code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def split(self, n): new_range_filters = [] name = self.start[0] prop_cls = self.prop.__class__ if prop_cls in _DISCRETE_PROPERTY_SPLIT_FUNCTIONS: splitpoints = _DISCRETE_PROPERTY_SPLIT_FUNCTIONS[prop_cls]( self.start[2], self.end[2], n, self.start[1] == ">=", self.end[1] == "<=") start_filter = (name, ">=", splitpoints[0]) for p in splitpoints[1:]: end_filter = (name, "<", p) new_range_filters.append([start_filter, end_filter]) start_filter = (name, ">=", p) else: splitpoints = _CONTINUOUS_PROPERTY_SPLIT_FUNCTIONS[prop_cls]( self.start[2], self.end[2], n) start_filter = self.start for p in splitpoints: end_filter = (name, "<", p) new_range_filters.append([start_filter, end_filter]) start_filter = (name, ">=", p) new_range_filters.append([start_filter, self.end]) for f in new_range_filters: f.extend(self._equality_filters) return [self.__class__(f, self.model_class_path) for f in new_range_filters]
Evenly split this range into contiguous, non overlapping subranges. Args: n: number of splits. Returns: a list of contiguous, non overlapping sub PropertyRanges. Maybe less than n when not enough subranges.
juraj-google-style
def is_valid(value, valid_values): valid = False if isinstance(valid_values, type) and type(value) is valid_values: valid = True elif isinstance(valid_values, type) and valid_values == float and type(value) == int: valid = True elif isinstance(value, dict) and isinstance(valid_values, dict): assert set(value.keys()) & set(valid_values.keys()) == set(value.keys()) for k ,v in value.items(): valid = Parameter.is_valid(v, valid_values[k]) if valid ==False: break elif isinstance(value, dict) and valid_values == Parameter: valid = True elif isinstance(valid_values, list) and value in valid_values: valid = True return valid
check is the value is valid Args: value: value to be tested valid_values: allowed valid values (type or list of values) Returns:
juraj-google-style
def delete_case(self, case): mongo_case = self.case(case) if (not mongo_case): raise CaseError('Tried to delete case {0} but could not find case'.format(case.get('case_id'))) LOG.info('Removing case {0} from database'.format(mongo_case.get('case_id'))) self.db.case.delete_one({'_id': mongo_case['_id']}) return
Delete case from the database Delete a case from the database Args: case (dict): A case dictionary
codesearchnet
def preprocess_histories(self, max_coarse_history: int, semantic_to_coarse_ratio: int, batch_size: int, semantic_generation_config: int, codebook_size: int, history_prompt: Optional[Dict[str, torch.Tensor]]=None): if history_prompt is not None: x_semantic_history = torch.repeat_interleave(history_prompt['semantic_prompt'][None], batch_size, dim=0) x_coarse_history = history_prompt['coarse_prompt'].clone() if codebook_size is not None: for n in range(1, x_coarse_history.shape[0]): x_coarse_history[n, :] += codebook_size * n x_coarse_history = torch.transpose(x_coarse_history, 0, 1).reshape(-1) x_coarse_history = x_coarse_history + semantic_generation_config.semantic_vocab_size x_coarse_history = torch.repeat_interleave(x_coarse_history[None], batch_size, dim=0) max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) n_semantic_hist_provided = min([max_semantic_history, x_semantic_history.shape[1] - x_semantic_history.shape[1] % 2, int(np.floor(x_coarse_history.shape[1] / semantic_to_coarse_ratio))]) n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) x_semantic_history = x_semantic_history[:, -n_semantic_hist_provided:].int() x_coarse_history = x_coarse_history[:, -n_coarse_hist_provided:].int() x_coarse_history = x_coarse_history[:, :-2] else: x_semantic_history = torch.tensor([[]] * batch_size, dtype=torch.int, device=self.device) x_coarse_history = torch.tensor([[]] * batch_size, dtype=torch.int, device=self.device) return (x_semantic_history, x_coarse_history)
Preprocess the optional `Bark` speaker prompts before `self.generate`. Args: max_coarse_history (`int`): Maximum size of coarse tokens used. semantic_to_coarse_ratio (`int`): Ratio of semantic to coarse frequency batch_size (`int`): Batch size, i.e the number of samples. semantic_generation_config (`BarkSemanticGenerationConfig`): Generation config indicating how to generate the semantic tokens. codebook_size (`int`): Codebook channel size, i.e. the size of the output vocabulary per codebook channel. history_prompt (`Optional[Dict[str,torch.Tensor]]`): Optional `Bark` speaker prompt. Returns: Returns: `tuple(torch.FloatTensor)`: - **x_semantic_history** (`torch.FloatTensor` -- Processed semantic speaker prompt. - **x_coarse_history** (`torch.FloatTensor`) -- Processed coarse speaker prompt.
github-repos
def get_subassistants(self): if (not hasattr(self, '_subassistants')): self._subassistants = [] if ('get_subassistant_classes' in vars(type(self))): for a in self.get_subassistant_classes(): self._subassistants.append(a()) return self._subassistants
Return list of instantiated subassistants. Usually, this needs not be overriden in subclasses, you should just override get_subassistant_classes Returns: list of instantiated subassistants
codesearchnet
def method(cache_name, key_prefix=None): def decorator(func): if (func.__name__ in ['cause_repertoire', 'effect_repertoire'] and not config.CACHE_REPERTOIRES): return func @wraps(func) def wrapper(obj, *args, **kwargs): cache = getattr(obj, cache_name) key = cache.key(*args, _prefix=key_prefix, **kwargs) value = cache.get(key) if value is None: value = func(obj, *args, **kwargs) cache.set(key, value) return value return wrapper return decorator
Caching decorator for object-level method caches. Cache key generation is delegated to the cache. Args: cache_name (str): The name of the (already-instantiated) cache on the decorated object which should be used to store results of this method. *key_prefix: A constant to use as part of the cache key in addition to the method arguments.
juraj-google-style
def diff_commonSuffix(self, text1, text2): if not text1 or not text2 or text1[-1] != text2[-1]: return 0 pointermin = 0 pointermax = min(len(text1), len(text2)) pointermid = pointermax pointerend = 0 while pointermin < pointermid: if (text1[-pointermid:len(text1) - pointerend] == text2[-pointermid:len(text2) - pointerend]): pointermin = pointermid pointerend = pointermin else: pointermax = pointermid pointermid = (pointermax - pointermin) return pointermid
Determine the common suffix of two strings. Args: text1: First string. text2: Second string. Returns: The number of characters common to the end of each string.
juraj-google-style
def PrintExtractionSummary(self, processing_status): if not processing_status: self._output_writer.Write( 'WARNING: missing processing status information.\n') elif not processing_status.aborted: if processing_status.error_path_specs: self._output_writer.Write('Processing completed with errors.\n') else: self._output_writer.Write('Processing completed.\n') number_of_warnings = ( processing_status.foreman_status.number_of_produced_warnings) if number_of_warnings: output_text = '\n'.join([ '', ('Number of warnings generated while extracting events: ' '{0:d}.').format(number_of_warnings), '', 'Use pinfo to inspect warnings in more detail.', '']) self._output_writer.Write(output_text) if processing_status.error_path_specs: output_text = '\n'.join([ '', 'Path specifications that could not be processed:', '']) self._output_writer.Write(output_text) for path_spec in processing_status.error_path_specs: self._output_writer.Write(path_spec.comparable) self._output_writer.Write('\n') self._output_writer.Write('\n')
Prints a summary of the extraction. Args: processing_status (ProcessingStatus): processing status.
juraj-google-style
def WaitUntilValid(self, timeout=None): return utils.Poll( generator=self.Get, condition=lambda f: f.data.is_valid, timeout=timeout)
Wait until the approval is valid (i.e. - approved). Args: timeout: timeout in seconds. None means default timeout (1 hour). 0 means no timeout (wait forever). Returns: Operation object with refreshed target_file. Raises: PollTimeoutError: if timeout is reached.
juraj-google-style
def __init__(self, parent=None): super(CSVImportDialog, self).__init__(parent) self._modal = True self._windowTitle = 'Import CSV' self._encodingKey = None self._filename = None self._delimiter = None self._header = None self._initUI()
Constructs the object with the given parent. Args: parent (QObject, optional): Causes the objected to be owned by `parent` instead of Qt. Defaults to `None`.
juraj-google-style
def initialize_dual(neural_net_params_object, init_dual_file=None, random_init_variance=0.01, init_nu=200.0): lambda_pos = [] lambda_neg = [] lambda_quad = [] lambda_lu = [] if (init_dual_file is None): for i in range(0, (neural_net_params_object.num_hidden_layers + 1)): initializer = np.random.uniform(0, random_init_variance, size=(neural_net_params_object.sizes[i], 1)).astype(np.float32) lambda_pos.append(tf.get_variable(('lambda_pos_' + str(i)), initializer=initializer, dtype=tf.float32)) initializer = np.random.uniform(0, random_init_variance, size=(neural_net_params_object.sizes[i], 1)).astype(np.float32) lambda_neg.append(tf.get_variable(('lambda_neg_' + str(i)), initializer=initializer, dtype=tf.float32)) initializer = np.random.uniform(0, random_init_variance, size=(neural_net_params_object.sizes[i], 1)).astype(np.float32) lambda_quad.append(tf.get_variable(('lambda_quad_' + str(i)), initializer=initializer, dtype=tf.float32)) initializer = np.random.uniform(0, random_init_variance, size=(neural_net_params_object.sizes[i], 1)).astype(np.float32) lambda_lu.append(tf.get_variable(('lambda_lu_' + str(i)), initializer=initializer, dtype=tf.float32)) nu = tf.get_variable('nu', initializer=init_nu) else: dual_var_init_val = np.load(init_dual_file).item() for i in range(0, (neural_net_params_object.num_hidden_layers + 1)): lambda_pos.append(tf.get_variable(('lambda_pos_' + str(i)), initializer=dual_var_init_val['lambda_pos'][i], dtype=tf.float32)) lambda_neg.append(tf.get_variable(('lambda_neg_' + str(i)), initializer=dual_var_init_val['lambda_neg'][i], dtype=tf.float32)) lambda_quad.append(tf.get_variable(('lambda_quad_' + str(i)), initializer=dual_var_init_val['lambda_quad'][i], dtype=tf.float32)) lambda_lu.append(tf.get_variable(('lambda_lu_' + str(i)), initializer=dual_var_init_val['lambda_lu'][i], dtype=tf.float32)) nu = tf.get_variable('nu', initializer=(1.0 * dual_var_init_val['nu'])) dual_var = {'lambda_pos': lambda_pos, 'lambda_neg': lambda_neg, 'lambda_quad': lambda_quad, 'lambda_lu': lambda_lu, 'nu': nu} return dual_var
Function to initialize the dual variables of the class. Args: neural_net_params_object: Object with the neural net weights, biases and types init_dual_file: Path to file containing dual variables, if the path is empty, perform random initialization Expects numpy dictionary with lambda_pos_0, lambda_pos_1, .. lambda_neg_0, lambda_neg_1, .. lambda_quad_0, lambda_quad_1, .. lambda_lu_0, lambda_lu_1, .. random_init_variance: variance for random initialization init_nu: Value to initialize nu variable with Returns: dual_var: dual variables initialized appropriately.
codesearchnet
def generate_page(self, path, template, **kwargs): directory = None if kwargs.get('page'): directory = kwargs['page'].dir path = self._get_dist_path(path, directory=directory) if (not path.endswith('.html')): path = (path + '.html') if (not os.path.isdir(os.path.dirname(path))): os.makedirs(os.path.dirname(path)) html = self._get_template(template).render(**kwargs) with open(path, 'w+') as file: file.write(html)
Generate the HTML for a single page. You usually don't need to call this method manually, it is used by a lot of other, more end-user friendly methods. Args: path (str): Where to place the page relative to the root URL. Usually something like "index", "about-me", "projects/example", etc. template (str): Which jinja template to use to render the page. **kwargs: Kwargs will be passed on to the jinja template. Also, if the `page` kwarg is passed, its directory attribute will be prepended to the path.
codesearchnet
def RemoveConnectedPeer(self, peer): if peer in self.Peers: self.Peers.remove(peer)
Remove a connected peer from the known peers list. Args: peer (NeoNode): instance.
juraj-google-style
def parse_saved_model_with_debug_info(export_dir): saved_model = parse_saved_model(export_dir) debug_info_path = file_io.join(path_helpers.get_debug_dir(export_dir), constants.DEBUG_INFO_FILENAME_PB) debug_info = graph_debug_info_pb2.GraphDebugInfo() if file_io.file_exists(debug_info_path): with file_io.FileIO(debug_info_path, 'rb') as debug_file: try: debug_info.ParseFromString(debug_file.read()) except message.DecodeError as e: raise IOError(f'Cannot parse file {debug_info_path}: {e}.') return (saved_model, debug_info)
Reads the savedmodel as well as the graph debug info. Args: export_dir: Directory containing the SavedModel and GraphDebugInfo files. Returns: `SavedModel` and `GraphDebugInfo` protocol buffers. Raises: IOError: If the saved model file does not exist, or cannot be successfully parsed. Missing graph debug info file is fine.
github-repos
def get_chip(self, coordinates, catid, chip_type='PAN', chip_format='TIF', filename='chip.tif'): def t2s1(t): return str(t).strip('(,)').replace(',', '') def t2s2(t): return str(t).strip('(,)').replace(' ', '') if (len(coordinates) != 4): print('Wrong coordinate entry') return False (W, S, E, N) = coordinates box = ((W, S), (W, N), (E, N), (E, S), (W, S)) box_wkt = (('POLYGON ((' + ','.join([t2s1(corner) for corner in box])) + '))') results = self.get_images_by_catid_and_aoi(catid=catid, aoi_wkt=box_wkt) description = self.describe_images(results) (pan_id, ms_id, num_bands) = (None, None, 0) for (catid, images) in description.items(): for (partnum, part) in images['parts'].items(): if ('PAN' in part.keys()): pan_id = part['PAN']['id'] bucket = part['PAN']['bucket'] if ('WORLDVIEW_8_BAND' in part.keys()): ms_id = part['WORLDVIEW_8_BAND']['id'] num_bands = 8 bucket = part['WORLDVIEW_8_BAND']['bucket'] elif ('RGBN' in part.keys()): ms_id = part['RGBN']['id'] num_bands = 4 bucket = part['RGBN']['bucket'] band_str = '' if (chip_type == 'PAN'): band_str = (pan_id + '?bands=0') elif (chip_type == 'MS'): band_str = (ms_id + '?') elif (chip_type == 'PS'): if (num_bands == 8): band_str = ((ms_id + '?bands=4,2,1&panId=') + pan_id) elif (num_bands == 4): band_str = ((ms_id + '?bands=0,1,2&panId=') + pan_id) location_str = '&upperLeft={}&lowerRight={}'.format(t2s2((W, N)), t2s2((E, S))) service_url = (('https: url = ((service_url + band_str) + location_str) url += ((('&format=' + chip_format) + '&token=') + self.gbdx_connection.access_token) r = requests.get(url) if (r.status_code == 200): with open(filename, 'wb') as f: f.write(r.content) return True else: print('Cannot download chip') return False
Downloads a native resolution, orthorectified chip in tif format from a user-specified catalog id. Args: coordinates (list): Rectangle coordinates in order West, South, East, North. West and East are longitudes, North and South are latitudes. The maximum chip size is (2048 pix)x(2048 pix) catid (str): The image catalog id. chip_type (str): 'PAN' (panchromatic), 'MS' (multispectral), 'PS' (pansharpened). 'MS' is 4 or 8 bands depending on sensor. chip_format (str): 'TIF' or 'PNG' filename (str): Where to save chip. Returns: True if chip is successfully downloaded; else False.
codesearchnet
def Parse(filename, global_env): parser = StlParser(filename=filename, global_env=global_env) with open(filename) as data: return parser.parse(data.read())
Parse a state transition spec of |filename| and fill |module_dict|. Args: filename: A state transition spec file. global_env: Dictionary to store global STL state. It has one field: global_env['modules']: Dictionary of stl.module.Module by name.
github-repos
def merge(self, other_roc): if ((other_roc.thresholds.size == self.thresholds.size) and np.all((other_roc.thresholds == self.thresholds))): self.contingency_tables += other_roc.contingency_tables else: print('Input table thresholds do not match.')
Ingest the values of another DistributedROC object into this one and update the statistics inplace. Args: other_roc: another DistributedROC object.
codesearchnet
def _CanMergeLineIntoIfStatement(lines, limit): if len(lines[1].tokens) == 1 and lines[1].last.is_multiline_string: return True if lines[0].lineno != lines[1].lineno: return False if lines[1].last.total_length >= limit: return False return style.Get('JOIN_MULTIPLE_LINES')
Determine if we can merge a short if-then statement into one line. Two lines of an if-then statement can be merged if they were that way in the original source, fit on the line without going over the column limit, and are considered "simple" statements --- typically statements like 'pass', 'continue', and 'break'. Arguments: lines: (list of LogicalLine) The lines we are wanting to merge. limit: (int) The amount of space remaining on the line. Returns: True if the lines can be merged, False otherwise.
github-repos
def run_gpu_only(func: _F) -> _F: if tf_inspect.isclass(func): raise ValueError('`run_gpu_only` only supports test methods.') def decorated(self: 'TensorFlowTestCase', *args, **kwargs): if not is_gpu_available(): self.skipTest('Test requires GPU') return func(self, *args, **kwargs) return decorated
Execute the decorated test only if a GPU is available. This function is intended to be applied to tests that require the presence of a GPU. If a GPU is absent, it will simply be skipped. Args: func: function to be annotated. Returns: Returns a function that will conditionally skip the decorated test method.
github-repos
def download_mmcif_header(pdb_id, outdir='', force_rerun=False): pdb_id = pdb_id.lower() file_type = 'cif' folder = 'header' outfile = op.join(outdir, '{}.header.{}'.format(pdb_id, file_type)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile): download_link = 'http: urlretrieve(download_link, outfile) log.debug('{}: saved header file'.format(outfile)) else: log.debug('{}: header file already saved'.format(outfile)) return outfile
Download a mmCIF header file from the RCSB PDB by ID. Args: pdb_id: PDB ID outdir: Optional output directory, default is current working directory force_rerun: If the file should be downloaded again even if it exists Returns: str: Path to outfile
juraj-google-style
def refresh(self, id_or_uri, timeout=-1): uri = self._client.build_uri(id_or_uri) + "/refresh" return self._client.update_with_zero_body(uri, timeout=timeout)
The Refresh action reclaims the top-of-rack switches in a logical switch. Args: id_or_uri: Can be either the Logical Switch ID or URI timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView, just stop waiting for its completion. Returns: dict: The Logical Switch
juraj-google-style
def imsave(path, img, channel_first=False, as_uint16=False, auto_scale=True): img = _imsave_before(img, channel_first, auto_scale) if auto_scale: img = upscale_pixel_intensity(img, as_uint16) img = check_type_and_cast_if_necessary(img, as_uint16) bitdepth = (8 if (img.dtype == np.uint8) else 16) grayscale = (True if ((len(img.shape) == 2) or ((len(img.shape) == 3) and (img.shape[(- 1)] == 1))) else False) writer = png.Writer(img.shape[1], img.shape[0], greyscale=grayscale, bitdepth=bitdepth) writer.write(open(path, 'wb'), img.reshape(img.shape[0], (- 1)))
Save image by pypng module. Args: path (str): output filename img (numpy.ndarray): Image array to save. Image shape is considered as (height, width, channel) by default. channel_first: This argument specifies the shape of img is whether (height, width, channel) or (channel, height, width). Default value is False, which means the img shape is (height, width, channel) as_uint16 (bool): If True, save image as uint16. auto_scale (bool) : Whether upscale pixel values or not. If you want to save float image, this argument must be True. In pypng backend, all below are supported. - float ([0, 1]) to uint8 ([0, 255]) (if img.dtype==float and upscale==True and as_uint16==False) - float to uint16 ([0, 65535]) (if img.dtype==float and upscale==True and as_uint16==True) - uint8 to uint16 are supported (if img.dtype==np.uint8 and upscale==True and as_uint16==True)
codesearchnet
def split(input_layer, split_dim=0, num_splits=2): shape = input_layer.shape _check_split_dims(num_splits, split_dim, shape) splits = tf.split(value=input_layer, num_or_size_splits=num_splits, axis=split_dim) return input_layer.with_sequence(splits)
Splits this Tensor along the split_dim into num_splits Equal chunks. Examples: * `[1, 2, 3, 4] -> [1, 2], [3, 4]` * `[[1, 1], [2, 2], [3, 3], [4, 4]] -> [[1, 1], [2, 2]], [[3, 3], [4, 4]]` Args: input_layer: The chainable object, supplied. split_dim: The dimension to split along. Defaults to batch. num_splits: The number of splits. Returns: A list of PrettyTensors. Raises: ValueError: If split_dim is out of range or isn't divided evenly by num_splits.
codesearchnet
def send(self, **kwargs): assert len(kwargs) == 1, "Must make a single request." res = self.send_req(sc_pb.Request(**kwargs)) return getattr(res, list(kwargs.keys())[0])
Create and send a specific request, and return the response. For example: send(ping=sc_pb.RequestPing()) => sc_pb.ResponsePing Args: **kwargs: A single kwarg with the name and value to fill in to Request. Returns: The Response corresponding to your request.
juraj-google-style
def epsilon(): return _EPSILON
Returns the value of the fuzz factor used in numeric expressions. Returns: A float. Example: >>> tf.keras.backend.epsilon() 1e-07
github-repos
def _get_filters(nodes, context): filters = [] for node in nodes: for filter_block in sql_context_helpers.get_filters(node, context): filter_sql_expression = _transform_filter_to_sql(filter_block, node, context) filters.append(filter_sql_expression) return filters
Get filters to apply to a list of SqlNodes. Args: nodes: List[SqlNode], the SqlNodes to get filters for. context: CompilationContext, global compilation state and metadata. Returns: List[Expression], list of SQLAlchemy expressions.
juraj-google-style
def get_executor(): return context().executor
Get the Executor of the current thread. Returns: The Executor of the current thread.
github-repos
def join(self, other): if self.contains(other): return True if other.contains(self): self.x = other.x self.y = other.y self.width = other.width self.height = other.height return True if not self.intersects(other, edges=True): return False if self.left == other.left and self.width == other.width: y_min = min(self.bottom, other.bottom) y_max = max(self.top, other.top) self.y = y_min self.height = y_max-y_min return True if self.bottom == other.bottom and self.height == other.height: x_min = min(self.left, other.left) x_max = max(self.right, other.right) self.x = x_min self.width = x_max-x_min return True return False
Try to join a rectangle to this one, if the result is also a rectangle and the operation is successful and this rectangle is modified to the union. Arguments: other (Rectangle): Rectangle to join Returns: bool: True when successfully joined, False otherwise
juraj-google-style
def _maybe_select_class_id(labels, predictions_idx, selected_id=None): if selected_id is None: return (labels, predictions_idx) return (_select_class_id(labels, selected_id), _select_class_id(predictions_idx, selected_id))
If class ID is specified, filter all other classes. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape [batch size, k]. selected_id: Int id to select. Returns: Tuple of `labels` and `predictions_idx`, possibly with classes removed.
github-repos
def add(self, coro, *args, **kw): if asyncio.iscoroutinefunction(coro): coro = coro(*args, **kw) if not asyncio.iscoroutine(coro): raise TypeError('paco: coro must be a coroutine object') index = max(len(self.pool), 0) task = Task(index, coro) self.pool.append(task) return coro
Adds a new coroutine function with optional variadic argumetns. Arguments: coro (coroutine function): coroutine to execute. *args (mixed): optional variadic arguments Raises: TypeError: if the coro object is not a valid coroutine Returns: future: coroutine wrapped future
juraj-google-style
def get(self, node_id): return \ self._nodes[_node.Root.ID].get(node_id) or \ self._nodes[_node.Root.ID].get(self._sid_map.get(node_id))
Get a note with the given ID. Args: node_id (str): The note ID. Returns: gkeepapi.node.TopLevelNode: The Note or None if not found.
juraj-google-style
def run_resume_status(self, entity, project_name, name): query = gql('\n query Model($project: String!, $entity: String, $name: String!) {\n model(name: $project, entityName: $entity) {\n id\n name\n entity {\n id\n name\n }\n\n bucket(name: $name, missingOk: true) {\n id\n name\n logLineCount\n historyLineCount\n eventsLineCount\n historyTail\n eventsTail\n }\n }\n }\n ') response = self.gql(query, variable_values={'entity': entity, 'project': project_name, 'name': name}) if (('model' not in response) or ('bucket' not in response['model'])): return None project = response['model'] self.set_setting('project', project_name) if ('entity' in project): self.set_setting('entity', project['entity']['name']) return project['bucket']
Check if a run exists and get resume information. Args: entity (str, optional): The entity to scope this project to. project_name (str): The project to download, (can include bucket) run (str, optional): The run to download
codesearchnet
def create_checklist(self, checklist_json): return trolly.checklist.Checklist(trello_client=self, checklist_id=checklist_json['id'], name=checklist_json['name'], data=checklist_json)
Create a Checklist object from JSON object Returns: Checklist: The checklist from the given `checklist_json`.
codesearchnet
def reverse_axis(self, axis_to_reverse): if (axis_to_reverse.lower() == 'x'): self.general.reverse_x_axis = True if (axis_to_reverse.lower() == 'y'): self.general.reverse_y_axis = True if ((axis_to_reverse.lower() != 'x') or (axis_to_reverse.lower() != 'y')): raise ValueError('Axis for reversing needs to be either x or y.') return
Reverse an axis in all figure plots. This will reverse the tick marks on an axis for each plot in the figure. It can be overridden in SinglePlot class. Args: axis_to_reverse (str): Axis to reverse. Supports `x` and `y`. Raises: ValueError: The string representing the axis to reverse is not `x` or `y`.
codesearchnet
def create_unbroadcast_axis(shape, broadcast_shape): return tuple(((- (1 + i)) for i in range(len(broadcast_shape)) if ((i >= len(shape)) or (broadcast_shape[(- (1 + i))] > shape[(- (1 + i))]))))
Creates the reduction axis for unbroadcasting. Args: shape: A list. The shape after the broadcast operation. broadcast_shape: A list. The original shape the array being unbroadcast had. Returns: A list. The axes along which the array needs to be reduced. These axes will be distributed evenly into the original shape.
codesearchnet
def array_to_base64_png(array): array = np.array(array, dtype=np.float32) if (len(array.shape) != 2): raise ValueError(('Expected rank-2 array; received rank-%d array.' % len(array.shape))) if (not np.size(array)): raise ValueError(('Cannot encode an empty array (size: %s) as image.' % (array.shape,))) is_infinity = np.isinf(array) is_positive = (array > 0.0) is_positive_infinity = np.logical_and(is_infinity, is_positive) is_negative_infinity = np.logical_and(is_infinity, np.logical_not(is_positive)) is_nan = np.isnan(array) finite_indices = np.where(np.logical_and(np.logical_not(is_infinity), np.logical_not(is_nan))) if np.size(finite_indices): minval = np.min(array[finite_indices]) maxval = np.max(array[finite_indices]) scaled = np.array((((array - minval) / (maxval - minval)) * 255), dtype=np.uint8) rgb = np.repeat(np.expand_dims(scaled, (- 1)), IMAGE_COLOR_CHANNELS, axis=(- 1)) else: rgb = np.zeros((array.shape + (IMAGE_COLOR_CHANNELS,)), dtype=np.uint8) rgb[is_positive_infinity] = POSITIVE_INFINITY_RGB rgb[is_negative_infinity] = NEGATIVE_INFINITY_RGB rgb[is_nan] = NAN_RGB image_encoded = base64.b64encode(encoder.encode_png(rgb)) return image_encoded
Convert an array into base64-enoded PNG image. Args: array: A 2D np.ndarray or nested list of items. Returns: A base64-encoded string the image. The image is grayscale if the array is 2D. The image is RGB color if the image is 3D with lsat dimension equal to 3. Raises: ValueError: If the input `array` is not rank-2, or if the rank-2 `array` is empty.
codesearchnet
def stats(self, container, decode=None, stream=True): url = self._url('/containers/{0}/stats', container) if stream: return self._stream_helper(self._get(url, stream=True), decode=decode) else: if decode: raise errors.InvalidArgument('decode is only available in conjuction with stream=True') return self._result(self._get(url, params={'stream': False}), json=True)
Stream statistics for a specific container. Similar to the ``docker stats`` command. Args: container (str): The container to stream statistics from decode (bool): If set to true, stream will be decoded into dicts on the fly. Only applicable if ``stream`` is True. False by default. stream (bool): If set to false, only the current stats will be returned instead of a stream. True by default. Raises: :py:class:`docker.errors.APIError` If the server returns an error.
codesearchnet
def clear(self, rows=None): rows = (tf.range(self._capacity) if (rows is None) else rows) assert (rows.shape.ndims == 1) return tf.scatter_update(self._length, rows, tf.zeros_like(rows))
Reset episodes in the memory. Internally, this only sets their lengths to zero. The memory entries will be overridden by future calls to append() or replace(). Args: rows: Episodes to clear, defaults to all. Returns: Operation.
codesearchnet
def compare_names(first, second): first = name_to_vector(first) second = name_to_vector(second) zipped = zip(first, second) if (not zipped): return 0 similarity_factor = 0 for (fitem, _) in zipped: if (fitem in second): similarity_factor += 1 return ((float(similarity_factor) / len(zipped)) * 100)
Compare two names in complicated, but more error prone way. Algorithm is using vector comparison. Example: >>> compare_names("Franta Putšálek", "ing. Franta Putšálek") 100.0 >>> compare_names("F. Putšálek", "ing. Franta Putšálek") 50.0 Args: first (str): Fisst name as string. second (str): Second name as string. Returns: float: Percentage of the similarity.
codesearchnet
def __init__(self, initial_learning_rate, decay_steps, decay_rate, staircase=False, name=None): super(InverseTimeDecay, self).__init__() self.initial_learning_rate = initial_learning_rate self.decay_steps = decay_steps self.decay_rate = decay_rate self.staircase = staircase self.name = name
Applies inverse time decay to the initial learning rate. Args: initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number. The initial learning rate. decay_steps: How often to apply decay. decay_rate: A Python number. The decay rate. staircase: Whether to apply decay in a discrete staircase, as opposed to continuous, fashion. name: String. Optional name of the operation. Defaults to 'InverseTimeDecay'.
github-repos
def compute_values(edge_compatibility, v): all_edge_values = tf.matmul(tf.to_float(edge_compatibility), v) output = tf.reduce_sum(all_edge_values, axis=1) return output
Compute values. If edge compatibilities is just adjacency, we get ggnn. Args: edge_compatibility: A tensor of shape [batch, num_transforms, length, depth] v: A tensor of shape [batch, num_transforms, length, depth] Returns: output: A [batch, length, depth] tensor
juraj-google-style
def save(**kwargs): ret = {'comment': [], 'result': True} beacons = list_(return_yaml=False, include_pillar=False, **kwargs) sfn = os.path.join(os.path.dirname(__opts__['conf_file']), os.path.dirname(__opts__['default_include']), 'beacons.conf') if beacons: tmp = {'beacons': beacons} yaml_out = salt.utils.yaml.safe_dump(tmp, default_flow_style=False) else: yaml_out = '' try: with salt.utils.files.fopen(sfn, 'w+') as fp_: fp_.write(yaml_out) ret['comment'] = 'Beacons saved to {0}.'.format(sfn) except (IOError, OSError): ret['comment'] = 'Unable to write to beacons file at {0}. Check permissions.'.format(sfn) ret['result'] = False return ret
Save all configured beacons to the minion config. Returns: dict: Boolean and status message on success or failure of save. CLI Example: .. code-block:: bash salt '*' beacons.save
codesearchnet
def formatted(self, func): other = EscapedString.__new__(EscapedString) other.strings = [] for (is_literal, value) in self.strings: if (not is_literal): value = func(value) other.strings.append((is_literal, value)) return other
Return the string with non-literal parts formatted. Args: func (callable): Callable that translates a string into a formatted string. Returns: `EscapedString` object.
codesearchnet
def __init__(self, options=None): super(ExportConverter, self).__init__() self.options = options or ExportOptions()
Constructor. Args: options: ExportOptions value, which contains settings that may or or may not affect this converter's behavior.
juraj-google-style
def get(self, **params): if self._use_cache: r = requests.get(self.url, params=params) else: with requests_cache.disabled(): r = requests.get(self.url, params=params) r.raise_for_status() return r
Performs get request to the biomart service. Args: **params (dict of str: any): Arbitrary keyword arguments, which are added as parameters to the get request to biomart. Returns: requests.models.Response: Response from biomart for the request.
codesearchnet
def hwvtep_add_rbridgeid(self, **kwargs): name = kwargs.pop('name') id = kwargs.pop('rb_range') ip_args = dict(name=name, rb_add=id) method_name = 'overlay_gateway_attach_rbridge_id_rb_add' method_class = self._brocade_tunnels gw_attr = getattr(method_class, method_name) config = gw_attr(**ip_args) output = self._callback(config) return output
Add a range of rbridge-ids Args: name (str): gateway-name vlan (str): rbridge-ids range callback (function): A function executed upon completion of the method. Returns: Return value of `callback`. Raises: None
codesearchnet
def run_change_point_analysis(test_config_container: TestConfigContainer, big_query_metrics_fetcher: MetricsFetcher, change_point_config: ChangePointConfig=ChangePointConfig(), save_alert_metadata: bool=False): logging.info('Running change point analysis for test ID :%s on metric: % s' % (test_config_container.test_id, test_config_container.metric_name)) test_name = test_config_container.test_name min_runs_between_change_points = change_point_config.min_runs_between_change_points num_runs_in_change_point_window = change_point_config.num_runs_in_change_point_window metric_container = big_query_metrics_fetcher.fetch_metric_data(test_config=test_config_container) metric_container.sort_by_timestamp() metric_values = metric_container.values timestamps = metric_container.timestamps change_point_index = find_latest_change_point_index(metric_values=metric_values) if not change_point_index: logging.info('Change point is not detected for the test ID %s' % test_config_container.test_id) return False latest_change_point_run = len(timestamps) - 1 - change_point_index if not is_change_point_in_valid_window(num_runs_in_change_point_window, latest_change_point_run): logging.info('Performance regression/improvement found for the test ID: %s. on metric %s. Since the change point run %s lies outside the num_runs_in_change_point_window distance: %s, alert is not raised.' % (test_config_container.test_id, test_config_container.metric_name, latest_change_point_run + 1, num_runs_in_change_point_window)) return False is_valid_change_point = True last_reported_issue_number = None issue_metadata_table_name = f'{test_config_container.metrics_table}_{test_config_container.metric_name}' if test_config_container.test_name: issue_metadata_table_name = f'{issue_metadata_table_name}_{test_config_container.test_name}' existing_issue_data = get_existing_issues_data(table_name=issue_metadata_table_name) if existing_issue_data is not None: existing_issue_timestamps = existing_issue_data[constants._CHANGE_POINT_TIMESTAMP_LABEL].tolist() last_reported_issue_number = existing_issue_data[constants._ISSUE_NUMBER].tolist()[0] if not isinstance(last_reported_issue_number, int): last_reported_issue_number = last_reported_issue_number.item() is_valid_change_point = is_sibling_change_point(previous_change_point_timestamps=existing_issue_timestamps, change_point_index=change_point_index, timestamps=timestamps, min_runs_between_change_points=min_runs_between_change_points, test_id=test_config_container.test_id) if is_valid_change_point and save_alert_metadata: issue_number, issue_url = create_performance_alert(test_config_container=test_config_container, metric_container=metric_container, change_point_index=change_point_index, existing_issue_number=last_reported_issue_number) issue_metadata = GitHubIssueMetaData(issue_timestamp=pd.Timestamp(datetime.now().replace(tzinfo=timezone.utc)), test_id=test_config_container.test_id.replace('.', '_'), test_name=test_name or uuid.uuid4().hex, metric_name=test_config_container.metric_name, change_point=metric_values[change_point_index], issue_number=issue_number, issue_url=issue_url, change_point_timestamp=timestamps[change_point_index]) publish_issue_metadata_to_big_query(issue_metadata=issue_metadata, table_name=issue_metadata_table_name, project=test_config_container.project) return is_valid_change_point
Args: test_config_container: TestConfigContainer containing test metadata for fetching data and running change point analysis. big_query_metrics_fetcher: BigQuery metrics fetcher used to fetch data for change point analysis. change_point_config: ChangePointConfig containing parameters to run change point analysis. save_alert_metadata: bool indicating if issue metadata should be published to BigQuery table. Returns: bool indicating if a change point is observed and alerted on GitHub.
github-repos
def GetFeeds(client): feed_service = client.GetService('FeedService', 'v201809') feeds = [] more_pages = True selector = {'fields': ['Id', 'Name', 'Attributes'], 'predicates': [{'field': 'Origin', 'operator': 'EQUALS', 'values': ['USER']}, {'field': 'FeedStatus', 'operator': 'EQUALS', 'values': ['ENABLED']}], 'paging': {'startIndex': 0, 'numberResults': PAGE_SIZE}} while more_pages: page = feed_service.get(selector) if ('entries' in page): feeds.extend(page['entries']) selector['paging']['startIndex'] += PAGE_SIZE more_pages = (selector['paging']['startIndex'] < int(page['totalNumEntries'])) return feeds
Returns a list of all enabled Feeds. Args: client: an AdWordsClient instance. Returns: A list containing all enabled Feeds.
codesearchnet
def national_significant_number(numobj): national_number = U_EMPTY_STRING if numobj.italian_leading_zero: num_zeros = numobj.number_of_leading_zeros if num_zeros is None: num_zeros = 1 if num_zeros > 0: national_number = U_ZERO * num_zeros national_number += str(numobj.national_number) return national_number
Gets the national significant number of a phone number. Note that a national significant number doesn't contain a national prefix or any formatting. Arguments: numobj -- The PhoneNumber object for which the national significant number is needed. Returns the national significant number of the PhoneNumber object passed in.
juraj-google-style
def get_interpolated_value(self, energy, integrated=False): inter = {} for spin in self.cohp: if (not integrated): inter[spin] = get_linear_interpolated_value(self.energies, self.cohp[spin], energy) elif (self.icohp is not None): inter[spin] = get_linear_interpolated_value(self.energies, self.icohp[spin], energy) else: raise ValueError('ICOHP is empty.') return inter
Returns the COHP for a particular energy. Args: energy: Energy to return the COHP value for.
codesearchnet
def GetMessage(self, log_source, lcid, message_identifier): event_log_provider_key = self._GetEventLogProviderKey(log_source) if (not event_log_provider_key): return None generator = self._GetMessageFileKeys(event_log_provider_key) if (not generator): return None message_string = None for message_file_key in generator: message_string = self._GetMessage(message_file_key, lcid, message_identifier) if message_string: break if (self._string_format == 'wrc'): message_string = self._ReformatMessageString(message_string) return message_string
Retrieves a specific message for a specific Event Log source. Args: log_source (str): Event Log source. lcid (int): language code identifier (LCID). message_identifier (int): message identifier. Returns: str: message string or None if not available.
codesearchnet
def _GetSocket(self): try: return socket.create_connection((self._host, self._port), self._SOCKET_TIMEOUT) except socket.error as exception: logger.error('Unable to connect to nsrlsvr with error: {0!s}.'.format(exception))
Establishes a connection to an nsrlsvr instance. Returns: socket._socketobject: socket connected to an nsrlsvr instance or None if a connection cannot be established.
codesearchnet
def create_database_view(self, view: views.View, view_name: str) -> None: view_sql = f'CREATE OR REPLACE VIEW {self._view_dataset}.{view_name} AS\n{self.to_sql(view)}' self._engine.execute(view_sql).fetchall()
Creates a Spark view with the given name in the runner's view_dataset. Args: view: the FHIR view that creates view_name: the view name passed to the CREATE OR REPLACE VIEW statement.
github-repos
def to_dataframe(self, view: views.View, limit: Optional[int]=None) -> pandas.DataFrame: df = pandas.read_sql_query(sql=self.to_sql(view, limit=limit), con=self._engine.raw_connection()) return runner_utils.clean_dataframe(df, view.get_select_columns_to_return_type())
Returns a Pandas dataframe of the results. Args: view: the view that defines the query to run. limit: optional limit of the number of items to return. Returns: pandas.DataFrame: dataframe of the view contents. Raises: ValueError propagated from the Spark client if pandas is not installed.
github-repos
def diff_linesToChars(self, text1, text2): lineArray = [] lineHash = {} lineArray.append('') def diff_linesToCharsMunge(text): 'Split a text into an array of strings. Reduce the texts to a string\n of hashes where each Unicode character represents one line.\n Modifies linearray and linehash through being a closure.\n\n Args:\n text: String to encode.\n\n Returns:\n Encoded string.\n ' chars = [] lineStart = 0 lineEnd = (- 1) while (lineEnd < (len(text) - 1)): lineEnd = text.find('\n', lineStart) if (lineEnd == (- 1)): lineEnd = (len(text) - 1) line = text[lineStart:(lineEnd + 1)] if (line in lineHash): chars.append(chr(lineHash[line])) else: if (len(lineArray) == maxLines): line = text[lineStart:] lineEnd = len(text) lineArray.append(line) lineHash[line] = (len(lineArray) - 1) chars.append(chr((len(lineArray) - 1))) lineStart = (lineEnd + 1) return ''.join(chars) maxLines = 666666 chars1 = diff_linesToCharsMunge(text1) maxLines = 1114111 chars2 = diff_linesToCharsMunge(text2) return (chars1, chars2, lineArray)
Split two texts into an array of strings. Reduce the texts to a string of hashes where each Unicode character represents one line. Args: text1: First string. text2: Second string. Returns: Three element tuple, containing the encoded text1, the encoded text2 and the array of unique strings. The zeroth element of the array of unique strings is intentionally blank.
codesearchnet
def add(self, aspect, ifpresent='error'): if isinstance(aspect, contextualize): self.contextualize.update(aspect) return True classification = [(network, self.networks), (system, self.systems), (ansible, self.ansible_hosts), (deploy, self.deploys), (configure, self.configures)] aspect_list = [l for (t, l) in classification if isinstance(aspect, t)] assert (len(aspect_list) == 1), 'Unexpected aspect for RADL.' aspect_list = aspect_list[0] old_aspect = [a for a in aspect_list if (a.getId() == aspect.getId())] if old_aspect: if (ifpresent == 'error'): raise Exception('Aspect with the same id was found.') elif (ifpresent == 'replace'): for (i, elem) in enumerate(aspect_list): if (elem.getId() == old_aspect[0].getId()): del aspect_list[i] break aspect_list.append(aspect) return True elif (ifpresent == 'ignore'): return False else: raise ValueError else: aspect_list.append(aspect) return True
Add a network, ansible_host, system, deploy, configure or contextualize. Args: - aspect(network, system, deploy, configure or contextualize): thing to add. - ifpresent(str): if it has been defined, do: - ``"ignore"``: not add the aspect. - ``"replace"``: replace by the old defined. - ``"error"``: raise an error. Return(bool): True if aspect was added.
codesearchnet
def get_airport_stats(self, iata, page=1, limit=100): url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit) return self._fr24.get_airport_stats(url)
Retrieve the performance statistics at an airport Given the IATA code of an airport, this method returns the performance statistics for the airport. Args: iata (str): The IATA code for an airport, e.g. HYD page (int): Optional page number; for users who are on a plan with flightradar24 they can pass in higher page numbers to get more data limit (int): Optional limit on number of records returned Returns: A list of dicts with the data; one dict for each row of data from flightradar24 Example:: from pyflightdata import FlightData f=FlightData() #optional login f.login(myemail,mypassword) f.get_airport_stats('HYD') f.get_airport_stats('HYD',page=1,limit=10)
codesearchnet
def get(self, language: str=None, default: str=None) -> str: language = (language or settings.LANGUAGE_CODE) value = super().get(language, default) return (value if (value is not None) else default)
Gets the underlying value in the specified or primary language. Arguments: language: The language to get the value in. Returns: The value in the current language, or the primary language in case no language was specified.
codesearchnet
def add_dos(self, label, dos): densities = dos.get_smeared_densities(self.sigma) if self.sigma \ else dos.densities self._doses[label] = {'frequencies': dos.frequencies, 'densities': densities}
Adds a dos for plotting. Args: label: label for the DOS. Must be unique. dos: PhononDos object
juraj-google-style
def DEFINE_integer(name, default, help, lower_bound=None, upper_bound=None, flag_values=_flagvalues.FLAGS, **args): parser = _argument_parser.IntegerParser(lower_bound, upper_bound) serializer = _argument_parser.ArgumentSerializer() DEFINE(parser, name, default, help, flag_values, serializer, **args) _register_bounds_validator_if_needed(parser, name, flag_values=flag_values)
Registers a flag whose value must be an integer. If lower_bound, or upper_bound are set, then this flag must be within the given range. Args: name: str, the flag name. default: int|str|None, the default value of the flag. help: str, the help message. lower_bound: int, min value of the flag. upper_bound: int, max value of the flag. flag_values: FlagValues, the FlagValues instance with which the flag will be registered. This should almost never need to be overridden. **args: dict, the extra keyword args that are passed to DEFINE.
codesearchnet
def set_fig_size(self, width, height=None): self.figure.figure_width = width self.figure.figure_height = height return
Set the figure size in inches. Sets the figure size with a call to fig.set_size_inches. Default in code is 8 inches for each. Args: width (float): Dimensions for figure width in inches. height (float, optional): Dimensions for figure height in inches. Default is None.
codesearchnet
def id_pools_vmac_ranges(self): if (not self.__id_pools_vmac_ranges): self.__id_pools_vmac_ranges = IdPoolsRanges('vmac', self.__connection) return self.__id_pools_vmac_ranges
Gets the IdPoolsRanges API Client for VMAC Ranges. Returns: IdPoolsRanges:
codesearchnet
def plot_summaries(self, show=False, save=True, figure_type=None): if not figure_type: figure_type = self.default_figure_type if not figure_type in self.default_figure_types: logger.debug("unknown figure type selected") figure_type = self.default_figure_type color_list, symbol_list = self._create_colors_markers_list() summary_df = self.summary_df selected_summaries = self.selected_summaries batch_dir = self.batch_dir batch_name = self.name fig, ax = plot_summary_figure(self.info_df, summary_df, color_list, symbol_list, selected_summaries, batch_dir, batch_name, show=show, save=save, figure_type=figure_type) self.figure[figure_type] = fig self.axes[figure_type] = ax
Plot summary graphs. Args: show: shows the figure if True. save: saves the figure if True. figure_type: optional, figure type to create.
juraj-google-style
def get_record_schema_from_dict_table_schema(schema_name: str, table_schema: Dict[str, Any], namespace: str='apache_beam.io.gcp.bigquery') -> Dict[str, Any]: avro_fields = [table_field_to_avro_field(field, '.'.join((namespace, schema_name))) for field in table_schema['fields']] return {'type': 'record', 'name': schema_name, 'fields': avro_fields, 'doc': 'Translated Avro Schema for {}'.format(schema_name), 'namespace': namespace}
Convert a table schema into an Avro schema. Args: schema_name (str): The name of the record. table_schema (Dict[str, Any]): A BigQuery table schema in dict form. namespace (str): The namespace of the Avro schema. Returns: Dict[str, Any]: The schema as an Avro RecordSchema.
github-repos
def get_action(self, action_id): return Action.get_object(api_token=self.token, action_id=action_id)
Returns a specific Action by its ID. Args: action_id (int): id of action
codesearchnet
def collect_filtered_models(discard, *input_values): ids = set([]) collected = [] queued = [] def queue_one(obj): if ((obj.id not in ids) and (not (callable(discard) and discard(obj)))): queued.append(obj) for value in input_values: _visit_value_and_its_immediate_references(value, queue_one) while queued: obj = queued.pop(0) if (obj.id not in ids): ids.add(obj.id) collected.append(obj) _visit_immediate_value_references(obj, queue_one) return collected
Collect a duplicate-free list of all other Bokeh models referred to by this model, or by any of its references, etc, unless filtered-out by the provided callable. Iterate over ``input_values`` and descend through their structure collecting all nested ``Models`` on the go. Args: *discard (Callable[[Model], bool]) a callable which accepts a *Model* instance as its single argument and returns a boolean stating whether to discard the instance. The latter means that the instance will not be added to collected models nor will its references be explored. *input_values (Model) Bokeh models to collect other models from Returns: None
codesearchnet
def load_with_classes(filename, classes): ok = False for class_ in classes: obj = class_() try: obj.load(filename) ok = True except FileNotFoundError: raise except Exception as e: if a99.logging_level == logging.DEBUG: a99.get_python_logger().exception("Error trying with class \"{0!s}\"".format( class_.__name__)) pass if ok: break if ok: return obj return None
Attempts to load file by trial-and-error using a given list of classes. Arguments: filename -- full path to file classes -- list of classes having a load() method Returns: DataFile object if loaded successfully, or None if not. Note: it will stop at the first successful load. Attention: this is not good if there is a bug in any of the file readers, because *all exceptions will be silenced!*
juraj-google-style
def clown_strike_ioc(self, ioc): r = requests.get('http: self._output(r.text)
Performs Clown Strike lookup on an IoC. Args: ioc - An IoC.
juraj-google-style
def add_input(self, mutable_accumulator, element, *args, **kwargs): raise NotImplementedError(str(self))
Return result of folding element into accumulator. CombineFn implementors must override add_input. Args: mutable_accumulator: the current accumulator, may be modified and returned for efficiency element: the element to add, should not be mutated *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs.
github-repos
def needs_reboot(): with salt.utils.winapi.Com(): obj_sys = win32com.client.Dispatch('Microsoft.Update.SystemInfo') return salt.utils.data.is_true(obj_sys.RebootRequired)
Determines if the system needs to be rebooted. Returns: bool: True if the system requires a reboot, False if not CLI Examples: .. code-block:: bash import salt.utils.win_update salt.utils.win_update.needs_reboot()
codesearchnet
def on_pass(self, record):
A function that is executed upon a test passing. Implementation is optional. Args: record: records.TestResultRecord, a copy of the test record for this test, containing all information of the test execution including exception objects.
github-repos
def get_app_state(): if (not hasattr(g, 'app_state')): model = get_model() g.app_state = {'app_title': APP_TITLE, 'model_name': type(model).__name__, 'latest_ckpt_name': model.latest_ckpt_name, 'latest_ckpt_time': model.latest_ckpt_time} return g.app_state
Get current status of application in context Returns: :obj:`dict` of application status
codesearchnet
def list_tokens(self): url = self.url() + "/nd/resource/public/token/" req = self.remote_utils.get_url(url) if req.status_code is not 200: raise RemoteDataNotFoundError('Coud not find {}'.format(req.text)) else: return req.json()
Lists a set of tokens that are public in Neurodata. Arguments: Returns: dict: Public tokens found in Neurodata
juraj-google-style
def wrap_or_copy(cls, func, **options): if isinstance(func, openhtf.PhaseGroup): raise PhaseWrapError('Cannot wrap PhaseGroup <%s> as a phase.' % ( func.name or 'Unnamed')) if isinstance(func, cls): retval = mutablerecords.CopyRecord(func) else: retval = cls(func) retval.options.update(**options) return retval
Return a new PhaseDescriptor from the given function or instance. We want to return a new copy so that you can reuse a phase with different options, plugs, measurements, etc. Args: func: A phase function or PhaseDescriptor instance. **options: Options to update on the result. Raises: PhaseWrapError: if func is a openhtf.PhaseGroup. Returns: A new PhaseDescriptor object.
juraj-google-style
def _local_var_name(splittable_dimensions, assignment): assignment_string = [] for splittable in sorted(splittable_dimensions): if splittable in assignment: assignment_string.append("{}:{}".format(splittable, assignment[splittable])) else: assignment_string.append("{}".format(splittable)) return "y_(" + ",".join(assignment_string) + ")"
Name for a local variable. Args: splittable_dimensions: frozenset of names of splittable dimensions. assignment: dict from names of splittable dimensions to names of mesh dimensions. Returns: A string, the variable name.
juraj-google-style
def project(self, term, **kwargs): params = kwargs baseuri = ((self._BASE_URI + 'projects/') + term) res = self.session.get(baseuri, params=params) self.handle_http_error(res) return res
Search for a project by id. Args: term (str): Term to search for. kwargs (dict): additional keywords passed into requests.session.get params keyword.
codesearchnet
def get_test_data(train_samples, test_samples, input_shape, num_classes, random_seed=None): if random_seed is not None: np.random.seed(random_seed) num_sample = train_samples + test_samples templates = 2 * num_classes * np.random.random((num_classes,) + input_shape) y = np.random.randint(0, num_classes, size=(num_sample,)) x = np.zeros((num_sample,) + input_shape, dtype=np.float32) for i in range(num_sample): x[i] = templates[y[i]] + np.random.normal(loc=0, scale=1.0, size=input_shape) return ((x[:train_samples], y[:train_samples]), (x[train_samples:], y[train_samples:]))
Generates test data to train a model on. Args: train_samples: Integer, how many training samples to generate. test_samples: Integer, how many test samples to generate. input_shape: Tuple of integers, shape of the inputs. num_classes: Integer, number of classes for the data and targets. random_seed: Integer, random seed used by numpy to generate data. Returns: A tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
github-repos
def transform_wrap_with(source, left, right, name=None): with ops.name_scope(name, 'TransformWrapWith', [source]): source = convert_to_tensor_or_sparse_tensor(source, dtype=tf.string) if isinstance(source, tf.SparseTensor): result = tf.SparseTensor(indices=source.indices, values=ops_module.transform_wrap_with(source.values, left, right), dense_shape=source.dense_shape) else: result = ops_module.transform_wrap_with(source, left, right) return result
Wrap source strings with "left" and "right" strings Args: source: `Tensor` or `SparseTensor` of any shape, strings to replace digits. left: Scalar string to add in the beginning right: Scalar string to add in the ending name: A name for the operation (optional). Returns: `SparseTensor` of same shape and size as input.
codesearchnet
class AriaTextMoELayer(nn.Module): def __init__(self, config: AriaTextConfig): super().__init__() self.router = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False) self.experts = AriaGroupedExpertsMLP(config) self.shared_experts = AriaSharedExpertsMLP(config) self.config = config def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: original_shape = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_states.size(-1)) logits = self.router(hidden_states) top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1) scores = nn.functional.softmax(top_logits, dim=-1) original_dtype = top_indices.dtype tokens_per_expert = torch.histc(top_indices.flatten().to(torch.float32), bins=self.config.moe_num_experts, min=0, max=self.config.moe_num_experts - 1).to(original_dtype) indices = top_indices flatten_indices = indices.view(-1) sorted_indices = torch.argsort(flatten_indices) permuted_tokens = hidden_states.index_select(0, sorted_indices expert_output = self.experts(permuted_tokens, tokens_per_expert) unpermuted_tokens = torch.zeros((scores.shape[0] * self.config.moe_topk, expert_output.size(1)), dtype=expert_output.dtype, device=expert_output.device) unpermuted_tokens.index_copy_(0, sorted_indices, expert_output) unpermuted_tokens = unpermuted_tokens.view(-1, self.config.moe_topk, expert_output.size(1)) output = (unpermuted_tokens * scores.unsqueeze(-1)).sum(dim=1).view(original_shape) shared_expert_output = self.shared_experts(hidden_states.view(original_shape)) return output + shared_expert_output
Aria Text Mixture of Experts (MoE) Layer. This layer applies a gating mechanism to route input tokens to different experts. Args: config (`AriaTextConfig`): Configuration object for the text component of the model.
github-repos
def configure_tpu_version(self, version, restart_type='always'): def configure_worker(worker): ip_address = worker['ipAddress'] url = (_VERSION_SWITCHER_ENDPOINT + '/{}?restartType={}').format(ip_address, version, restart_type) req = urllib.request.Request(url, data=b'') try: urllib.request.urlopen(req) except urllib.error.HTTPError as e: status_code = e.code if status_code == 404: raise Exception('Tensorflow version {} is not available on Cloud TPU, try a previous nightly version or refer to https: else: raise Exception('Failed to configure worker {}'.format(ip_address)) workers = self.network_endpoints() with futures.ThreadPoolExecutor(max_workers=len(workers)) as executor: results = executor.map(configure_worker, workers) for result in results: if result: result.result()
Configure TPU software version. Args: version (string): Version of software to configure the TPU with. restart_type (string): Restart behaviour when switching versions, defaults to always restart. Options are 'always', 'ifNeeded'.
github-repos
def keep_only_update_source_in_field(field, root, head, update): update_sources = {source.lower() for source in get_value(thaw(update), '.'.join([field, 'source']), [])} if (len(update_sources) != 1): return (root, head, update) source = update_sources.pop() if (field in root): root = root.set(field, remove_elements_with_source(source, root[field])) if (field in head): head = head.set(field, remove_elements_with_source(source, head[field])) return (root, head, update)
Remove elements from root and head where ``source`` matches the update. This is useful if the update needs to overwrite all elements with the same source. .. note:: If the update doesn't contain exactly one source in ``field``, the records are returned with no modifications. Args: field (str): the field to filter out. root (pmap): the root record, whose ``field`` will be cleaned. head (pmap): the head record, whose ``field`` will be cleaned. update (pmap): the update record, from which the ``source`` is read. Returns: tuple: ``(root, head, update)`` with some elements filtered out from ``root`` and ``head``.
codesearchnet
def convert_sigmoid(params, w_name, scope_name, inputs, layers, weights, names): print('Converting sigmoid ...') if names == 'short': tf_name = 'SIGM' + random_string(4) elif names == 'keep': tf_name = w_name else: tf_name = w_name + str(random.random()) sigmoid = keras.layers.Activation('sigmoid', name=tf_name) layers[scope_name] = sigmoid(layers[inputs[0]])
Convert sigmoid layer. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
juraj-google-style
def predict_signature_def(inputs, outputs): if inputs is None or not inputs: raise ValueError('Prediction `inputs` cannot be None or empty.') if outputs is None or not outputs: raise ValueError('Prediction `outputs` cannot be None or empty.') signature_inputs = {key: utils.build_tensor_info(tensor) for key, tensor in inputs.items()} signature_outputs = {key: utils.build_tensor_info(tensor) for key, tensor in outputs.items()} signature_def = build_signature_def(signature_inputs, signature_outputs, signature_constants.PREDICT_METHOD_NAME) return signature_def
Creates prediction signature from given inputs and outputs. This function produces signatures intended for use with the TensorFlow Serving Predict API (tensorflow_serving/apis/prediction_service.proto). This API imposes no constraints on the input and output types. Args: inputs: dict of string to `Tensor`. outputs: dict of string to `Tensor`. Returns: A prediction-flavored signature_def. Raises: ValueError: If inputs or outputs is `None`.
github-repos
def template_files(path, exts=None): if not os.path.isabs(path): _path = os.path.join(determine_path(), path) if not (os.path.exists(_path) and os.path.isdir(_path)): return [] if not exts: exts = [] files = os.listdir(_path) files = [f for f in files if os.path.splitext(f)[-1] in exts] files = [os.path.join(path, f) for f in files] return files
Return a list of filenames found at @path. The list of filenames can be filtered by extensions. Arguments: path: Existing filepath we want to list. exts: List of extensions to filter by. Returns: A list of filenames found in the path.
juraj-google-style
def merge_requests(self, **kwargs): path = '%s/%s/merge_requests' % (self.manager.path, self.get_id()) return self.manager.gitlab.http_get(path, **kwargs)
List the merge requests related to the commit. Args: **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabGetError: If the references could not be retrieved Returns: list: The merge requests related to the commit.
juraj-google-style
def forward(self, hidden_states: torch.Tensor, global_hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: bool=False) -> torch.Tensor: residual = hidden_states global_residual = global_hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) global_hidden_states = self.global_self_attn_layer_norm(global_hidden_states) if self.stagger_blocks_this_layer: hidden_states, attention_mask = self.pad_local_tokens(hidden_states=hidden_states, attention_mask=attention_mask, block_size=self.block_size) hidden_states, global_hidden_states, attn_weights = self.self_attn(token_hidden_states=hidden_states, global_hidden_states=global_hidden_states, attention_mask=attention_mask, output_attentions=output_attentions) if self.stagger_blocks_this_layer: hidden_states = self.unpad_local_tokens(padded_hidden_states=hidden_states, block_size=self.block_size) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training) global_hidden_states = global_residual + global_hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states global_residual = global_hidden_states global_hidden_states = self.final_layer_norm(global_hidden_states) global_hidden_states = self.activation_fn(self.fc1(global_hidden_states)) global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.activation_dropout, training=self.training) global_hidden_states = self.fc2(global_hidden_states) global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training) global_hidden_states = global_residual + global_hidden_states outputs = (hidden_states, global_hidden_states) if output_attentions: outputs += (attn_weights,) return outputs
Args: hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* global_hidden_states (`torch.FloatTensor`): global token hidden states *(seq_len, num_global_tokens, embed_dim)* attention_mask (`torch.FloatTensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail.
github-repos
def _parse_schema(schema, method): if (method and schema.get('readOnly', False)): return _READONLY_PROPERTY if ('allOf' in schema): schema_ = copy.deepcopy(schema['allOf'][0]) for x in schema['allOf'][1:]: _dict_merge(schema_, x) return _parse_schema(schema_, method) if ('oneOf' in schema): return _parse_schema(schema['oneOf'][0], method) if ('enum' in schema): return schema['enum'][0] schema_type = schema.get('type', 'object') if (schema_type == 'array'): if ('oneOf' in schema['items']): return [_parse_schema(x, method) for x in schema['items']['oneOf']] return [_parse_schema(schema['items'], method)] if (schema_type == 'object'): if (method and all((v.get('readOnly', False) for v in schema['properties'].values()))): return _READONLY_PROPERTY results = [] for (name, prop) in schema.get('properties', {}).items(): result = _parse_schema(prop, method) if (result != _READONLY_PROPERTY): results.append((name, result)) return collections.OrderedDict(results) if ((schema_type, schema.get('format')) in _TYPE_MAPPING): return _TYPE_MAPPING[(schema_type, schema.get('format'))] return _TYPE_MAPPING[(schema_type, None)]
Convert a Schema Object to a Python object. Args: schema: An ``OrderedDict`` representing the schema object.
codesearchnet
def plot_job_history(jobs, interval='year'): def get_date(job): return datetime.datetime.strptime(job.creation_date(), '%Y-%m-%dT%H:%M:%S.%fZ') current_time = datetime.datetime.now() if interval == 'year': bins = [(current_time - datetime.timedelta(days=k*365/12)) for k in range(12)] elif interval == 'month': bins = [(current_time - datetime.timedelta(days=k)) for k in range(30)] elif interval == 'week': bins = [(current_time - datetime.timedelta(days=k)) for k in range(7)] binned_jobs = [0]*len(bins) if interval == 'year': for job in jobs: for ind, dat in enumerate(bins): date = get_date(job) if date.month == dat.month: binned_jobs[ind] += 1 break else: continue else: for job in jobs: for ind, dat in enumerate(bins): date = get_date(job) if date.day == dat.day and date.month == dat.month: binned_jobs[ind] += 1 break else: continue nz_bins = [] nz_idx = [] for ind, val in enumerate(binned_jobs): if val != 0: nz_idx.append(ind) nz_bins.append(val) total_jobs = sum(binned_jobs) colors = [' ' if interval == 'year': labels = ['{}-{}'.format(str(bins[b].year)[2:], bins[b].month) for b in nz_idx] else: labels = ['{}-{}'.format(bins[b].month, bins[b].day) for b in nz_idx] fig, ax = plt.subplots(1, 1, figsize=(5, 5)) ax.pie(nz_bins[::-1], labels=labels, colors=colors, textprops={'fontsize': 14}, rotatelabels=True, counterclock=False) ax.add_artist(Circle((0, 0), 0.7, color='white', zorder=1)) ax.text(0, 0, total_jobs, horizontalalignment='center', verticalalignment='center', fontsize=26) fig.tight_layout() return fig
Plots the job history of the user from the given list of jobs. Args: jobs (list): A list of jobs with type IBMQjob. interval (str): Interval over which to examine. Returns: fig: A Matplotlib figure instance.
juraj-google-style
def save_statement(self, statement): response = self.lrs.save_statement(statement) if not response: raise ClientError('EnterpriseXAPIClient request failed.')
Save xAPI statement. Arguments: statement (EnterpriseStatement): xAPI Statement to send to the LRS. Raises: ClientError: If xAPI statement fails to save.
juraj-google-style
def load_models_using_filepattern( self, filename_pattern, model, glob_args, is_main_model=False, encoding='utf-8', add_to_local_models=True): if (model): self.update_model_in_repo_based_on_filename(model) filenames = glob.glob(filename_pattern, **glob_args) if len(filenames) == 0: raise IOError( errno.ENOENT, os.strerror(errno.ENOENT), filename_pattern) loaded_models = [] for filename in filenames: the_metamodel = MetaModelProvider.get_metamodel(model, filename) loaded_models.append( self.load_model(the_metamodel, filename, is_main_model, encoding=encoding, add_to_local_models=add_to_local_models)) return loaded_models
add a new model to all relevant objects Args: filename_pattern: models to be loaded model: model holding the loaded models in its _tx_model_repository field (may be None). glob_args: arguments passed to the glob.glob function. Returns: the list of loaded models
juraj-google-style
def get_entity_details(self, entity_id): if (not is_valid_uuid(entity_id)): raise StorageArgumentException('Invalid UUID for entity_id: {0}'.format(entity_id)) return self._authenticated_request.to_endpoint('entity/{}/'.format(entity_id)).return_body().get()
Get generic entity by UUID. Args: entity_id (str): The UUID of the requested entity. Returns: A dictionary describing the entity:: { u'collab_id': 2271, u'created_by': u'303447', u'created_on': u'2017-03-10T12:50:06.077891Z', u'description': u'', u'entity_type': u'project', u'modified_by': u'303447', u'modified_on': u'2017-03-10T12:50:06.077946Z', u'name': u'2271', u'uuid': u'3abd8742-d069-44cf-a66b-2370df74a682' } Raises: StorageArgumentException: Invalid arguments StorageForbiddenException: Server response code 403 StorageNotFoundException: Server response code 404 StorageException: other 400-600 error codes
codesearchnet
def build_fhir_path_ast(input_str: str) -> Expression: error_listener = _FhirPathErrorListener() lexer = FhirPathLexer(antlr4.InputStream(input_str)) lexer.removeErrorListeners() lexer.addErrorListener(error_listener) token_stream = antlr4.CommonTokenStream(lexer) parser = FhirPathParser(token_stream) parser.removeErrorListeners() parser.addErrorListener(error_listener) cst_visitor = _FhirPathCstVisitor() cst = parser.expression() if error_listener.errors: raise ValueError('\n'.join(error_listener.errors)) ast = cst_visitor.visit(cst) return ast
Given a FHIRPath query, constructs an AST and returns the root node. Args: input_str: The FHIRPath string to translate. Returns: A FHIRPath `Expression` instance, representing the root AST node. Raises: ValueError: In the event that the provided `input_str` was syntactically invalid FHIRPath that failed during lexing/parsing.
github-repos
def role(self, value): if value == self._defaults['ai.cloud.role'] and 'ai.cloud.role' in self._values: del self._values['ai.cloud.role'] else: self._values['ai.cloud.role'] = value
The role property. Args: value (string). the property value.
juraj-google-style
def create_sas_locator(access_token, asset_id, accesspolicy_id): path = '/Locators' endpoint = ''.join([ams_rest_endpoint, path]) body = (((('{ \t\t"AccessPolicyId":"' + accesspolicy_id) + '", \t\t"AssetId":"') + asset_id) + '", \t\t"Type":1 \t}') return do_ams_post(endpoint, path, body, access_token)
Create Media Service SAS Locator. Args: access_token (str): A valid Azure authentication token. asset_id (str): Media Service Asset ID. accesspolicy_id (str): Media Service Access Policy ID. Returns: HTTP response. JSON body.
codesearchnet
def get_tensor_details(self, subgraph_index=0): tensor_details = [] num_subgraphs = self._interpreter.NumSubgraphs() if subgraph_index < 0 or subgraph_index >= num_subgraphs: raise ValueError(f'subgraph_index is out of range: {subgraph_index} for the model, which has {num_subgraphs} subgraphs.') for idx in range(self._interpreter.NumTensors(subgraph_index)): try: tensor_details.append(self._get_tensor_details(idx, subgraph_index)) except ValueError: pass return tensor_details
Gets tensor details for every tensor with valid tensor details from a subgraph. Tensors where required information about the tensor is not found are not added to the list. This includes temporary tensors without a name. Args: subgraph_index: Index of the subgraph to fetch the tensor. Returns: A list of dictionaries containing tensor information.
github-repos
def create_new_tf_function(func_graph): transform.apply_func_graph_transforms(func_graph) func = atomic_function.from_func_graph(func_graph.name, func_graph, {}) func_graph.outer_graph._add_function_recursive(func) return func_graph.name
Converts func_graph to a TF_Function and adds it to the current graph. Args: func_graph: FuncGraph Returns: The name of the new TF_Function.
github-repos
def set_timeout(self, network_timeout): if (network_timeout == self._network_timeout): return self._network_timeout = network_timeout self._disconnect()
Set the timeout for existing and future Clients. Close all current connections. This will cause future operations to create new Clients with the network_timeout passed through socketTimeoutMS optional parameter. Args: network_timeout: The new value in milliseconds for the timeout.
codesearchnet
def get_dummies(self, columns, **kwargs): cls = type(self) if columns is None: columns = [c for c in self.columns if not is_numeric_dtype(self.dtypes[c])] if len(columns) == 0: return self.copy() elif not is_list_like(columns): columns = [columns] def set_columns(df, columns): df.columns = columns return df set_cols = self.columns columns_applied = self._map_across_full_axis( 1, lambda df: set_columns(df, set_cols) ) if len(columns) == len(self.columns): def get_dummies_builder(df): if df is not None: if not df.empty: return pandas.get_dummies(df, **kwargs) else: return pandas.DataFrame([]) func = self._prepare_method(lambda df: get_dummies_builder(df)) new_data = columns_applied.map_across_full_axis(0, func) untouched_data = None else: def get_dummies_builder(df, internal_indices=[]): return pandas.get_dummies( df.iloc[:, internal_indices], columns=None, **kwargs ) numeric_indices = list(self.columns.get_indexer_for(columns)) new_data = columns_applied.apply_func_to_select_indices_along_full_axis( 0, get_dummies_builder, numeric_indices, keep_remaining=False ) untouched_data = self.drop(columns=columns) final_columns = self.compute_index(1, new_data, False) if len(columns) != len(self.columns): new_data = untouched_data.data.concat(1, new_data) final_columns = untouched_data.columns.append(pandas.Index(final_columns)) return cls(new_data, self.index, final_columns)
Convert categorical variables to dummy variables for certain columns. Args: columns: The columns to convert. Returns: A new QueryCompiler.
juraj-google-style
def __init__( self, sites, cell_lengths ): self.cell_lengths = cell_lengths self.sites = sites self.number_of_sites = len( self.sites ) self.site_labels = set( [ site.label for site in self.sites ] ) self.site_populations = Counter( [ site.label for site in self.sites ] ) self.enforce_periodic_boundary_conditions() self.initialise_site_lookup_table() self.nn_energy = False self.cn_energies = False self.site_energies = False self.jump_lookup_table = False for site in self.sites: site.p_neighbours = [ self.site_with_id( i ) for i in site.neighbours ] self.reset()
Initialise a Lattice instance. Args: sites (List(Site)): List of sites contained in the lattice. cell_lengths (np.array(x,y,z)): Vector of cell lengths for the simulation cell. Returns: None
juraj-google-style
def qry_create(options): qry_string = filt_end = param_str = '' filt_st = 'Filters=[' param_str_default = 'All' if options.id: qry_string += ("InstanceIds=['%s']" % options.id) param_str += ("id: '%s'" % options.id) param_str_default = '' if options.instname: (qry_string, param_str) = qry_helper(bool(options.id), qry_string, param_str) filt_end = ']' param_str_default = '' qry_string += (filt_st + ("{'Name': 'tag:Name', 'Values': ['%s']}" % options.instname)) param_str += ("name: '%s'" % options.instname) if options.inst_state: (qry_string, param_str) = qry_helper(bool(options.id), qry_string, param_str, bool(options.instname), filt_st) qry_string += ("{'Name': 'instance-state-name','Values': ['%s']}" % options.inst_state) param_str += ("state: '%s'" % options.inst_state) filt_end = ']' param_str_default = '' qry_string += filt_end param_str += param_str_default debg.dprintx('\nQuery String') debg.dprintx(qry_string, True) debg.dprint('param_str: ', param_str) return (qry_string, param_str)
Create query from the args specified and command chosen. Creates a query string that incorporates the args in the options object, and creates the title for the 'list' function. Args: options (object): contains args and data from parser Returns: qry_string (str): the query to be used against the aws ec2 client. param_str (str): the title to display before the list.
codesearchnet