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block12=Block(728,1024,2,2,start_with_relu=True,grow_first=False)
self.conv3 = SeparableConv2d(1024,1536,3,1,1)
self.bn3 = nn.BatchNorm2d(1536)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = SeparableConv2d(1536,2048,3,1,1)
self.bn4 = nn.BatchNorm2d(2048)
self.fc = nn.Linear(2048, num_classes)
|
Constructor
Args:
num_classes: number of classes
|
juraj-google-style
|
def __setitem__(self, predicates, new_value):
if self.df is not None and self.column_name is not None:
self.df[self.column_name] = self.mask(predicates, new_value)
|
Summary
Args:
predicates (TYPE): Description
new_value (TYPE): Description
Returns:
TYPE: Description
|
juraj-google-style
|
def put(self, filename, encoding=None):
from . import LocalFile
if os.path.isdir(filename) and self.source is None:
raise ValueError("Cannot write this object to "
"directory %s without an explicit filename." % filename)
target = get_target_path(filename, self.source)
if (encoding is not None) and (encoding != self.encoded_with):
raise ValueError('%s is already encoded as "%s"' % self, self.encoded_with)
with self.open('rb') as infile, open(target, 'wb') as outfile:
for line in infile:
outfile.write(line)
return LocalFile(target)
|
Write the file to the given path
Args:
filename(str): path to write this file to
Returns:
LocalFile: reference to the copy of the file stored at ``filename``
|
juraj-google-style
|
def __init__(self, min_interval_sec=10, max_interval_sec=600, multiplier=2):
self.min_interval_sec = min_interval_sec
self.max_interval_sec = max_interval_sec
self.multiplier = multiplier
self.Succeeded()
|
Class constructor.
Args:
min_interval_sec: initial small delay.
max_interval_sec: maximum delay between retries.
multiplier: factor for exponential increase.
|
juraj-google-style
|
def read_from_hdx(identifier, configuration=None):
resourceview = ResourceView(configuration=configuration)
result = resourceview._load_from_hdx('resource view', identifier)
if result:
return resourceview
return None
|
Reads the resource view given by identifier from HDX and returns ResourceView object
Args:
identifier (str): Identifier of resource view
configuration (Optional[Configuration]): HDX configuration. Defaults to global configuration.
Returns:
Optional[ResourceView]: ResourceView object if successful read, None if not
|
codesearchnet
|
def _RetryLoop(self, func, timeout=None):
timeout = timeout or self.DEFAULT_TIMEOUT
deadline = time.time() + timeout
sleep = 1
while True:
try:
return func(timeout)
except grpc.RpcError:
if time.time() + sleep > deadline:
raise
time.sleep(sleep)
sleep *= 2
timeout = deadline - time.time()
|
Retries an operation until success or deadline.
Args:
func: The function to run. Must take a timeout, in seconds, as a single
parameter. If it raises grpc.RpcError and deadline has not be reached,
it will be run again.
timeout: Retries will continue until timeout seconds have passed.
|
juraj-google-style
|
async def _on_event(self, event_):
conv_id = event_.conversation_id.id
try:
conv = (await self._get_or_fetch_conversation(conv_id))
except exceptions.NetworkError:
logger.warning('Failed to fetch conversation for event notification: %s', conv_id)
else:
self._sync_timestamp = parsers.from_timestamp(event_.timestamp)
conv_event = conv.add_event(event_)
if (conv_event is not None):
(await self.on_event.fire(conv_event))
(await conv.on_event.fire(conv_event))
|
Receive a hangouts_pb2.Event and fan out to Conversations.
Args:
event_: hangouts_pb2.Event instance
|
codesearchnet
|
def clone(self, data=None, shared_data=True, new_type=None, *args, **overrides):
if 'datatype' not in overrides:
datatypes = [self.interface.datatype] + self.datatype
overrides['datatype'] = list(util.unique_iterator(datatypes))
return super(Dataset, self).clone(data, shared_data, new_type, *args, **overrides)
|
Clones the object, overriding data and parameters.
Args:
data: New data replacing the existing data
shared_data (bool, optional): Whether to use existing data
new_type (optional): Type to cast object to
*args: Additional arguments to pass to constructor
**overrides: New keyword arguments to pass to constructor
Returns:
Cloned object
|
juraj-google-style
|
def get_electron_number(self, charge=0):
atomic_number = constants.elements['atomic_number'].to_dict()
return (sum([atomic_number[atom] for atom in self['atom']]) - charge)
|
Return the number of electrons.
Args:
charge (int): Charge of the molecule.
Returns:
int:
|
codesearchnet
|
def __init__(self, file_entry):
super(VShadowVolume, self).__init__(file_entry.name)
self._file_entry = file_entry
|
Initializes a volume.
Args:
file_entry (VShadowFileEntry): a VSS file entry.
|
juraj-google-style
|
def check_status(status, expected, path, headers=None, resp_headers=None, body=None, extras=None):
if (status in expected):
return
msg = ('Expect status %r from Google Storage. But got status %d.\nPath: %r.\nRequest headers: %r.\nResponse headers: %r.\nBody: %r.\nExtra info: %r.\n' % (expected, status, path, headers, resp_headers, body, extras))
if (status == httplib.UNAUTHORIZED):
raise AuthorizationError(msg)
elif (status == httplib.FORBIDDEN):
raise ForbiddenError(msg)
elif (status == httplib.NOT_FOUND):
raise NotFoundError(msg)
elif (status == httplib.REQUEST_TIMEOUT):
raise TimeoutError(msg)
elif (status == httplib.REQUESTED_RANGE_NOT_SATISFIABLE):
raise InvalidRange(msg)
elif ((status == httplib.OK) and (308 in expected) and (httplib.OK not in expected)):
raise FileClosedError(msg)
elif (status >= 500):
raise ServerError(msg)
else:
raise FatalError(msg)
|
Check HTTP response status is expected.
Args:
status: HTTP response status. int.
expected: a list of expected statuses. A list of ints.
path: filename or a path prefix.
headers: HTTP request headers.
resp_headers: HTTP response headers.
body: HTTP response body.
extras: extra info to be logged verbatim if error occurs.
Raises:
AuthorizationError: if authorization failed.
NotFoundError: if an object that's expected to exist doesn't.
TimeoutError: if HTTP request timed out.
ServerError: if server experienced some errors.
FatalError: if any other unexpected errors occurred.
|
codesearchnet
|
def get_paths(self, key):
final_paths = []
if (key in self.__cli):
paths = (self.__cli[key] or [])
from_conf = False
else:
paths = (self.__config.get(key) or [])
from_conf = True
for path in flatten_list(paths):
final_path = self.__abspath(path, from_conf)
if final_path:
final_paths.append(final_path)
return final_paths
|
Same as `ConfigParser.get_path` for a list of paths.
Args:
key: str, the key to lookup the paths with
Returns:
list: The paths.
|
codesearchnet
|
def candidates(self, word):
if self.known([word]):
return {word}
res = [x for x in self.edit_distance_1(word)]
tmp = self.known(res)
if tmp:
return tmp
if self._distance == 2:
tmp = self.known([x for x in self.__edit_distance_alt(res)])
if tmp:
return tmp
return {word}
|
Generate possible spelling corrections for the provided word up to
an edit distance of two, if and only when needed
Args:
word (str): The word for which to calculate candidate spellings
Returns:
set: The set of words that are possible candidates
|
juraj-google-style
|
def throw(self, exception_class, should_throw):
return self.__copy_and_set('throws', self._throws + [(exception_class, should_throw)])
|
Defines if the an exception should be thrown after the request is sent
Args:
exception_class (class): The class of the exception to instantiate
should_throw (function): The predicate that should indicate if the exception
should be thrown. This function will be called with the response as a parameter
Returns:
The request builder instance in order to chain calls
|
juraj-google-style
|
def gcs(line, cell=None):
parser = google.datalab.utils.commands.CommandParser(prog='%gcs', description=)
copy_parser = parser.subcommand('copy', 'Copy one or more Google Cloud Storage objects to a '
'different location.')
copy_parser.add_argument('-s', '--source', help='The name of the object(s) to copy', nargs='+')
copy_parser.add_argument('-d', '--destination', required=True,
help='The copy destination. For multiple source objects this must be a '
'bucket.')
copy_parser.set_defaults(func=_gcs_copy)
create_parser = parser.subcommand('create', 'Create one or more Google Cloud Storage buckets.')
create_parser.add_argument('-p', '--project', help='The project associated with the objects')
create_parser.add_argument('-b', '--bucket', help='The name of the bucket(s) to create',
nargs='+')
create_parser.set_defaults(func=_gcs_create)
delete_parser = parser.subcommand('delete', 'Delete one or more Google Cloud Storage buckets or '
'objects.')
delete_parser.add_argument('-b', '--bucket', nargs='*',
help='The name of the bucket(s) to remove')
delete_parser.add_argument('-o', '--object', nargs='*',
help='The name of the object(s) to remove')
delete_parser.set_defaults(func=_gcs_delete)
list_parser = parser.subcommand('list', 'List buckets in a project, or contents of a bucket.')
list_parser.add_argument('-p', '--project', help='The project associated with the objects')
list_parser.add_argument('-o', '--objects',
help='List objects under the given Google Cloud Storage path',
nargs='?')
list_parser.set_defaults(func=_gcs_list)
read_parser = parser.subcommand('read', 'Read the contents of a Google Cloud Storage object into '
'a Python variable.')
read_parser.add_argument('-o', '--object', help='The name of the object to read',
required=True)
read_parser.add_argument('-v', '--variable', required=True,
help='The name of the Python variable to set')
read_parser.set_defaults(func=_gcs_read)
view_parser = parser.subcommand('view', 'View the contents of a Google Cloud Storage object.')
view_parser.add_argument('-n', '--head', type=int, default=20,
help='The number of initial lines to view')
view_parser.add_argument('-t', '--tail', type=int, default=20,
help='The number of lines from end to view')
view_parser.add_argument('-o', '--object', help='The name of the object to view',
required=True)
view_parser.set_defaults(func=_gcs_view)
write_parser = parser.subcommand('write', 'Write the value of a Python variable to a Google '
'Cloud Storage object.')
write_parser.add_argument('-v', '--variable', help='The name of the source Python variable',
required=True)
write_parser.add_argument('-o', '--object', required=True,
help='The name of the destination Google Cloud Storage object to write')
write_parser.add_argument('-c', '--content_type', help='MIME type', default='text/plain')
write_parser.set_defaults(func=_gcs_write)
return google.datalab.utils.commands.handle_magic_line(line, cell, parser)
|
Implements the gcs cell magic for ipython notebooks.
Args:
line: the contents of the gcs line.
Returns:
The results of executing the cell.
|
juraj-google-style
|
def ParseVideoRow(self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
event_data = KodiVideoEventData()
event_data.filename = self._GetRowValue(query_hash, row, 'strFilename')
event_data.play_count = self._GetRowValue(query_hash, row, 'playCount')
event_data.query = query
timestamp = self._GetRowValue(query_hash, row, 'lastPlayed')
date_time = dfdatetime_time_elements.TimeElements()
date_time.CopyFromDateTimeString(timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_LAST_VISITED)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Parses a Video row.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row.
|
juraj-google-style
|
def _GetArgDefault(flag, spec):
num_defaults = len(spec.defaults)
args_with_defaults = spec.args[-num_defaults:]
for arg, default in zip(args_with_defaults, spec.defaults):
if arg == flag:
return repr(default)
if flag in spec.kwonlydefaults:
return repr(spec.kwonlydefaults[flag])
return ''
|
Returns a string describing a flag's default value.
Args:
flag: The name of the flag.
spec: An instance of fire.inspectutils.FullArgSpec, containing type and
default information about the arguments to a callable.
Returns:
A string to be used in constructing the help screen for the function, the
empty string if the flag does not have a default or the default is not
available.
|
github-repos
|
def GlobForPaths(self, paths, pathtype='OS', root_path=None, process_non_regular_files=False, collect_ext_attrs=False):
patterns = []
if (not paths):
return
self.state.pathtype = pathtype
self.state.root_path = root_path
self.state.process_non_regular_files = process_non_regular_files
self.state.collect_ext_attrs = collect_ext_attrs
for path in paths:
patterns.extend(path.Interpolate(knowledge_base=self.client_knowledge_base))
patterns.sort(key=len, reverse=True)
for pattern in patterns:
curr_node = self.state.component_tree
components = self.ConvertGlobIntoPathComponents(pattern)
for (i, curr_component) in enumerate(components):
is_last_component = (i == (len(components) - 1))
next_node = curr_node.get(curr_component.SerializeToString(), {})
if (is_last_component and next_node):
curr_node[curr_component.SerializeToString()] = {}
else:
curr_node = curr_node.setdefault(curr_component.SerializeToString(), {})
root_path = next(iterkeys(self.state.component_tree))
self.CallStateInline(messages=[None], next_state='ProcessEntry', request_data=dict(component_path=[root_path]))
|
Starts the Glob.
This is the main entry point for this flow mixin.
First we convert the pattern into regex components, and then we
interpolate each component. Finally, we generate a cartesian product of all
combinations.
Args:
paths: A list of GlobExpression instances.
pathtype: The pathtype to use for creating pathspecs.
root_path: A pathspec where to start searching from.
process_non_regular_files: Work with all kinds of files - not only with
regular ones.
collect_ext_attrs: Whether to gather information about file extended
attributes.
|
codesearchnet
|
def NgramScorer(frequency_map):
length = len(next(iter(frequency_map)))
floor = math.log10(0.01 / sum(frequency_map.values()))
ngrams = frequency.frequency_to_probability(frequency_map, decorator=math.log10)
def inner(text):
text = ''.join(text)
text = remove(text.upper(), string.whitespace + string.punctuation)
return sum(ngrams.get(ngram, floor) for ngram in iterate_ngrams(text, length))
return inner
|
Compute the score of a text by using the frequencies of ngrams.
Example:
>>> fitness = NgramScorer(english.unigrams)
>>> fitness("ABC")
-4.3622319742618245
Args:
frequency_map (dict): ngram to frequency mapping
|
juraj-google-style
|
def is_torch_support_available(self) -> bool:
if is_torch_available():
from transformers.utils import get_torch_version
return version.parse(get_torch_version()) >= self.torch_onnx_minimum_version
else:
return False
|
The minimum PyTorch version required to export the model.
Returns:
`bool`: Whether the installed version of PyTorch is compatible with the model.
|
github-repos
|
def precheck_ami_id(context):
key = "{}/{}".format(context.env, context.service_name)
print_if_verbose("precheck_ami_id with key: {}".format(key))
current_ami = context.versionresolver.lookup("ami-id,{}".format(key))
print_if_verbose("ami found: {}".format(current_ami))
if current_ami is None:
print_if_verbose("precheck passed without check because current AMI is None")
return True
instances_running_ami = context.aws_client("ec2").describe_instances(
Filters=[{
'Name': 'image-id',
'Values': [current_ami]
}]
)["Reservations"]
if instances_running_ami:
instances_running_ami = [resv["Instances"][0]["InstanceId"] for resv in instances_running_ami]
print_if_verbose("instances running ami {}:\n{}".format(current_ami, repr(instances_running_ami)))
env_service = "{}-{}".format(context.env, context.service_name)
instances_running_as_env_service = context.aws_client("ec2").describe_instances(
Filters=[{
'Name': 'iam-instance-profile.arn',
'Values': ["arn:aws:iam::*:instance-profile/{}-{}".format(context.env, context.service_name)]
}]
)["Reservations"]
if instances_running_as_env_service:
instances_running_as_env_service = \
[resv["Instances"][0]["InstanceId"] for resv in instances_running_as_env_service]
print_if_verbose("instances running as {}".format(env_service))
print_if_verbose(repr(instances_running_as_env_service))
for instance_id in instances_running_as_env_service:
if instance_id not in instances_running_ami:
raise RuntimeError("Instance: {} not running expected ami: {}".format(instance_id, current_ami))
return True
|
Is the AMI in service the same as the AMI marked current in the version records?
This tool won't update records unless the world state is coherent.
Args:
context: a populated EFVersionContext object
Returns:
True if ok to proceed
Raises:
RuntimeError if not ok to proceed
|
juraj-google-style
|
def is_action(task):
result = False
if _extract_from_env_in_payload(task, 'ACTION_CALLBACK'):
result = True
if (task.get('extra', {}).get('action') is not None):
result = True
return result
|
Determine if a task is an action task.
Trusted decision and action tasks are important in that they can generate
other valid tasks. The verification of decision and action tasks is slightly
different, so we need to be able to tell them apart.
This checks for the following things::
* ``task.payload.env.ACTION_CALLBACK`` exists
* ``task.extra.action`` exists
Args:
task (dict): the task definition to check
Returns:
bool: True if it's an action
|
codesearchnet
|
def list_installed():
cmd = 'Get-WindowsFeature -ErrorAction SilentlyContinue -WarningAction SilentlyContinue | Select DisplayName,Name,Installed'
features = _pshell_json(cmd)
ret = {}
for entry in features:
if entry['Installed']:
ret[entry['Name']] = entry['DisplayName']
return ret
|
List installed features. Supported on Windows Server 2008 and Windows 8 and
newer.
Returns:
dict: A dictionary of installed features
CLI Example:
.. code-block:: bash
salt '*' win_servermanager.list_installed
|
codesearchnet
|
def _parse_dataset(file_path, tmp_dir, train):
input_path = file_path
file_name = ('train' if train else 'dev')
gen_output_path = os.path.join(tmp_dir, (file_name + '.txt'))
example_output_path = os.path.join(tmp_dir, _EXAMPLES_FILE)
print(('input path: ' + input_path))
print(('gen_output_path: ' + gen_output_path))
print(('example_output_path: ' + example_output_path))
input_file = tf.gfile.Open(input_path, mode='r')
examples = []
for (counter, line) in enumerate(input_file):
if (counter == 0):
continue
line_split = line.split('\t')
parse1 = line_split[_PARSE1_INDEX]
parse2 = line_split[_PARSE2_INDEX]
consensus_label = line_split[_LABEL_INDEX]
tokens1 = _get_tokens_and_tags(parse1)
tokens2 = _get_tokens_and_tags(parse2)
tokens1_str = ' '.join(tokens1)
tokens2_str = ' '.join(tokens2)
if (consensus_label != '-'):
examples.append([tokens1_str, tokens2_str, consensus_label])
input_file.close()
with tf.gfile.GFile(gen_output_path, 'w') as f:
for (tokens1_str, tokens2_str, consensus_label) in examples:
f.write(('%s\t%s\t%s\n' % (tokens1_str, tokens2_str, consensus_label)))
if train:
with tf.gfile.GFile(example_output_path, 'w') as f:
for (tokens1_str, tokens2_str, consensus_label) in examples:
f.write(('%s %s\n' % (tokens1_str, tokens2_str)))
|
Convert the dataset in to a simpler format.
This function creates two files. One for being processed to produce a vocab
and another to generate the data.
Args:
file_path: string, path to the file to parse.
tmp_dir: string, path to the directory to output the files.
train: bool, indicating if we are parsing the training set.
|
codesearchnet
|
def diff_compute(self, text1, text2, checklines, deadline):
if not text1:
return [(self.DIFF_INSERT, text2)]
if not text2:
return [(self.DIFF_DELETE, text1)]
if len(text1) > len(text2):
(longtext, shorttext) = (text1, text2)
else:
(shorttext, longtext) = (text1, text2)
i = longtext.find(shorttext)
if i != -1:
diffs = [(self.DIFF_INSERT, longtext[:i]), (self.DIFF_EQUAL, shorttext),
(self.DIFF_INSERT, longtext[i + len(shorttext):])]
if len(text1) > len(text2):
diffs[0] = (self.DIFF_DELETE, diffs[0][1])
diffs[2] = (self.DIFF_DELETE, diffs[2][1])
return diffs
if len(shorttext) == 1:
return [(self.DIFF_DELETE, text1), (self.DIFF_INSERT, text2)]
hm = self.diff_halfMatch(text1, text2)
if hm:
(text1_a, text1_b, text2_a, text2_b, mid_common) = hm
diffs_a = self.diff_main(text1_a, text2_a, checklines, deadline)
diffs_b = self.diff_main(text1_b, text2_b, checklines, deadline)
return diffs_a + [(self.DIFF_EQUAL, mid_common)] + diffs_b
if checklines and len(text1) > 100 and len(text2) > 100:
return self.diff_lineMode(text1, text2, deadline)
return self.diff_bisect(text1, text2, deadline)
|
Find the differences between two texts. Assumes that the texts do not
have any common prefix or suffix.
Args:
text1: Old string to be diffed.
text2: New string to be diffed.
checklines: Speedup flag. If false, then don't run a line-level diff
first to identify the changed areas.
If true, then run a faster, slightly less optimal diff.
deadline: Time when the diff should be complete by.
Returns:
Array of changes.
|
juraj-google-style
|
def reformat_css(input_file, output_file):
line_count = get_line_count(input_file)
f = open(input_file, 'r+')
output = open(output_file, 'w')
for line in range(line_count):
string = f.readline().strip()
string = re.sub('\{', '{\n', string)
string = re.sub('; ', ';', string)
string = re.sub(';', ';\n', string)
string = re.sub('} ', '*/\n', string)
output.write(string)
output.close()
f.close()
indent_css(output_file, output_file)
add_whitespace_before("{", output_file, output_file)
|
Reformats poorly written css. This function does not validate or fix errors in the code.
It only gives code the proper indentation.
Args:
input_file: string, path to the input file.
output_file: string, path to where the reformatted css should be saved. If the target file
doesn't exist, a new file is created.
Returns:
None.
|
juraj-google-style
|
def marcxml2record(marcxml):
marcjson = create_record(marcxml, keep_singletons=False)
collections = _get_collections(marcjson)
if 'conferences' in collections:
return conferences.do(marcjson)
elif 'data' in collections:
return data.do(marcjson)
elif 'experiment' in collections:
return experiments.do(marcjson)
elif 'hepnames' in collections:
return hepnames.do(marcjson)
elif 'institution' in collections:
return institutions.do(marcjson)
elif 'job' in collections or 'jobhidden' in collections:
return jobs.do(marcjson)
elif 'journals' in collections or 'journalsnew' in collections:
return journals.do(marcjson)
return hep.do(marcjson)
|
Convert a MARCXML string to a JSON record.
Tries to guess which set of rules to use by inspecting the contents
of the ``980__a`` MARC field, but falls back to HEP in case nothing
matches, because records belonging to special collections logically
belong to the Literature collection but don't have ``980__a:HEP``.
Args:
marcxml(str): a string containing MARCXML.
Returns:
dict: a JSON record converted from the string.
|
juraj-google-style
|
def check_column(df: DataFrame, row: int, name: str, fn: Callable[[float], bool]) -> bool:
is_ok = True
if df(row, 'trt_model'):
if not fn(df(row, name)):
logging.error('Unsatisfied %s found at: %s', name, df(row))
is_ok = False
return is_ok
|
Checks the values of a column using a custom function and logs abnormals.
The check is only performed on TensorRT models, not native CPU/GPU models.
Args:
df: The DataFrame to be checked.
row: The row in the DataFrame
name: The name of the column to be checked.
fn: The function that takes a value of at the specified column and returns
if the value satisfies the check.
Returns:
Whether all the values of the specified column satisfies the provided check.
|
github-repos
|
def change_tz(cal, new_timezone, default, utc_only=False, utc_tz=icalendar.utc):
for vevent in getattr(cal, 'vevent_list', []):
start = getattr(vevent, 'dtstart', None)
end = getattr(vevent, 'dtend', None)
for node in (start, end):
if node:
dt = node.value
if (isinstance(dt, datetime) and ((not utc_only) or (dt.tzinfo == utc_tz))):
if (dt.tzinfo is None):
dt = dt.replace(tzinfo=default)
node.value = dt.astimezone(new_timezone)
|
Change the timezone of the specified component.
Args:
cal (Component): the component to change
new_timezone (tzinfo): the timezone to change to
default (tzinfo): a timezone to assume if the dtstart or dtend in cal
doesn't have an existing timezone
utc_only (bool): only convert dates that are in utc
utc_tz (tzinfo): the tzinfo to compare to for UTC when processing
utc_only=True
|
codesearchnet
|
def fetch_friends(self, user, paginate=False):
if USING_ALLAUTH:
social_app = SocialApp.objects.get_current('facebook')
oauth_token = SocialToken.objects.get(account=user, app=social_app).token
else:
social_auth_backend = FacebookBackend()
tokens = social_auth_backend.tokens(user)
oauth_token = tokens['access_token']
graph = facebook.GraphAPI(oauth_token)
friends = graph.get_connections('me', 'friends')
if paginate:
total_friends = friends.copy()
total_friends.pop('paging')
while (('paging' in friends) and ('next' in friends['paging']) and friends['paging']['next']):
next_url = friends['paging']['next']
next_url_parsed = urlparse.urlparse(next_url)
query_data = urlparse.parse_qs(next_url_parsed.query)
query_data.pop('access_token')
for (k, v) in query_data.items():
query_data[k] = v[0]
friends = graph.get_connections('me', 'friends', **query_data)
total_friends['data'] = sum([total_friends['data'], friends['data']], [])
else:
total_friends = friends
return total_friends
|
fethces friends from facebook using the oauth_token
fethched by django-social-auth.
Note - user isn't a user - it's a UserSocialAuth if using social auth, or a SocialAccount if using allauth
Returns:
collection of friend objects fetched from facebook
|
codesearchnet
|
def duration_distance(item_a, item_b, max_value):
duration_a = item_a.times.size
duration_b = item_b.times.size
return np.minimum(np.abs(duration_a - duration_b), max_value) / float(max_value)
|
Absolute difference in the duration of two items
Args:
item_a: STObject from the first set in TrackMatcher
item_b: STObject from the second set in TrackMatcher
max_value: Maximum distance value used as scaling value and upper constraint.
Returns:
Distance value between 0 and 1.
|
juraj-google-style
|
def __init__(self, ascii_codepage='cp1252', key_path_prefix=''):
super(REGFWinRegistryFile, self).__init__(
ascii_codepage=ascii_codepage, key_path_prefix=key_path_prefix)
self._file_object = None
self._regf_file = pyregf.file()
self._regf_file.set_ascii_codepage(ascii_codepage)
|
Initializes the Windows Registry file.
Args:
ascii_codepage (Optional[str]): ASCII string codepage.
key_path_prefix (Optional[str]): Windows Registry key path prefix.
|
juraj-google-style
|
def mkdirs(self, path):
try:
os.makedirs(path)
except OSError as err:
raise IOError(err)
|
Recursively create directories for the provided path.
Args:
path: string path of the directory structure that should be created
Raises:
IOError: if leaf directory already exists.
|
github-repos
|
def is_compatible(self, other: 'Schema') -> bool:
if not isinstance(other, Schema):
raise TypeError(f"Argument 'other' should be a Schema object. Encountered {other}.")
for key_spec in other.keys():
if key_spec not in self:
return False
for key_spec, field in self.items():
if key_spec not in other:
return False
if not field.value.is_compatible(other[key_spec].value):
return False
return True
|
Returns whether current schema is compatible with the other schema.
NOTE(daiyip): schema A is compatible with schema B when:
schema A and schema B have the same keys, with compatible values specs.
Args:
other: Other schema.
Returns:
True if values that is acceptable to the other schema is acceptable to
current schema.
Raises:
TypeError: If `other` is not a schema object.
|
github-repos
|
def describe(self):
response = {'TransformJobStatus': self.state, 'ModelName': self.model_name, 'TransformJobName': self.name, 'TransformJobArn': _UNUSED_ARN, 'TransformEndTime': self.end_time, 'CreationTime': self.start_time, 'TransformStartTime': self.start_time, 'Environment': {}, 'BatchStrategy': self.batch_strategy}
if self.transform_resources:
response['TransformResources'] = self.transform_resources
if self.output_data:
response['TransformOutput'] = self.output_data
if self.input_data:
response['TransformInput'] = self.input_data
return response
|
Describe this _LocalTransformJob
The response is a JSON-like dictionary that follows the response of the
boto describe_transform_job() API.
Returns:
dict: description of this _LocalTransformJob
|
codesearchnet
|
def with_rank_at_most(self, rank):
if ((self.ndims is not None) and (self.ndims > rank)):
raise ValueError(('Shape %s must have rank at most %d' % (self, rank)))
else:
return self
|
Returns a shape based on `self` with at most the given rank.
Args:
rank: An integer.
Returns:
A shape that is at least as specific as `self` with at most the given
rank.
Raises:
ValueError: If `self` does not represent a shape with at most the given
`rank`.
|
codesearchnet
|
def to_dict(self):
output = super().to_dict()
if isinstance(self.esmfold_config, EsmFoldConfig):
output['esmfold_config'] = self.esmfold_config.to_dict()
return output
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
github-repos
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.