code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def add_controller(self, controller, timeout=None): assert (controller.mri not in self._controllers), ('Controller already exists for %s' % controller.mri) self._controllers[controller.mri] = controller controller.setup(self) if self.state: should_publish = self._start_controllers([controller], timeout) if ((self.state == STARTED) and should_publish): self._publish_controllers(timeout)
Add a controller to be hosted by this process Args: controller (Controller): Its controller timeout (float): Maximum amount of time to wait for each spawned object. None means forever
codesearchnet
def __init__(self, hidden_size): super(Compressor, self).__init__() self.hidden_size = hidden_size conv = functools.partial( tf.keras.layers.Conv2D, padding="SAME", activation=tf.nn.leaky_relu) self.conv1 = conv(256, 3, 2) self.conv2 = conv(256, 3, 2) self.conv3 = conv(256, 3, 2) self.conv4 = conv(hidden_size, 8, padding="VALID")
Constructs a convolutional compressor. This model takes as input `x_{1:T}` and outputs an intermediate representation for use in downstream probabilistic encoders. Args: hidden_size: Dimensionality of the intermediate representations.
juraj-google-style
def _get_global_step_read(graph=None): graph = graph or ops.get_default_graph() global_step_read_tensors = graph.get_collection(GLOBAL_STEP_READ_KEY) if len(global_step_read_tensors) > 1: raise RuntimeError('There are multiple items in collection {}. There should be only one.'.format(GLOBAL_STEP_READ_KEY)) if len(global_step_read_tensors) == 1: return global_step_read_tensors[0] return None
Gets global step read tensor in graph. Args: graph: The graph in which to create the global step read tensor. If missing, use default graph. Returns: Global step read tensor. Raises: RuntimeError: if multiple items found in collection GLOBAL_STEP_READ_KEY.
github-repos
def forward(self, z: torch.Tensor, mask: Optional[torch.Tensor]=None, inplace_safe: bool=False, _add_with_inplace: bool=False, _inplace_chunk_size: Optional[int]=256) -> torch.Tensor: if inplace_safe: x = self._inference_forward(z, mask, inplace_chunk_size=_inplace_chunk_size, with_add=_add_with_inplace) return x if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) z = self.layer_norm_in(z) a = mask a = a * self.sigmoid(self.linear_a_g(z)) a = a * self.linear_a_p(z) b = mask b = b * self.sigmoid(self.linear_b_g(z)) b = b * self.linear_b_p(z) if is_fp16_enabled(): with torch.cuda.amp.autocast(enabled=False): x = self._combine_projections(a.float(), b.float()) else: x = self._combine_projections(a, b) del a, b x = self.layer_norm_out(x) x = self.linear_z(x) g = self.sigmoid(self.linear_g(z)) x = x * g return x
Args: x: [*, N_res, N_res, C_z] input tensor mask: [*, N_res, N_res] input mask Returns: [*, N_res, N_res, C_z] output tensor
github-repos
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: if not isinstance(hidden_states, (tuple, list)): raise TypeError('hidden_states should be a tuple or list of tensors') if len(hidden_states) != len(self.config.neck_hidden_sizes): raise ValueError('The number of hidden states should be equal to the number of neck hidden sizes.') hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width) features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)] output = self.fusion_stage(features) return output
Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`): List of hidden states from the backbone.
github-repos
def _validate_config(config): required_keys = [KEY_ADDRESS, KEY_MODEL, KEY_PORT, KEY_PATHS] for key in required_keys: if key not in config: raise Error("Required key %s missing from config %s", (key, config))
Verifies that a config dict for an attenuator device is valid. Args: config: A dict that is the configuration for an attenuator device. Raises: attenuator.Error: A config is not valid.
juraj-google-style
def _on_join_leader(self, response): try: group_assignment = self._perform_assignment(response.leader_id, response.group_protocol, response.members) except Exception as e: return Future().failure(e) version = 0 if self.config['api_version'] < (0, 11, 0) else 1 request = SyncGroupRequest[version]( self.group_id, self._generation.generation_id, self._generation.member_id, [(member_id, assignment if isinstance(assignment, bytes) else assignment.encode()) for member_id, assignment in six.iteritems(group_assignment)]) log.debug("Sending leader SyncGroup for group %s to coordinator %s: %s", self.group_id, self.coordinator_id, request) return self._send_sync_group_request(request)
Perform leader synchronization and send back the assignment for the group via SyncGroupRequest Arguments: response (JoinResponse): broker response to parse Returns: Future: resolves to member assignment encoded-bytes
juraj-google-style
def find_sanitiser_nodes( sanitiser, sanitisers_in_file ): for sanitiser_tuple in sanitisers_in_file: if sanitiser == sanitiser_tuple.trigger_word: yield sanitiser_tuple.cfg_node
Find nodes containing a particular sanitiser. Args: sanitiser(string): sanitiser to look for. sanitisers_in_file(list[Node]): list of CFG nodes with the sanitiser. Returns: Iterable of sanitiser nodes.
juraj-google-style
def parse_display_name(chrom, pos, ref, alt, variant_type): return '_'.join([chrom, pos, ref, alt, variant_type])
Parse the variant id for a variant This is used to display the variant in scout. Args: chrom(str) pos(str) ref(str) alt(str) variant_type(str): 'clinical' or 'research' Returns: variant_id(str): The variant id in human readable format
juraj-google-style
def dates(self): return _gen_business_days(self._start_date, self._end_date, self._holiday_calendar, self._backward)
Returns the dates as computed from the schedule as a DateTensor. Constructs the date schedule from the supplied data. For more details see the initializer docstring. Returns: `DateTensor` of rank one more than `start_date` or `end_date` (depending on `backwards`), representing schedules for each element of the input.
github-repos
def perform_load_job(self, destination, job_id, source_uris=None, source_stream=None, schema=None, write_disposition=None, create_disposition=None, additional_load_parameters=None, source_format=None, job_labels=None, load_job_project_id=None): project_id = destination.projectId if load_job_project_id is None else load_job_project_id return self._insert_load_job(project_id, job_id, destination, source_uris=source_uris, source_stream=source_stream, schema=schema, create_disposition=create_disposition, write_disposition=write_disposition, additional_load_parameters=additional_load_parameters, source_format=source_format, job_labels=job_labels)
Starts a job to load data into BigQuery. Returns: bigquery.JobReference with the information about the job that was started.
github-repos
def create_run_group(prj): from benchbuild.utils import schema as s session = s.Session() experiment = prj.experiment group = s.RunGroup(id=prj.run_uuid, experiment=experiment.id) session.add(group) session.commit() return (group, session)
Create a new 'run_group' in the database. This creates a new transaction in the database and creates a new run_group within this transaction. Afterwards we return both the transaction as well as the run_group itself. The user is responsible for committing it when the time comes. Args: prj - The project for which we open the run_group. Returns: A tuple (group, session) containing both the newly created run_group and the transaction object.
juraj-google-style
def GenerateId(self, entity_id=None): self._idnum += 1 if entity_id: return ('%s_merged_%d' % (entity_id, self._idnum)) else: return ('merged_%d' % self._idnum)
Generate a unique id based on the given id. This is done by appending a counter which is then incremented. The counter is initialised at the maximum number used as an ending for any id in the old and new schedules. Args: entity_id: The base id string. This is allowed to be None. Returns: The generated id.
codesearchnet
def _from_proto_sparse_tensor(sparse_tensor_proto, process_leafs): if not sparse_tensor_proto.HasField("named_tuple"): raise base_errors.ModuleInfoError( "Error while deserializing a SparseTensor: expected proto tuple.") if sparse_tensor_proto.named_tuple.name != _SPARSE_TENSOR_NAME: raise base_errors.ModuleInfoError( "Error while deserializing a SparseTensor: The name of the tuple " "should have been {} but was {}.".format( _SPARSE_TENSOR_NAME, sparse_tensor_proto.named_tuple.name)) named_tuple_map = sparse_tensor_proto.named_tuple.map return tf.SparseTensor( indices=process_leafs(named_tuple_map["indices"].value), values=process_leafs(named_tuple_map["values"].value), dense_shape=process_leafs(named_tuple_map["dense_shape"].value))
Deserializes a `tf.SparseTensor` from `sparse_tensor_proto`. Args: sparse_tensor_proto: A proto representing a `tf.SparseTensor`. process_leafs: A function to be applied to the leaf valued of the nested structure. Returns: An instance of `tf.SparseTensor`.
juraj-google-style
def dqdv_cycles(cycles, **kwargs): ica_dfs = list() cycle_group = cycles.groupby('cycle') for (cycle_number, cycle) in cycle_group: (v, dq) = dqdv_cycle(cycle, splitter=True, **kwargs) _ica_df = pd.DataFrame({'voltage': v, 'dq': dq}) _ica_df['cycle'] = cycle_number _ica_df = _ica_df[['cycle', 'voltage', 'dq']] ica_dfs.append(_ica_df) ica_df = pd.concat(ica_dfs) return ica_df
Convenience functions for creating dq-dv data from given capacity and voltage cycles. Returns a DataFrame with a 'voltage' and a 'incremental_capacity' column. Args: cycles (pandas.DataFrame): the cycle data ('cycle', 'voltage', 'capacity', 'direction' (1 or -1)). Returns: pandas.DataFrame with columns 'cycle', 'voltage', 'dq'. Example: >>> cycles_df = my_data.get_cap( >>> ... categorical_column=True, >>> ... method = "forth-and-forth", >>> ... label_cycle_number=True, >>> ... ) >>> ica_df = ica.dqdv_cycles(cycles_df)
codesearchnet
def get_by(self, field, value): if field == 'userName' or field == 'name': return self._client.get(self.URI + '/' + value) elif field == 'role': value = value.replace(" ", "%20") return self._client.get(self.URI + '/roles/users/' + value)['members'] else: raise HPOneViewException('Only userName, name and role can be queried for this resource.')
Gets all Users that match the filter. The search is case-insensitive. Args: field: Field name to filter. Accepted values: 'name', 'userName', 'role' value: Value to filter. Returns: list: A list of Users.
juraj-google-style
def remove_item(self, **kwargs): path = self._get_id_path('remove_item') kwargs.update({'session_id': self.session_id}) payload = {'media_id': kwargs.pop('media_id', None)} response = self._POST(path, kwargs, payload) self._set_attrs_to_values(response) return response
Delete movies from a list that the user created. A valid session id is required. Args: media_id: A movie id. Returns: A dict respresentation of the JSON returned from the API.
codesearchnet
def get_ordered_params(url): if (url not in URLHelper.__cache): URLHelper.__cache[url] = urlparse(url) params = URLHelper.query_string_to_dict(URLHelper.__cache[url].query) return OrderedDict(sorted(params.items()))
Get the query parameters of the given URL in alphabetical order. Args: url (str): The URL to get the query parameters from. Returns: str: The query parameters
codesearchnet
def __init__(self, assign_defaults=(), method_name=None, overwrite=False): super(self.__class__, self).__init__(assign_defaults=assign_defaults, method_name=method_name, overwrite=overwrite)
Assigns arguments to the decorator. Args: assign_defaults: A sequence of strings for the default values that should be provided. Defaults are shared across methods. method_name: If provided, use this as the method_name instead of the wrapped function's name. overwrite: if true, overwrites definition if exists.
juraj-google-style
async def movehere(self, channel): self.logger.debug("movehere command") await self.embed.delete() self.embed.channel = channel await self.embed.send() await self.add_reactions() self.statuslog.info("Moved to front")
Moves the embed message to a new channel; can also be used to move the musicplayer to the front Args: channel (discord.Channel): The channel to move to
juraj-google-style
def CheckDependencies(verbose_output=True): print('Checking availability and versions of dependencies.') check_result = True for module_name, version_tuple in sorted(PYTHON_DEPENDENCIES.items()): if not _CheckPythonModule( module_name, version_tuple[0], version_tuple[1], is_required=version_tuple[3], maximum_version=version_tuple[2], verbose_output=verbose_output): check_result = False if not _CheckSQLite3(verbose_output=verbose_output): check_result = False if check_result and not verbose_output: print('[OK]') print('') return check_result
Checks the availability of the dependencies. Args: verbose_output (Optional[bool]): True if output should be verbose. Returns: bool: True if the dependencies are available, False otherwise.
juraj-google-style
def stream_realtime(self, stream, value): if not self.stream_iface_open: return reading = IOTileReading(0, stream, value) report = IndividualReadingReport.FromReadings(self.iotile_id, [reading]) self.stream(report)
Stream a realtime value as an IndividualReadingReport. If the streaming interface of the VirtualInterface this VirtualDevice is attached to is not opened, the realtime reading may be dropped. Args: stream (int): The stream id to send value (int): The stream value to send
juraj-google-style
def write(self, path=None, *args, **kwargs): if path is None: print(self.format(*args, **kwargs)) else: with io.open(path, 'w', newline="") as f: f.write(self.format(*args, **kwargs))
Perform formatting and write the formatted string to a file or stdout. Optional arguments can be used to format the editor's contents. If no file path is given, prints to standard output. Args: path (str): Full file path (default None, prints to stdout) *args: Positional arguments to format the editor with **kwargs: Keyword arguments to format the editor with
juraj-google-style
def wait_all_futures(self, futures, timeout=None, event_timeout=None): if (timeout is None): end = None else: end = (time.time() + timeout) if (not isinstance(futures, list)): if futures: futures = [futures] else: futures = [] filtered_futures = [] for f in futures: if f.done(): if (f.exception() is not None): raise f.exception() else: filtered_futures.append(f) while filtered_futures: if (event_timeout is not None): until = (time.time() + event_timeout) if (end is not None): until = min(until, end) else: until = end self._service_futures(filtered_futures, until)
Services all futures until the list 'futures' are all done then returns. Calls relevant subscription callbacks as they come off the queue and raises an exception on abort Args: futures: a `Future` or list of all futures that the caller wants to wait for timeout: maximum total time in seconds to wait for responses, wait forever if None event_timeout: maximum time in seconds to wait between each response event, wait forever if None
codesearchnet
async def _handle_set_typing_notification(self, set_typing_notification): conv_id = set_typing_notification.conversation_id.id res = parsers.parse_typing_status_message(set_typing_notification) (await self.on_typing.fire(res)) try: conv = (await self._get_or_fetch_conversation(conv_id)) except exceptions.NetworkError: logger.warning('Failed to fetch conversation for typing notification: %s', conv_id) else: (await conv.on_typing.fire(res))
Receive SetTypingNotification and update the conversation. Args: set_typing_notification: hangouts_pb2.SetTypingNotification instance
codesearchnet
def _wait_for_and_process_task(self, task): function_descriptor = FunctionDescriptor.from_bytes_list( task.function_descriptor_list()) driver_id = task.driver_id() if not task.actor_creation_id().is_nil(): assert self.actor_id.is_nil() self.actor_id = task.actor_creation_id() self.actor_creation_task_id = task.task_id() actor_class = self.function_actor_manager.load_actor_class( driver_id, function_descriptor) self.actors[self.actor_id] = actor_class.__new__(actor_class) self.actor_checkpoint_info[self.actor_id] = ActorCheckpointInfo( num_tasks_since_last_checkpoint=0, last_checkpoint_timestamp=int(1000 * time.time()), checkpoint_ids=[], ) execution_info = self.function_actor_manager.get_execution_info( driver_id, function_descriptor) function_name = execution_info.function_name extra_data = {"name": function_name, "task_id": task.task_id().hex()} if task.actor_id().is_nil(): if task.actor_creation_id().is_nil(): title = "ray_worker:{}()".format(function_name) next_title = "ray_worker" else: actor = self.actors[task.actor_creation_id()] title = "ray_{}:{}()".format(actor.__class__.__name__, function_name) next_title = "ray_{}".format(actor.__class__.__name__) else: actor = self.actors[task.actor_id()] title = "ray_{}:{}()".format(actor.__class__.__name__, function_name) next_title = "ray_{}".format(actor.__class__.__name__) with profiling.profile("task", extra_data=extra_data): with _changeproctitle(title, next_title): self._process_task(task, execution_info) self.task_context.current_task_id = TaskID.nil() self.task_context.task_index = 0 self.task_context.put_index = 1 if self.actor_id.is_nil(): self.task_driver_id = DriverID.nil() ray_signal.reset() self.function_actor_manager.increase_task_counter( driver_id, function_descriptor) reached_max_executions = (self.function_actor_manager.get_task_counter( driver_id, function_descriptor) == execution_info.max_calls) if reached_max_executions: self.raylet_client.disconnect() sys.exit(0)
Wait for a task to be ready and process the task. Args: task: The task to execute.
juraj-google-style
def get_axis_grid(self, ind): ng = self.dim num_pts = ng[ind] lengths = self.structure.lattice.abc return [i / num_pts * lengths[ind] for i in range(num_pts)]
Returns the grid for a particular axis. Args: ind (int): Axis index.
juraj-google-style
def render(self, data): renderers = {'text/csv': self._render_as_csv, 'text/html': self._render_as_html, None: self._render_as_html} render = renderers[data.content_type] return render(data)
Renders the reports based on data.content_type's value. Arguments: data (ReportViewRequestData): The report data. data.content_type is used to determine how the reports are rendered. Returns: HTTPResponse: The rendered version of the report.
codesearchnet
def get_variable_dtype(master_dtype=tf.bfloat16, slice_dtype=tf.float32, activation_dtype=tf.float32): return mtf.VariableDType(master_dtype=tf.as_dtype(master_dtype), slice_dtype=tf.as_dtype(slice_dtype), activation_dtype=tf.as_dtype(activation_dtype))
Datatypes to use for the run. Args: master_dtype: string, datatype for checkpoints keep this the same between training and eval/inference slice_dtype: string, datatype for variables in memory must be tf.float32 for training activation_dtype: string, datatype for activations less memory usage if tf.bfloat16 but possible numerical issues Returns: a mtf.VariableDtype
codesearchnet
def normal_var(data, mean): if (not isinstance(data, np.ndarray)): data = np.array(data) cumm = [0.0] cumm.extend(np.cumsum(np.power(np.abs((data - mean)), 2))) def cost(s, t): ' Cost function for normal distribution with variable variance\n\n Args:\n start (int): start index\n end (int): end index\n Returns:\n float: Cost, from start to end\n ' dist = float((t - s)) diff = (cumm[t] - cumm[s]) return (dist * np.log((diff / dist))) return cost
Creates a segment cost function for a time series with a Normal distribution with changing variance Args: data (:obj:`list` of float): 1D time series data variance (float): variance Returns: function: Function with signature (int, int) -> float where the first arg is the starting index, and the second is the last arg. Returns the cost of that segment
codesearchnet
def last_timestamp(self, event_key=None): if event_key is None: timestamps = [self._trackers[key].first_timestamp for key in self._trackers] return max(timestamp for timestamp in timestamps if timestamp >= 0) else: return self._trackers[event_key].last_timestamp
Obtain the last timestamp. Args: event_key: the type key of the sought events (e.g., constants.NAN_KEY). If None, includes all event type keys. Returns: Last (latest) timestamp of all the events of the given type (or all event types if event_key is None).
juraj-google-style
def __init__(self, src_state_id, dst_state_id, guard_p, term=None): self.src_state = src_state_id self.dst_state = dst_state_id self.guard = guard_p self.term = None
Initialization function for Arc's guardgen structure Args: src_state_id (int): The source state identifier dst_state_id (int): The destination state identifier guard_p: The input character term: The input term Returns: None
juraj-google-style
def detect_mbr(self, filename, offset, fs_id): self.logger.debug('Detecting MBR partition type') if (fs_id not in self.__mbr_plugins): return None else: plugins = self.__mbr_plugins.get(fs_id) for plugin in plugins: if plugin.detect(filename, offset): return plugin.get_volume_object() return None
Used by rawdisk.session.Session to match mbr partitions against filesystem plugins. Args: filename: device or file that it will read in order to detect the filesystem fs_id: filesystem id to match (ex. 0x07) offset: offset for the filesystem that is being matched Returns: Volume object supplied by matched plugin. If there is no match, None is returned
codesearchnet
def size(self, time): if (self.start_time <= time <= self.end_time): return self.masks[(time - self.start_time)].sum() else: return 0
Gets the size of the object at a given time. Args: time: Time value being queried. Returns: size of the object in pixels
codesearchnet
def _validate_netconfig(self, conf): nets = conf.get('nets', {}) if (len(nets) == 0): raise LagoInitException('No networks configured.') no_mgmt_dns = [name for (name, net) in nets.iteritems() if ((net.get('management', None) is None) and (net.get('main_dns') or net.get('dns_domain_name')))] if ((len(no_mgmt_dns) > 0) and (len(nets.keys()) > 1)): raise LagoInitException('Networks: {0}, misconfigured, they are not marked as management, but have DNS attributes. DNS is supported only in management networks.'.format(','.join(no_mgmt_dns))) for (dom_name, dom_spec) in conf['domains'].items(): mgmts = [] for nic in dom_spec['nics']: net = self._get_net(conf, dom_name, nic) if (net.get('management', False) is True): mgmts.append(nic['net']) if (len(mgmts) == 0): raise LagoInitException('VM {0} has no management network, please connect it to one.'.format(dom_name)) if (len(mgmts) > 1): raise LagoInitException('VM {0} has more than one management network: {1}. It should have exactly one.'.format(dom_name, ','.join(mgmts)))
Validate network configuration Args: conf(dict): spec Returns: None Raises: :exc:`~lago.utils.LagoInitException`: If a VM has more than one management network configured, or a network which is not management has DNS attributes, or a VM is configured with a none-existence NIC, or a VM has no management network.
codesearchnet
def from_pseudoinverse(cls, strains, stresses): warnings.warn("Pseudoinverse fitting of Strain/Stress lists may yield " "questionable results from vasp data, use with caution.") stresses = np.array([Stress(stress).voigt for stress in stresses]) with warnings.catch_warnings(record=True): strains = np.array([Strain(strain).voigt for strain in strains]) voigt_fit = np.transpose(np.dot(np.linalg.pinv(strains), stresses)) return cls.from_voigt(voigt_fit)
Class method to fit an elastic tensor from stress/strain data. Method uses Moore-Penrose pseudoinverse to invert the s = C*e equation with elastic tensor, stress, and strain in voigt notation Args: stresses (Nx3x3 array-like): list or array of stresses strains (Nx3x3 array-like): list or array of strains
juraj-google-style
def crscode_to_string(codetype, code, format): link = ('http: result = urllib2.urlopen(link).read() if (not isinstance(result, str)): result = result.decode() return result
Lookup crscode on spatialreference.org and return in specified format. Arguments: - *codetype*: "epsg", "esri", or "sr-org". - *code*: The code. - *format*: The crs format of the returned string. One of "ogcwkt", "esriwkt", or "proj4", but also several others... Returns: - Crs string in the specified format.
codesearchnet
def ParseOptions(cls, options, output_module): if not isinstance(output_module, shared_4n6time.Shared4n6TimeOutputModule): raise errors.BadConfigObject( 'Output module is not an instance of Shared4n6TimeOutputModule') append = getattr(options, 'append', cls._DEFAULT_APPEND) evidence = cls._ParseStringOption( options, 'evidence', default_value=cls._DEFAULT_EVIDENCE) fields = cls._ParseStringOption( options, 'fields', default_value=cls._DEFAULT_FIELDS) additional_fields = cls._ParseStringOption( options, 'additional_fields') if additional_fields: fields = '{0:s},{1:s}'.format(fields, additional_fields) output_module.SetAppendMode(append) output_module.SetEvidence(evidence) output_module.SetFields([ field_name.strip() for field_name in fields.split(',')])
Parses and validates options. Args: options (argparse.Namespace): parser options. output_module (OutputModule): output module to configure. Raises: BadConfigObject: when the output module object is of the wrong type.
juraj-google-style
def get_dopants_from_shannon_radii(bonded_structure, num_dopants=5, match_oxi_sign=False): all_species = [Specie(el, oxi) for el in Element for oxi in el.common_oxidation_states] cn_and_species = set(((bonded_structure.get_coordination_of_site(i), bonded_structure.structure[i].specie) for i in range(bonded_structure.structure.num_sites))) cn_to_radii_map = {} possible_dopants = [] for (cn, species) in cn_and_species: cn_roman = _int_to_roman(cn) try: species_radius = species.get_shannon_radius(cn_roman) except KeyError: warnings.warn('Shannon radius not found for {} with coordination number {}.\nSkipping...'.format(species, cn)) continue if (cn not in cn_to_radii_map): cn_to_radii_map[cn] = _shannon_radii_from_cn(all_species, cn_roman, radius_to_compare=species_radius) shannon_radii = cn_to_radii_map[cn] possible_dopants += [{'radii_diff': p['radii_diff'], 'dopant_species': p['species'], 'original_species': species} for p in shannon_radii] possible_dopants.sort(key=(lambda x: abs(x['radii_diff']))) return _get_dopants(possible_dopants, num_dopants, match_oxi_sign)
Get dopant suggestions based on Shannon radii differences. Args: bonded_structure (StructureGraph): A pymatgen structure graph decorated with oxidation states. For example, generated using the CrystalNN.get_bonded_structure() method. num_dopants (int): The nummber of suggestions to return for n- and p-type dopants. match_oxi_sign (bool): Whether to force the dopant and original species to have the same sign of oxidation state. E.g. If the original site is in a negative charge state, then only negative dopants will be returned. Returns: (dict): Dopant suggestions, given as a dictionary with keys "n_type" and "p_type". The suggestions for each doping type are given as a list of dictionaries, each with they keys: - "radii_diff": The difference between the Shannon radii of the species. - "dopant_spcies": The dopant species. - "original_species": The substituted species.
codesearchnet
def is_native_xmon_gate(gate: ops.Gate) -> bool: return isinstance(gate, (ops.CZPowGate, ops.MeasurementGate, ops.PhasedXPowGate, ops.XPowGate, ops.YPowGate, ops.ZPowGate))
Check if a gate is a native xmon gate. Args: gate: Input gate. Returns: True if the gate is native to the xmon, false otherwise.
juraj-google-style
def get_name(node): if isinstance(node, gast.Name): return node.id elif isinstance(node, (gast.Subscript, gast.Attribute)): return get_name(node.value) else: raise TypeError
Get the name of a variable. Args: node: A `Name`, `Subscript` or `Attribute` node. Returns: The name of the variable e.g. `'x'` for `x`, `x.i` and `x[i]`.
codesearchnet
def get_vcenter(self, **kwargs): config = ET.Element("config") urn = "urn:brocade.com:mgmt:brocade-vswitch" ET.SubElement(config, "vcenter", xmlns=urn) output = self._callback(config, handler='get_config') result = [] element = ET.fromstring(str(output)) for vcenter in element.iter('{%s}vcenter'%urn): vc = {} vc['name'] = vcenter.find('{%s}id' % urn).text vc['url'] = (vcenter.find('{%s}credentials' % urn)).find('{%s}url' % urn).text isactive = vcenter.find('{%s}activate' %urn) if isactive is None: vc['isactive'] = False else: vc['isactive'] = True result.append(vc) return result
Get vCenter hosts on the switch Args: callback (function): A function executed upon completion of the method. Returns: Returns a list of vcenters Raises: None
juraj-google-style
def parse_args(): parser = argparse.ArgumentParser() parser.register('type', 'bool', lambda v: v.lower() == 'true') parser.add_argument('--max_steps', type=int, default=10, help='Number of steps to run trainer.') parser.add_argument('--train_batch_size', type=int, default=100, help='Batch size used during training.') parser.add_argument('--learning_rate', type=float, default=0.025, help='Initial learning rate.') parser.add_argument('--data_dir', type=str, default='/tmp/mnist_data', help='Directory for storing data') parser.add_argument('--fake_data', type='bool', nargs='?', const=True, default=False, help='Use fake MNIST data for unit testing') parser.add_argument('--check_numerics', type='bool', nargs='?', const=True, default=False, help='Use tfdbg to track down bad values during training. Mutually exclusive with the --dump_dir flag.') parser.add_argument('--dump_dir', type=str, default=None, help='Dump TensorFlow program debug data to the specified directory. The dumped data contains information regarding tf.function building, execution of ops and tf.functions, as well as their stack traces and associated source-code snapshots. Mutually exclusive with the --check_numerics flag.') parser.add_argument('--dump_tensor_debug_mode', type=str, default='FULL_HEALTH', help='Mode for dumping tensor values. Options: NO_TENSOR, CURT_HEALTH, CONCISE_HEALTH, SHAPE, FULL_HEALTH. This is relevant only when --dump_dir is set.') parser.add_argument('--dump_circular_buffer_size', type=int, default=-1, help='Size of the circular buffer used to dump execution events. A value <= 0 disables the circular-buffer behavior and causes all instrumented tensor values to be dumped. This is relevant only when --dump_dir is set.') parser.add_argument('--use_random_config_path', type='bool', nargs='?', const=True, default=False, help='If set, set config file path to a random file in the temporary\n directory.') return parser.parse_known_args()
Parses commandline arguments. Returns: A tuple (parsed, unparsed) of the parsed object and a group of unparsed arguments that did not match the parser.
github-repos
def isworkday(self, date): date = parsefun(date) return self.weekdaymap[date.weekday()].isworkday
Check if a given date is a work date, ignoring holidays. Args: date (date, datetime or str): Date to be checked. Returns: bool: True if the date is a work date, False otherwise.
juraj-google-style
def check_import_stdlib(module): if ( module in stdlib_list('2.7') or module in stdlib_list('3.4') or module in stdlib_list('3.5') or module in stdlib_list('3.6') or module in stdlib_list('3.7') or module in ['app', 'args', 'playbook_app'] ): return True return False
Check if module is in Python stdlib. Args: module (str): The name of the module to check. Returns: bool: Returns True if the module is in the stdlib or template.
juraj-google-style
def download_kegg_gene_metadata(gene_id, outdir=None, force_rerun=False): if not outdir: outdir = '' outfile = op.join(outdir, '{}.kegg'.format(custom_slugify(gene_id))) if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile): raw_text = bs_kegg.get("{}".format(gene_id)) if raw_text == 404: return with io.open(outfile, mode='wt', encoding='utf-8') as f: f.write(raw_text) log.debug('{}: downloaded KEGG metadata file'.format(outfile)) else: log.debug('{}: KEGG metadata file already exists'.format(outfile)) return outfile
Download the KEGG flatfile for a KEGG ID and return the path. Args: gene_id: KEGG gene ID (with organism code), i.e. "eco:1244" outdir: optional output directory of metadata Returns: Path to metadata file
juraj-google-style
def _SetCompleted(self): with self._lock: if self._completed: return False self._completed = True return True
Atomically marks the breakpoint as completed. Returns: True if the breakpoint wasn't marked already completed or False if the breakpoint was already completed.
codesearchnet
def _run_model(iterator, args, tf_args): single_node_env(tf_args) logging.info("===== input_mapping: {}".format(args.input_mapping)) logging.info("===== output_mapping: {}".format(args.output_mapping)) input_tensor_names = [tensor for col, tensor in sorted(args.input_mapping.items())] output_tensor_names = [tensor for tensor, col in sorted(args.output_mapping.items())] if args.signature_def_key: assert args.export_dir, "Inferencing with signature_def_key requires --export_dir argument" logging.info("===== loading meta_graph_def for tag_set ({0}) from saved_model: {1}".format(args.tag_set, args.export_dir)) meta_graph_def = get_meta_graph_def(args.export_dir, args.tag_set) signature = meta_graph_def.signature_def[args.signature_def_key] logging.debug("signature: {}".format(signature)) inputs_tensor_info = signature.inputs logging.debug("inputs_tensor_info: {0}".format(inputs_tensor_info)) outputs_tensor_info = signature.outputs logging.debug("outputs_tensor_info: {0}".format(outputs_tensor_info)) result = [] global global_sess, global_args if global_sess and global_args == args: sess = global_sess else: tf.reset_default_graph() sess = tf.Session(graph=tf.get_default_graph()) if args.export_dir: assert args.tag_set, "Inferencing from a saved_model requires --tag_set" logging.info("===== restoring from saved_model: {}".format(args.export_dir)) loader.load(sess, args.tag_set.split(','), args.export_dir) elif args.model_dir: ckpt = tf.train.latest_checkpoint(args.model_dir) assert ckpt, "Invalid model checkpoint path: {}".format(args.model_dir) logging.info("===== restoring from checkpoint: {}".format(ckpt + ".meta")) saver = tf.train.import_meta_graph(ckpt + ".meta", clear_devices=True) saver.restore(sess, ckpt) else: raise Exception("Inferencing requires either --model_dir or --export_dir argument") global_sess = sess global_args = args if args.signature_def_key: input_tensors = [inputs_tensor_info[t].name for t in input_tensor_names] output_tensors = [outputs_tensor_info[output_tensor_names[0]].name] else: input_tensors = [t + ':0' for t in input_tensor_names] output_tensors = [t + ':0' for t in output_tensor_names] logging.info("input_tensors: {0}".format(input_tensors)) logging.info("output_tensors: {0}".format(output_tensors)) for tensors in yield_batch(iterator, args.batch_size, len(input_tensor_names)): inputs_feed_dict = {} for i in range(len(input_tensors)): inputs_feed_dict[input_tensors[i]] = tensors[i] outputs = sess.run(output_tensors, feed_dict=inputs_feed_dict) lengths = [len(output) for output in outputs] input_size = len(tensors[0]) assert all([length == input_size for length in lengths]), "Output array sizes {} must match input size: {}".format(lengths, input_size) python_outputs = [output.tolist() for output in outputs] result.extend(zip(*python_outputs)) return result
mapPartitions function to run single-node inferencing from a checkpoint/saved_model, using the model's input/output mappings. Args: :iterator: input RDD partition iterator. :args: arguments for TFModel, in argparse format :tf_args: arguments for TensorFlow inferencing code, in argparse or ARGV format. Returns: An iterator of result data.
juraj-google-style
def dropout(x, keep_prob, noise_shape=None, name=None): noise_shape = convert_to_shape(noise_shape) if (noise_shape is None): noise_shape = x.shape with tf.variable_scope(name, default_name='dropout'): if (keep_prob == 1.0): return x noise = cast(less(random_uniform(x.mesh, noise_shape, dtype=x.dtype), keep_prob), x.dtype) noise /= keep_prob return (x * noise)
Dropout layer. Args: x: a Tensor keep_prob: a float between 0.0 and 1.0 noise_shape: an optional Shape (a subset of x.shape) name: an optional string Returns: a Tensor
codesearchnet
def compile_action_preconditions(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor]) -> List[TensorFluent]: scope = self.action_precondition_scope(state, action) preconds = [] with self.graph.as_default(): with tf.name_scope('action_preconditions'): for p in self.rddl.domain.preconds: fluent = self._compile_expression(p, scope) preconds.append(fluent) return preconds
Compiles the action preconditions given current `state` and `action` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. action (Sequence[tf.Tensor]): The action fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`.
juraj-google-style
def Sample(self, task, status): sample_time = time.time() sample = '{0:f}\t{1:s}\t{2:s}\n'.format( sample_time, task.identifier, status) self._WritesString(sample)
Takes a sample of the status of a task for profiling. Args: task (Task): a task. status (str): status.
juraj-google-style
def get_metadata_as_dict(self, user_id=None, source=None): if self.metadata is None or self.metadata == "": return {} metadata_dict = self.metadata if isinstance(self.metadata, dict) else json.loads(self.metadata) metadata_keys = [m.lower() for m in metadata_dict] if user_id is not None and 'user_id' not in metadata_keys: metadata_dict['user_id'] = six.text_type(user_id) if source is not None and 'source' not in metadata_keys: metadata_dict['source'] = six.text_type(source) return { k : six.text_type(v) for k, v in metadata_dict.items() }
Convert a metadata json string into a dictionary. Args: user_id (int): Optional: Insert user_id into the metadata if specified source (string): Optional: Insert source (the name of the app typically) into the metadata if necessary. Returns: dict: THe metadata as a python dictionary
juraj-google-style
def raise_for_status(response): for err_name in web_exceptions.__all__: err = getattr(web_exceptions, err_name) if (err.status_code == response.status): payload = dict(headers=response.headers, reason=response.reason) if issubclass(err, web_exceptions._HTTPMove): raise err(response.headers['Location'], **payload) raise err(**payload)
Raise an appropriate error for a given response. Arguments: response (:py:class:`aiohttp.ClientResponse`): The API response. Raises: :py:class:`aiohttp.web_exceptions.HTTPException`: The appropriate error for the response's status.
codesearchnet
def _process_query(self, query, prepared=False): if (prepared is True): files = {'query': str(query)} logger.debug('About to submit the following query {}'.format(query)) (res, status) = self.post(self.disambiguate_service, files=files, headers={'Accept': 'application/json'}) if (status == 200): return (self.decode(res), status) else: logger.debug('Disambiguation failed.') return (None, status) text = query['text'] sentence_coordinates = [{'offsetStart': 0, 'offsetEnd': len(text)}] total_nb_sentences = len(sentence_coordinates) sentences_groups = [] if (len(text) > self.max_text_length): (res, status_code) = self.segment(text) if (status_code == 200): sentence_coordinates = res['sentences'] total_nb_sentences = len(sentence_coordinates) else: logger.error('Error during the segmentation of the text.') logger.debug('Text too long, split in {} sentences; building groups of {} sentences.'.format(total_nb_sentences, self.sentences_per_group)) sentences_groups = self._group_sentences(total_nb_sentences, self.sentences_per_group) else: query['sentence'] = 'true' if (total_nb_sentences > 1): query['sentences'] = sentence_coordinates if (len(sentences_groups) > 0): for group in sentences_groups: query['processSentence'] = group (res, status_code) = self._process_query(query, prepared=True) if (status_code == 200): if ('entities' in res): query['entities'] = res[u'entities'] query['language'] = res[u'language'] else: logger.error('Error when processing the query {}'.format(query)) return (None, status_code) else: (res, status_code) = self._process_query(query, prepared=True) if (status_code == 200): query['language'] = res[u'language'] if ('entities' in res): query['entities'] = res[u'entities'] else: logger.error('Error when processing the query {}'.format(query)) return (None, status_code) return (query, status_code)
Process query recursively, if the text is too long, it is split and processed bit a bit. Args: query (sdict): Text to be processed. prepared (bool): True when the query is ready to be submitted via POST request. Returns: str: Body ready to be submitted to the API.
codesearchnet
def Deserialize(self, reader): self.Timestamp = reader.ReadUInt32() self.Services = reader.ReadUInt64() addr = bytearray(reader.ReadFixedString(16)) addr.reverse() addr.strip(b'\x00') nums = [] for i in range(0, 4): nums.append(str(addr[i])) nums.reverse() adddd = '.'.join(nums) self.Address = adddd self.Port = reader.ReadUInt16(endian='>')
Deserialize full object. Args: reader (neo.IO.BinaryReader):
juraj-google-style
def center_crop(self, image: 'torch.Tensor', size: Dict[str, int], **kwargs) -> 'torch.Tensor': output_size = size.shortest_edge return F.center_crop(image, output_size=(output_size, output_size), **kwargs)
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Args: image (`torch.Tensor`): Image to center crop. size (`Dict[str, int]`): Size of the output image in the form `{"height": h, "width": w}`.
github-repos
def _draw_breakpoint_icon(self, top, painter, icon_name): rect = QRect(0, top, self.sizeHint().width(), self.sizeHint().height()) try: icon = self.icons[icon_name] except KeyError as e: debug_print("Breakpoint icon doen't exist, {}".format(e)) else: icon.paint(painter, rect)
Draw the given breakpoint pixmap. Args: top (int): top of the line to draw the breakpoint icon. painter (QPainter) icon_name (srt): key of icon to draw (see: self.icons)
codesearchnet
def __init__(self, hosts=None): if not hosts: hosts = [{"host": "localhost", "port": 9200}] try: self.els_search = elasticsearch.Elasticsearch(hosts) info = self.els_search.info() version = info['version'] print '\t- ELS Indexer connected: %s %s %s %s' % (str(hosts), info['name'], version['number'], version['lucene_version']) except elasticsearch.exceptions.ConnectionError: print '\t- ELS connection failed! Is your ELS server running?' exit(1)
Initialization for the Elastic Search Indexer. Args: hosts: List of connection settings.
juraj-google-style
def _next_power_of_two(x): return 1 if x == 0 else 2 ** (int(x) - 1).bit_length()
Calculates the smallest enclosing power of two for an input. Args: x: Positive float or integer number. Returns: Next largest power of two integer.
github-repos
def ice_register_write(self, register_index, value, delay=False): self._dll.JLINKARM_WriteICEReg(register_index, int(value), int(delay)) return None
Writes a value to an ARM ICE register. Args: self (JLink): the ``JLink`` instance register_index (int): the ICE register to write to value (int): the value to write to the ICE register delay (bool): boolean specifying if the write should be delayed Returns: ``None``
juraj-google-style
def init_from_storage_write_to_datastore(self, batch_size=100, allowed_epsilon=None, skip_image_ids=None, max_num_images=None): if (allowed_epsilon is None): allowed_epsilon = copy.copy(DEFAULT_EPSILON) self._dataset_batches = {} images = self._read_image_list(skip_image_ids) if max_num_images: images = images[:max_num_images] for (batch_idx, batch_start) in enumerate(range(0, len(images), batch_size)): batch = images[batch_start:(batch_start + batch_size)] batch_id = DATASET_BATCH_ID_PATTERN.format(batch_idx) batch_epsilon = allowed_epsilon[(batch_idx % len(allowed_epsilon))] self.add_batch(batch_id, {'epsilon': batch_epsilon}) for (image_id, image_path) in batch: self.add_image(batch_id, image_id, {'dataset_image_id': os.path.basename(image_path)[:(- 4)], 'image_path': image_path}) self.write_to_datastore()
Initializes dataset batches from the list of images in the datastore. Args: batch_size: batch size allowed_epsilon: list of allowed epsilon or None to use default skip_image_ids: list of image ids to skip max_num_images: maximum number of images to read
codesearchnet
def _read(cls, **kwargs): pd_obj = pandas.read_csv(**kwargs) if isinstance(pd_obj, pandas.DataFrame): return cls.from_pandas(pd_obj) if isinstance(pd_obj, pandas.io.parsers.TextFileReader): pd_read = pd_obj.read pd_obj.read = lambda *args, **kwargs: cls.from_pandas( pd_read(*args, **kwargs) ) return pd_obj
Read csv file from local disk. Args: filepath_or_buffer: The filepath of the csv file. We only support local files for now. kwargs: Keyword arguments in pandas.read_csv
juraj-google-style
def delete(self, filething=None): fileobj = filething.fileobj self.tags.clear() try: try: self.tags._inject(fileobj, lambda x: 0) except error as e: reraise(self._Error, e, sys.exc_info()[2]) except EOFError: raise self._Error("no appropriate stream found") except IOError as e: reraise(self._Error, e, sys.exc_info()[2])
delete(filething=None) Remove tags from a file. If no filename is given, the one most recently loaded is used. Args: filething (filething) Raises: mutagen.MutagenError
juraj-google-style
def GetLogdirSubdirectories(path): if (not tf.io.gfile.exists(path)): return () if (not tf.io.gfile.isdir(path)): raise ValueError(('GetLogdirSubdirectories: path exists and is not a directory, %s' % path)) if IsCloudPath(path): logger.info('GetLogdirSubdirectories: Starting to list directories via glob-ing.') traversal_method = ListRecursivelyViaGlobbing else: logger.info('GetLogdirSubdirectories: Starting to list directories via walking.') traversal_method = ListRecursivelyViaWalking return (subdir for (subdir, files) in traversal_method(path) if any((IsTensorFlowEventsFile(f) for f in files)))
Obtains all subdirectories with events files. The order of the subdirectories returned is unspecified. The internal logic that determines order varies by scenario. Args: path: The path to a directory under which to find subdirectories. Returns: A tuple of absolute paths of all subdirectories each with at least 1 events file directly within the subdirectory. Raises: ValueError: If the path passed to the method exists and is not a directory.
codesearchnet
def __init__(self, function_approximator, map_size=(10, 10), memory_num=4, repeating_penalty=0.5): self.__map_arr = self.__create_map(map_size) self.__agent_pos = self.START_POS self.__reward_list = [] self.__route_memory_list = [] self.__memory_num = memory_num self.__repeating_penalty = repeating_penalty super().__init__(function_approximator)
Init. Args: function_approximator: is-a `FunctionApproximator`. map_size: Size of map. memory_num: The number of step of agent's memory. repeating_penalty: The value of penalty in the case that agent revisit.
juraj-google-style
def aoi(self, **kwargs): g = self._parse_geoms(**kwargs) if g is None: return self else: return self[g]
Subsets the Image by the given bounds Args: bbox (list): optional. A bounding box array [minx, miny, maxx, maxy] wkt (str): optional. A WKT geometry string geojson (str): optional. A GeoJSON geometry dictionary Returns: image: an image instance of the same type
juraj-google-style
def run_and_report_benchmark(self, dataset, num_elements, name, iters=5, extras=None, warmup=True, apply_default_optimizations=False, session_config=None): wall_time = self.run_benchmark(dataset=dataset, num_elements=num_elements, iters=iters, warmup=warmup, apply_default_optimizations=apply_default_optimizations, session_config=session_config) if extras is None: extras = {} if context.executing_eagerly(): name = '{}.eager'.format(name) extras['implementation'] = 'eager' else: name = '{}.graph'.format(name) extras['implementation'] = 'graph' extras['num_elements'] = num_elements self.report_benchmark(wall_time=wall_time, iters=iters, name=name, extras=extras) return wall_time
Benchmarks the dataset and reports the stats. Runs the dataset `iters` times. In each iteration, the benchmark measures the time it takes to go through `num_elements` elements of the dataset. This is followed by logging/printing the benchmark stats. Args: dataset: Dataset to benchmark. num_elements: Number of dataset elements to iterate through each benchmark iteration. name: Name of the benchmark. iters: Number of times to repeat the timing. extras: A dict which maps string keys to additional benchmark info. warmup: If true, warms up the session caches by running an untimed run. apply_default_optimizations: Determines whether default optimizations should be applied. session_config: A ConfigProto protocol buffer with configuration options for the session. Applicable only for benchmarking in graph mode. Returns: A float, representing the per-element wall time of the dataset in seconds. This is the median time (with respect to `iters`) it takes for the dataset to go through `num_elements` elements, divided by `num_elements.`
github-repos
def pack(value): if is_packed(value): return value spec = value._type_spec._tf_extension_type_with_packed(True) try: variant = composite_tensor_ops.composite_tensor_to_variants(value) except nested_structure_coder.NotEncodableError as e: raise ValueError('ExtensionTypes must have a __name__ field in order to be packed.') from e return _create_object_from_type_and_dict(type(value), {'_tf_extension_type_cached_type_spec': spec, '_tf_extension_type_packed_variant': variant})
Returns a copy of `value` with fields packed in a single Variant. Args: value: An `ExtensionType` object. Returns: An `ExtensionType` object.
github-repos
def ExtractFilename(self, flagfile_str): if flagfile_str.startswith('--flagfile='): return os.path.expanduser((flagfile_str[(len('--flagfile=')):]).strip()) elif flagfile_str.startswith('-flagfile='): return os.path.expanduser((flagfile_str[(len('-flagfile=')):]).strip()) else: raise exceptions.Error( 'Hit illegal --flagfile type: %s' % flagfile_str)
Returns filename from a flagfile_str of form -[-]flagfile=filename. The cases of --flagfile foo and -flagfile foo shouldn't be hitting this function, as they are dealt with in the level above this function. Args: flagfile_str: flagfile string. Returns: str filename from a flagfile_str of form -[-]flagfile=filename. Raises: Error: when illegal --flagfile provided.
juraj-google-style
def build_results(self, session, tensor_values): full_values = [] assert len(self._final_fetches) == len(tensor_values) i = 0 j = 0 for is_op in self._ops: if is_op: full_values.append(None) else: if self._fetches[i].ref() in self._feed_handles: value = self._feed_handles[self._fetches[i].ref()].eval() else: value = self._feeds.get(self._fetches[i].ref()) if value is None: value = tensor_values[j] j += 1 dtype = self._fetch_handles.get(self._fetches[i].ref()) if dtype: full_values.append(session_ops.TensorHandle(value, dtype, session)) else: full_values.append(value) i += 1 assert j == len(tensor_values) return self._fetch_mapper.build_results(full_values)
Build results matching the original fetch shape. `tensor_values` must be a list of the same length as the one returned by `fetches()`, and holding the requested fetch values. This method builds a struct with the same shape as the original `fetches` passed to the constructor, in which the fetches are replaced by their fetched value. Args: session: The enclosing session. Used for tensor handles. tensor_values: List of values matching the list returned by fetches(). Returns: A structure of the same shape as the original `fetches` argument but containing tensors or None (for fetched ops).
github-repos
def manual_get_pfam_annotations(seq, outpath, searchtype='phmmer', force_rerun=False): if op.exists(outpath): with open(outpath, 'r') as f: json_results = json.loads(json.load(f)) else: fseq = ('>Seq\n' + seq) if (searchtype == 'phmmer'): parameters = {'seqdb': 'pdb', 'seq': fseq} if (searchtype == 'hmmscan'): parameters = {'hmmdb': 'pfam', 'seq': fseq} enc_params = urllib.urlencode(parameters).encode('utf-8') request = urllib2.Request('http: url = (urllib2.urlopen(request).geturl() + '?output=json') request = str(url) request_read = urlopen(request).read().decode('utf-8') with open(outpath, 'w') as f: json.dump(request_read, f) json_results = json.loads(request_read) return json_results['results']['hits']
Retrieve and download PFAM results from the HMMER search tool. Args: seq: outpath: searchtype: force_rerun: Returns: Todo: * Document and test!
codesearchnet
def dict_factory(self, cursor, row): d = {} for idx, col in enumerate(cursor.description): val = row[idx] name = col[0] if name == Field.Time_Stamp: d[col[0]] = str(val) continue if name == "Raw_A" or name == "Raw_B": continue if name not in self.m_all_fields: continue if (str(val) != "None") and ((val > 0) or (val < 0)): d[name] = str(val) return d
Sqlite callback accepting the cursor and the original row as a tuple. Simple return of JSON safe types. Args: cursor (sqlite cursor): Original cursory row (sqlite row tuple): Original row. Returns: dict: modified row.
juraj-google-style
def _ParseFileEntryWithParsers(self, parser_mediator, parser_names, file_entry, file_object=None): parse_results = self._PARSE_RESULT_UNSUPPORTED for parser_name in parser_names: parser = self._parsers.get(parser_name, None) if (not parser): raise RuntimeError('Parser object missing for parser: {0:s}'.format(parser_name)) if parser.FILTERS: if (not self._CheckParserCanProcessFileEntry(parser, file_entry)): parse_results = self._PARSE_RESULT_SUCCESS continue display_name = parser_mediator.GetDisplayName(file_entry) logger.debug('[ParseFileEntryWithParsers] parsing file: {0:s} with parser: {1:s}'.format(display_name, parser_name)) parse_result = self._ParseFileEntryWithParser(parser_mediator, parser, file_entry, file_object=file_object) if (parse_result == self._PARSE_RESULT_FAILURE): return self._PARSE_RESULT_FAILURE if (parse_result == self._PARSE_RESULT_SUCCESS): parse_results = self._PARSE_RESULT_SUCCESS return parse_results
Parses a file entry with a specific parsers. Args: parser_mediator (ParserMediator): parser mediator. parser_names (list[str]): names of parsers. file_entry (dfvfs.FileEntry): file entry. file_object (Optional[file]): file-like object to parse. If not set the parser will use the parser mediator to open the file entry's default data stream as a file-like object. Returns: int: parse result which is _PARSE_RESULT_FAILURE if the file entry could not be parsed, _PARSE_RESULT_SUCCESS if the file entry successfully was parsed or _PARSE_RESULT_UNSUPPORTED when UnableToParseFile was raised or no names of parser were provided. Raises: RuntimeError: if the parser object is missing.
codesearchnet
def _page_streamable(page_descriptor): def inner(a_func, settings, request, **kwargs): 'Actual page-streaming based on the settings.' page_iterator = gax.PageIterator(a_func, page_descriptor, settings.page_token, request, **kwargs) if settings.flatten_pages: return gax.ResourceIterator(page_iterator) else: return page_iterator return inner
Creates a function that yields an iterable to performs page-streaming. Args: page_descriptor (:class:`PageDescriptor`): indicates the structure of page streaming to be performed. Returns: Callable: A function that returns an iterator.
codesearchnet
def build(self): if (not self.build_cmds): LOGGER.debug('No build commands were found, skipping build step') with LogTask('Building {} disk {}'.format(self.name, self.disk_path)): for command in self.build_cmds: with LogTask('Running command {}'.format(command.name)): LOGGER.debug(command.cmd) result = utils.run_command(command.cmd) if result: raise BuildException(result.err)
Run all the commands in self.build_cmds Raises: lago.build.BuildException: If a command returned a non-zero code
codesearchnet
def alternative_titles(self, **kwargs): path = self._get_id_path('alternative_titles') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
Get the alternative titles for a specific movie id. Args: country: (optional) ISO 3166-1 code. append_to_response: (optional) Comma separated, any movie method. Returns: A dict representation of the JSON returned from the API.
codesearchnet
def set_reprompt_ssml(self, ssml): self.response.reprompt.outputSpeech.type = 'SSML' self.response.reprompt.outputSpeech.ssml = ssml
Set response reprompt output speech as SSML type. Args: ssml: str. Response speech used when type is 'SSML', should be formatted with Speech Synthesis Markup Language. Cannot exceed 8,000 characters.
codesearchnet
async def verify_docker_image_task(chain, link): errors = [] worker_type = get_worker_type(link.task) if (worker_type not in chain.context.config['valid_docker_image_worker_types']): errors.append('{} is not a valid docker-image workerType!'.format(worker_type)) raise_on_errors(errors)
Verify the docker image Link. Args: chain (ChainOfTrust): the chain we're operating on. link (LinkOfTrust): the task link we're checking.
codesearchnet
def _validated_config_filename(self, name): dir_name = self._make_config_dir() filename = os.path.join(dir_name, name.split(".json")[0] + ".json") return filename
Make config dir and return full file path and extension Args: name (str): Filename without dir or extension Returns: str: Full path including extension
juraj-google-style
def _VerifyValues(self, tensor_in_sizes, filter_in_sizes, stride, padding, data_type, data_format='NHWC'): total_size_1 = 1 total_size_2 = 1 for s in tensor_in_sizes: total_size_1 *= s for s in filter_in_sizes: total_size_2 *= s x1 = np.array([f * 1.0 for f in range(1, total_size_1 + 1)], dtype=data_type).reshape(tensor_in_sizes) x2 = np.array([f * 1.0 for f in range(1, total_size_2 + 1)], dtype=data_type).reshape(filter_in_sizes) with self.session() as sess: if data_type == np.float32: tolerance = 0.0001 else: self.assertEqual(data_type, np.float64) tolerance = 1e-08 t1 = array_ops.placeholder(shape=tensor_in_sizes, dtype=data_type) t2 = array_ops.placeholder(shape=filter_in_sizes, dtype=data_type) native_t1 = t1 strides = [1, stride, stride, 1] if data_format == 'NCHW': native_t1 = array_ops.transpose(t1, [0, 3, 1, 2]) strides = [1, 1, stride, stride] with self.test_scope(): conv_native = nn_ops.depthwise_conv2d_native(native_t1, t2, strides=strides, data_format=data_format, padding=padding) if data_format == 'NCHW': conv_native = array_ops.transpose(conv_native, [0, 2, 3, 1]) with ops.device('CPU'): conv_interface = ReferenceDepthwiseConv2D(t1, t2, strides=[1, stride, stride, 1], padding=padding) native_result = sess.run(conv_native, {t1: x1, t2: x2}) interface_result = sess.run(conv_interface, {t1: x1, t2: x2}) print('data_type:', data_type, 'max diff = ', np.amax(np.absolute(native_result - interface_result))) self.assertAllClose(np.ravel(native_result), np.ravel(interface_result), rtol=tolerance)
Verifies the output values of the convolution function. Args: tensor_in_sizes: Input tensor dimensions in [batch, input_rows, input_cols, input_depth]. filter_in_sizes: Filter tensor dimensions in [filter_rows, filter_cols, input_depth, depth_multiplier]. stride: Stride. padding: Padding type. data_type: The data type to use. data_format: The data_format of the input. "NHWC" or "NCHW".
github-repos
def convert_obatoms_to_molecule(self, atoms, residue_name=None, site_property='ff_map'): restore_site_props = (True if (residue_name is not None) else False) if (restore_site_props and (not hasattr(self, 'map_residue_to_mol'))): self._set_residue_map() coords = [] zs = [] for atm in atoms: coords.append(list(atm.coords)) zs.append(atm.atomicnum) mol = Molecule(zs, coords) if restore_site_props: props = [] ref = self.map_residue_to_mol[residue_name].copy() assert (len(mol) == len(ref)) assert (ref.formula == mol.formula) for (i, site) in enumerate(mol): assert (site.specie.symbol == ref[i].specie.symbol) props.append(getattr(ref[i], site_property)) mol.add_site_property(site_property, props) return mol
Convert list of openbabel atoms to MOlecule. Args: atoms ([OBAtom]): list of OBAtom objects residue_name (str): the key in self.map_residue_to_mol. Usec to restore the site properties in the final packed molecule. site_property (str): the site property to be restored. Returns: Molecule object
codesearchnet
def to_price_index(returns, start=100): return ((returns.replace(to_replace=np.nan, value=0) + 1).cumprod() * start)
Returns a price index given a series of returns. Args: * returns: Expects a return series * start (number): Starting level Assumes arithmetic returns. Formula is: cumprod (1+r)
codesearchnet
def convert(self, calibration_inputs: Optional[Mapping[str, np.ndarray]]=None, num_runs=1) -> None:
Converts the model with TensorRT and calibrates if using INT8 precision mode. Args: calibration_inputs: Mapping from input names to ndarrays in TF1. Or a sequence of tensors in TF2. Used as calibration data. num_runs: Number of calibration runs.
github-repos
def aes_encrypt(base64_encryption_key, data): if isinstance(data, text_type): data = data.encode('UTF-8') (aes_key_bytes, hmac_key_bytes) = _extract_keys(base64_encryption_key) data = _pad(data) iv_bytes = os.urandom(AES_BLOCK_SIZE) cipher = AES.new(aes_key_bytes, mode=AES.MODE_CBC, IV=iv_bytes) data = (iv_bytes + cipher.encrypt(data)) hmac_signature = hmac.new(hmac_key_bytes, data, hashlib.sha256).digest() return as_base64((data + hmac_signature))
Encrypt data with AES-CBC and sign it with HMAC-SHA256 Arguments: base64_encryption_key (str): a base64-encoded string containing an AES encryption key and HMAC signing key as generated by generate_encryption_key() data (str): a byte string containing the data to be encrypted Returns: str: the encrypted data as a byte string with the HMAC signature appended to the end
codesearchnet
def _KillProcess(self, pid): if sys.platform.startswith('win'): process_terminate = 1 handle = ctypes.windll.kernel32.OpenProcess(process_terminate, False, pid) ctypes.windll.kernel32.TerminateProcess(handle, (- 1)) ctypes.windll.kernel32.CloseHandle(handle) else: try: os.kill(pid, signal.SIGKILL) except OSError as exception: logger.error('Unable to kill process {0:d} with error: {1!s}'.format(pid, exception))
Issues a SIGKILL or equivalent to the process. Args: pid (int): process identifier (PID).
codesearchnet
def expand_role(self, role): if ('/' in role): return role else: return self.boto_session.resource('iam').Role(role).arn
Expand an IAM role name into an ARN. If the role is already in the form of an ARN, then the role is simply returned. Otherwise we retrieve the full ARN and return it. Args: role (str): An AWS IAM role (either name or full ARN). Returns: str: The corresponding AWS IAM role ARN.
codesearchnet
def delete(self, url, **kwargs): check_type(url, basestring, may_be_none=False) erc = kwargs.pop('erc', EXPECTED_RESPONSE_CODE['DELETE']) self.request('DELETE', url, erc, **kwargs)
Sends a DELETE request. Args: url(basestring): The URL of the API endpoint. **kwargs: erc(int): The expected (success) response code for the request. others: Passed on to the requests package. Raises: ApiError: If anything other than the expected response code is returned by the Webex Teams API endpoint.
codesearchnet
def _signature_to_tf2xla_config(signature_def, variable_nodes_to_feed): from tensorflow.compiler.tf2xla import tf2xla_pb2 config = tf2xla_pb2.Config() tensor_id = tf2xla_pb2.TensorId for name, input_ in signature_def.inputs.items(): name = name.replace('/', '_') name = 'feed_{}'.format(name) node_name, output_index = _parse_tensor_name(input_.name) output_index = int(output_index) config.feed.append(tf2xla_pb2.Feed(id=tensor_id(node_name=node_name, output_index=output_index), name=name, type=input_.dtype, shape=input_.tensor_shape)) for name, output_ in signature_def.outputs.items(): name = name.replace('/', '_') name = 'fetch_{}'.format(name) node_name, output_index = _parse_tensor_name(output_.name) output_index = int(output_index) config.fetch.append(tf2xla_pb2.Fetch(id=tensor_id(node_name=node_name, output_index=output_index), name=name, type=output_.dtype, shape=output_.tensor_shape)) for node, modified in variable_nodes_to_feed: name = node.name.replace('/', '_') name = 'param_{}'.format(name) config.variable.append(tf2xla_pb2.Variable(node_name=node.name, name=name, type=node.attr['dtype'].type, shape=node.attr['shape'].shape, readonly=not modified)) return config
Convert `signature_def` to tf2xla config. Returns a `tf2xla.Config` proto. Args: signature_def: Instance of `SignatureDef`. variable_nodes_to_feed: List of tuples of form `(node_def, modified)` corresponding to VarHandleOp, and a boolean `modified` that describes whether the variable was modified during execution. Returns: An instance of `tf2xla.Config` proto. Raises: RuntimeError: If TensorFlow was not compiled with XLA.
github-repos
def _to_json(self, strip, to_serialize=None): if (to_serialize is None): to_serialize = copy.copy(self.__dict__) pkcs12_val = to_serialize.get(_PKCS12_KEY) if (pkcs12_val is not None): to_serialize[_PKCS12_KEY] = base64.b64encode(pkcs12_val) return super(ServiceAccountCredentials, self)._to_json(strip, to_serialize=to_serialize)
Utility function that creates JSON repr. of a credentials object. Over-ride is needed since PKCS#12 keys will not in general be JSON serializable. Args: strip: array, An array of names of members to exclude from the JSON. to_serialize: dict, (Optional) The properties for this object that will be serialized. This allows callers to modify before serializing. Returns: string, a JSON representation of this instance, suitable to pass to from_json().
codesearchnet
def get_pkg_names(pkgs): result = set() with open(join('mapping'), 'r') as f: data = dict((x.strip().split(':') for x in f)) for pkg in pkgs: result.add(data.get(pkg, pkg)) return sorted(result, key=(lambda s: s.lower()))
Get PyPI package names from a list of imports. Args: pkgs (List[str]): List of import names. Returns: List[str]: The corresponding PyPI package names.
codesearchnet
def run(self, *args, **kwargs): self.log.debug('Starting EBSAuditor') data = self.update_data() notices = defaultdict(list) for (account, issues) in data.items(): for issue in issues: for recipient in account.contacts: notices[NotificationContact(type=recipient['type'], value=recipient['value'])].append(issue) self.notify(notices)
Main execution point for the auditor Args: *args: **kwargs: Returns: `None`
codesearchnet
def delete_user_role(self, user, role): self.project_service.set_auth(self._token_project) self.project_service.delete_user_role(user, role)
Remove role from given user. Args: user (string): User name. role (string): Role to remove. Raises: requests.HTTPError on failure.
juraj-google-style
def _parse_name(self, name): if not isinstance(name, str): raise TypeError(f"'name' must be a string, such as 'mixed_float16'. Received: name={name} (of type {type(name)})") if name == 'mixed_float16': return ('float16', 'float32') elif name == 'mixed_bfloat16': return ('bfloat16', 'float32') try: dtype = backend.standardize_dtype(name) return (dtype, dtype) except ValueError: raise ValueError(f"Cannot convert '{name}' to a mixed precision DTypePolicy. Valid policies include 'mixed_float16', 'mixed_bfloat16', and the name of any float dtype such as 'float32'.")
Parses a `DTypePolicy` name into a compute and variable dtype. Args: name: The name of the policy. Returns: The `(compute_dtype, variable_dtype)` pair.
github-repos
def num_accelerators(self, task_type=None, task_id=None, config_proto=None): master = self.master(task_type, task_id) devices = get_accelerator_devices(master, config_proto) mapping = collections.defaultdict(int) for device in devices: if task_type is not None and task_id is not None: job_path = '/job:%s' % task_type task_path = '/task:%s' % task_id if job_path not in device.name or task_path not in device.name: continue mapping[device.device_type] += 1 return mapping
Returns the number of accelerator cores per worker. This returns the number of accelerator cores (such as GPUs and TPUs) available per worker. Optionally, we allow callers to specify the task_type, and task_id, for if they want to target a specific TensorFlow task to query the number of accelerators. This is to support heterogenous environments, where the number of accelerators cores per host is different. Args: task_type: (Optional) The type of the TensorFlow task of the machine we want to query. task_id: (Optional) The index of the TensorFlow task of the machine we want to query. config_proto: (Optional) Configuration for starting a new session to query how many accelerator cores it has. Returns: A map of accelerator types to number of cores.
github-repos
def Process(self, parser_mediator, root_item=None, **kwargs): super(AutomaticDestinationsOLECFPlugin, self).Process( parser_mediator, **kwargs) if not root_item: raise ValueError('Root item not set.') for item in root_item.sub_items: if item.name == 'DestList': self.ParseDestList(parser_mediator, item) elif self._RE_LNK_ITEM_NAME.match(item.name): display_name = parser_mediator.GetDisplayName() if display_name: display_name = '{0:s} else: display_name = ' parser_mediator.AppendToParserChain(self._WINLNK_PARSER) try: item.seek(0, os.SEEK_SET) self._WINLNK_PARSER.ParseFileLNKFile( parser_mediator, item, display_name) finally: parser_mediator.PopFromParserChain()
Parses an OLECF file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. root_item (Optional[pyolecf.item]): root item of the OLECF file. Raises: ValueError: If the root_item is not set.
juraj-google-style
def __init__(self, owner, repo_name, token=''): self._github_repository = GitHub(token=token).repository(owner, repo_name)
Build the GitHub API URL which points to the definition of the repository. Args: owner (str): the owner's GitHub username repo_name (str): the name of the repository token (str): the GitHub API token Returns: dict: a representation of the repo definition
juraj-google-style
def loop(self, timer_interval_secs, target, args=None, kwargs=None): looper = coordinator.LooperThread(self._coord, timer_interval_secs, target=target, args=args, kwargs=kwargs) looper.start() return looper
Start a LooperThread that calls a function periodically. If `timer_interval_secs` is None the thread calls `target(*args, **kwargs)` repeatedly. Otherwise it calls it every `timer_interval_secs` seconds. The thread terminates when a stop is requested. The started thread is added to the list of threads managed by the supervisor so it does not need to be passed to the `stop()` method. Args: timer_interval_secs: Number. Time boundaries at which to call `target`. target: A callable object. args: Optional arguments to pass to `target` when calling it. kwargs: Optional keyword arguments to pass to `target` when calling it. Returns: The started thread.
github-repos
def available_cpu_count() -> int: try: match = re.search('(?m)^Cpus_allowed:\\s*(.*)$', open('/proc/self/status').read()) if match: res = bin(int(match.group(1).replace(',', ''), 16)).count('1') if (res > 0): return res except IOError: LOG.debug('Could not get the number of allowed CPUs') try: import psutil return psutil.cpu_count() except (ImportError, AttributeError): LOG.debug('Could not get the number of allowed CPUs') try: res = int(os.sysconf('SC_NPROCESSORS_ONLN')) if (res > 0): return res except (AttributeError, ValueError): LOG.debug('Could not get the number of allowed CPUs') try: res = open('/proc/cpuinfo').read().count('processor\t:') if (res > 0): return res except IOError: LOG.debug('Could not get the number of allowed CPUs') raise Exception('Can not determine number of CPUs on this system')
Get the number of available CPUs. Number of available virtual or physical CPUs on this system, i.e. user/real as output by time(1) when called with an optimally scaling userspace-only program. Returns: Number of avaialable CPUs.
codesearchnet
def get_optimizer_experimental_options(): return context.context().get_optimizer_experimental_options()
Get experimental optimizer options. Refer to tf.config.optimizer.set_experimental_options for a list of current options. Note that optimizations are only applied in graph mode, (within tf.function). In addition, as these are experimental options, the list is subject to change. Returns: Dictionary of configured experimental optimizer options
github-repos
def GetEntries(self, parser_mediator, top_level=None, **unused_kwargs): for entry in top_level: datetime_value = entry.get('date', None) package_identifiers = entry.get('packageIdentifiers', []) if ((not datetime_value) or (not package_identifiers)): continue display_name = entry.get('displayName', '<UNKNOWN>') display_version = entry.get('displayVersion', '<DISPLAY_VERSION>') process_name = entry.get('processName', '<PROCESS_NAME>') package_identifiers = ', '.join(package_identifiers) event_data = plist_event.PlistTimeEventData() event_data.desc = 'Installation of [{0:s} {1:s}] using [{2:s}]. Packages: {3:s}.'.format(display_name, display_version, process_name, package_identifiers) event_data.key = '' event_data.root = '/item' event = time_events.PythonDatetimeEvent(datetime_value, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data)
Extracts relevant install history entries. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. top_level (dict[str, object]): plist top-level key.
codesearchnet