text
stringlengths
20
57.3k
labels
class label
4 classes
Title: ensembling methodologies to try Body: The infrastructure for ensembling is in place. The performance of an ensemble is only matching the performance of a well-trained single estimator, or lagging slightly behind it at times. Here are some ideas to try to improve that performance: - [ ] find the best way of ensembling predictions together (median, mean, max, min) - [ ] try different algorithms to ensemble together the final predictions using ml - [ ] try different approaches of limiting overfitting for that final algorithm - [ ] try ensembles of algorithms that are more different from each other - [ ] try subsetting the data more for each sub-estimator (random selection within that subset - [ ] train a model just on the difficult cases - [ ] try allocating different amounts of data for ensembling vs. training sub-estimators - [ ] try splitting ensemble data vs. training data by date, randomly, or in the order we were given the data in - [ ] highly unlikely to be useful, but since we're trying a ktichen sink approach: try ensembling on the same data we trained the sub-estimators on. again, just to be clear, this is intentionally introducing a ton of overfitting and i expect it to crash and burn horribly. but let's verify that expectation, and maybe we'll observe some interesting behavior along the way. - [ ] only keep estimators that are within X% (user-configurable) accuracy as our best estimator
1medium
Title: Portfolio.from_orders(..) for multiple assets Body: Following [this doc](https://nbviewer.org/github/polakowo/vectorbt/blob/master/examples/PairsTrading.ipynb#:~:text=%23%20Build%20percentage%20order%20size), I was able to create a list of orders, pass them to Portfolio.from_orders(..) and analyze PnL. However, I've been struggling with doing the same for multiple assets, e.g. ones downloaded with vbt.YFData.download(SYMBOLS). Are there any examples of how to generate orders for such ohlcv data grouped into hierarchical columns, one per asset? So far, I have the following, but not sure how convert the result of BBANDS (bb) into orders. ``` SYMBOLS = ['AAPL', 'MSFT'] data = vbt.YFData.download(SYMBOLS, start=start_date, end=end_date) ohlcv = data.concat() bb = vbt.BBANDS.run(ohlcv['Close']) bb['AAPL'].middle ``` Thank you! P.S. I also noticed that `bb['AAPL']['middle']` will throw an error if I replace vbt.BBANDS.run(ohlcv['Close']) with vbt.BBANDS.run(ohlcv['Close'], window=20, ewm=False, alpha=2) which I would expect to behave identically.
1medium
Title: [BUG] Server Error (500) entering Documents view Body: ### Description The Documents view is not working. When I click on Documents, I receive a Server Error (500). ![Immagine incollata](https://github.com/user-attachments/assets/421e5bd3-3da5-431a-b441-88af935c2eb9) Downgrading `python-django-soft-delete` from version 1.0.14 to 1.0.13 resolves the problem. This issue is reproducible, as I have tested it multiple times. ### Steps to reproduce 1. Update `python-django-soft-delete` to version 1.0.14 2. Click on Documents 3. Get Server Error (500) ### Webserver logs ```bash [2024-08-17 07:21:17,600] [INFO] [paperless.management.consumer] Using inotify to watch directory for changes: /mnt/paperless/consume [2024-08-17 07:21:34,863] [DEBUG] [paperless.classifier] Gathering data from database... [2024-08-17 07:21:34,871] [WARNING] [paperless.tasks] Classifier error: no such column: documents_document.transaction_id [2024-08-17 07:21:35,189] [ERROR] [paperless.tasks] Error while emptying trash: no such column: documents_document.transaction_id Traceback (most recent call last): File "/usr/lib/python3.12/site-packages/django/db/backends/utils.py", line 89, in _execute return self.cursor.execute(sql, params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/site-packages/django/db/backends/sqlite3/base.py", line 328, in execute return super().execute(query, params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ sqlite3.OperationalError: no such column: documents_document.transaction_id The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/share/paperless/src/documents/tasks.py", line 321, in empty_trash documents.delete() # this is effectively a hard delete ^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/site-packages/django/db/models/query.py", line 1147, in delete collector.collect(del_query) File "/usr/lib/python3.12/site-packages/django/db/models/deletion.py", line 284, in collect new_objs = self.add( ^^^^^^^^^ File "/usr/lib/python3.12/site-packages/django/db/models/deletion.py", line 126, in add if not objs: ^^^^ File "/usr/lib/python3.12/site-packages/django/db/models/query.py", line 412, in __bool__ self._fetch_all() File "/usr/lib/python3.12/site-packages/django/db/models/query.py", line 1881, in _fetch_all self._result_cache = list(self._iterable_class(self)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/site-packages/django/db/models/query.py", line 91, in __iter__ results = compiler.execute_sql( ^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/site-packages/django/db/models/sql/compiler.py", line 1562, in execute_sql cursor.execute(sql, params) File "/usr/lib/python3.12/site-packages/django/db/backends/utils.py", line 67, in execute return self._execute_with_wrappers( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/site-packages/django/db/backends/utils.py", line 80, in _execute_with_wrappers return executor(sql, params, many, context) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/site-packages/django/db/backends/utils.py", line 84, in _execute with self.db.wrap_database_errors: File "/usr/lib/python3.12/site-packages/django/db/utils.py", line 91, in __exit__ raise dj_exc_value.with_traceback(traceback) from exc_value File "/usr/lib/python3.12/site-packages/django/db/backends/utils.py", line 89, in _execute return self.cursor.execute(sql, params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/site-packages/django/db/backends/sqlite3/base.py", line 328, in execute return super().execute(query, params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ django.db.utils.OperationalError: no such column: documents_document.transaction_id [2024-08-17 08:05:00,100] [DEBUG] [paperless.classifier] Gathering data from database... [2024-08-17 08:05:00,106] [WARNING] [paperless.tasks] Classifier error: no such column: documents_document.transaction_id [2024-08-17 12:50:12,083] [DEBUG] [paperless.classifier] Gathering data from database... [2024-08-17 12:50:12,088] [WARNING] [paperless.tasks] Classifier error: no such column: documents_document.transaction_id [2024-08-17 13:05:00,098] [DEBUG] [paperless.classifier] Gathering data from database... [2024-08-17 13:05:00,103] [WARNING] [paperless.tasks] Classifier error: no such column: documents_document.transaction_id [2024-08-17 16:45:44,710] [DEBUG] [paperless.classifier] Gathering data from database... [2024-08-17 16:45:44,717] [WARNING] [paperless.tasks] Classifier error: no such column: documents_document.transaction_id [2024-08-17 17:05:00,098] [DEBUG] [paperless.classifier] Gathering data from database... [2024-08-17 17:05:00,102] [WARNING] [paperless.tasks] Classifier error: no such column: documents_document.transaction_id ``` ### Browser logs _No response_ ### Paperless-ngx version 2.11.2 ### Host OS Archlinux x86_64 ### Installation method Bare metal ### System status _No response_ ### Browser Firefox 129.0.1 ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
1medium
Title: PetaStormDataModule throws error on teardown Body: **Environment:** 1. Framework: (TensorFlow, Keras, PyTorch, MXNet) Pytorch Lighning 2. Framework version: 3. Horovod version: 4. MPI version: 5. CUDA version: 6. NCCL version: 7. Python version: 8. Spark / PySpark version: 9. Ray version: 10. OS and version: 11. GCC version: 12. CMake version: **Checklist:** 1. Did you search issues to find if somebody asked this question before? 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? **Bug report:** Please describe erroneous behavior you're observing and steps to reproduce it. File "/usr/lib/python3.6/site-packages/horovod/spark/lightning/remote.py", line 299, in train trainer.fit(model, dataset) File "/usr/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 741, in fit self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path File "/usr/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 685, in _call_and_handle_interrupt return trainer_fn(*args, **kwargs) File "/usr/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 777, in _fit_impl self._run(model, ckpt_path=ckpt_path) File "/usr/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 1214, in _run self._call_teardown_hook() File "/usr/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 1464, in _call_teardown_hook self.datamodule.teardown(stage=fn) File "/usr/lib/python3.6/site-packages/pytorch_lightning/core/datamodule.py", line 474, in wrapped_fn fn(*args, **kwargs) File "/usr/lib/python3.6/site-packages/horovod/spark/lightning/datamodule.py", line 132, in teardown self.val_dl.close_async_loader() AttributeError: 'PetastormDataModule' object has no attribute 'val_dl' Seems like the val_dl is not initialized on setup, but is used in teardown
1medium
Title: Upgrade node version and react version Body: ## 🚀 Feature <!-- A clear and concise description of the feature proposal --> Upgrade node version to latest to get better performance and also upgrade react and its dependent version as we couldn't install some of the 3rd party lib because Aim react version is old. For example react flow. ### Motivation <!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too --> ### Pitch <!-- A clear and concise description of what you want to happen. --> ### Alternatives <!-- A clear and concise description of any alternative solutions or features you've considered, if any. --> ### Additional context <!-- Add any other context or screenshots about the feature request here. -->
1medium
Title: Have you considered allowing Tortoise to be independently initialized multiple times in different packages? Body: Imagine a scenario where we are using an open-source package based on Tortoise, and our own project also uses Tortoise. However, because Tortoise can only be initialized once, the package developed with Tortoise is not convenient for others to directly import and use.
1medium
Title: [Migrated] Deployment fails on API Gateway: Invalid API Key identifier specified Body: Originally from: https://github.com/Miserlou/Zappa/issues/1892 by [iamnotagentleman](https://github.com/iamnotagentleman) ## Context <!--- Provide a more detailed introduction to the issue itself, and why you consider it to be a bug --> Zappa fails on deploy > botocore.errorfactory.NotFoundException: An error occurred (NotFoundException) when > calling the GetRestApi operation: Invalid API identifier specified is there any solution ? ## My Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: 0,48.2 * Operating System and Python version: Ubuntu 16.04 x64 & Python 3.7 * The output of `pip freeze`: > argcomplete==1.9.3 > boto3==1.9.183 > botocore==1.12.183 > certifi==2019.6.16 > cfn-flip==1.2.1 > chardet==3.0.4 > Click==7.0 > Django==2.2.2 > django-ckeditor==5.7.1 > django-js-asset==1.2.2 > django-s3-storage==0.12.4 > djangorestframework==3.7.7 > docutils==0.14 > durationpy==0.5 > future==0.16.0 > hjson==3.0.1 > idna==2.8 > jmespath==0.9.3 > kappa==0.6.0 > lambda-packages==0.20.0 > mysqlclient==1.3.14 > Pillow==6.1.0 > pinax-announcements==3.0.2 > placebo==0.9.0 > psycopg2==2.8.3 > python-dateutil==2.6.1 > python-slugify==1.2.4 > pytz==2019.1 > PyYAML==5.1.1 > reportlab==3.5.23 > requests==2.22.0 > s3transfer==0.2.1 > sentry-sdk==0.9.2 > six==1.12.0 > sqlparse==0.3.0 > toml==0.10.0 > tqdm==4.19.1 > troposphere==2.4.9 > Unidecode==1.1.1 > urllib3==1.25.3 > Werkzeug==0.15.4 > wsgi-request-logger==0.4.6 > zappa==0.48.2
1medium
Title: FileNotFoundError: [Errno 2] No such file or directory: '/exports/charts/7f792cad-32b6-4385-b334-585a5d46e23a.png' Body: ### System Info pandasai 2.3.0 ubuntu 0.20.04.1 python 3.9 ### 🐛 Describe the bug I looked up similar problems in the past and found that the drawing problems of GPT-3.5 and BambooLLM have been solved, but I still have the same problem when I run the code. ```python import os import pandas as pd from pandasai import Agent # Sample DataFrame sales_by_country = pd.DataFrame({ "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"], "revenue": [5000, 3200, 2900, 4100, 2300, 2100, 2500, 2600, 4500, 7000] }) os.environ["PANDASAI_API_KEY"] = "MY_API_KEY" agent = Agent(sales_by_country,config={ "save_charts": True, "open_charts": True, "save_charts_path": "/exports/charts", }) response = agent.chat('Which are the top 5 countries by sales?') r2 = agent.chat( "Plot the histogram of countries showing for each one the gd. Use different colors for each bar", ) ``` ``` Traceback (most recent call last): File "/root/miniconda3/envs/DataAI/lib/python3.9/site-packages/pandasai/pipelines/chat/generate_chat_pipeline.py", line 333, in run output = ( File "/root/miniconda3/envs/DataAI/lib/python3.9/site-packages/pandasai/pipelines/pipeline.py", line 137, in run raise e File "/root/miniconda3/envs/DataAI/lib/python3.9/site-packages/pandasai/pipelines/pipeline.py", line 101, in run step_output = logic.execute( File "/root/miniconda3/envs/DataAI/lib/python3.9/site-packages/pandasai/pipelines/chat/code_execution.py", line 133, in execute {"content_type": "response", "value": ResponseSerializer.serialize(result)}, File "/root/miniconda3/envs/DataAI/lib/python3.9/site-packages/pandasai/responses/response_serializer.py", line 35, in serialize with open(result["value"], "rb") as image_file: FileNotFoundError: [Errno 2] No such file or directory: '/exports/charts/8998e704-c205-46ed-9a6c-3c23a031f93c.png' ```
1medium
Title: SparkML OneHotEncoder conversion is wrong Body: SparkML OneHotEncoder conversion is implemented wrong. It just so happens to handle the conversion when there is one input column and one output column. Once you try multiple inputCols and outputCols, the generated ONNX graph is wrong. Repro: ```python from pyspark.ml.feature import OneHotEncoder from onnxconverter_common.data_types import FloatTensorType, Int32TensorType from onnxmltools.convert import convert_sparkml from onnxruntime import InferenceSession df = spark.createDataFrame( [(0, 2), (1, 4),], ["col1", "col2"] ) encoder = OneHotEncoder(inputCols = ["col1", "col2"], outputCols = ["col1_enc", "col2_enc"], dropLast=False).fit(df) initial_types = [ ("col1", Int32TensorType([None, 1])), ("col2", Int32TensorType([None, 1])), ] onnx_model = convert_sparkml(encoder, 'OneHotEncoder', initial_types) # Writing the model out for inspection with open("ohe_quicktest.onnx", "wb") as f: f.write(onnx_model.SerializeToString()) # Run with onnx runtime input_data = {"col1": [(0, 1)], "col2": [(2, 4)]} session = InferenceSession(onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]) output = session.run(None, input_data) ``` Expected result: The model can correct encode the input features. Actual result: InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Failed to load model with error: /onnxruntime_src/onnxruntime/core/graph/graph.cc:1368 void onnxruntime::Graph::InitializeStateFromModelFileGraphProto() This is an invalid model. Graph output (col2_enc) does not exist in the graph. The generated ONNX graph looks like this, which is obviously wrong: ![image](https://user-images.githubusercontent.com/6992432/169629737-2fe2a869-d4e0-484c-ab1b-6c3fe875d513.png)
2hard
Title: 请问使用过程中,会自动的去huggingface.co下载模型吗?这边提示“'HTTPSConnectionPool(host='huggingface.co', port=443)” Body: 版本4.2.13 在使用过程中,会有如下提示 `'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203832C0700>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/pytorch_model.bin (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203832A3940>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/pytorch_model.bin 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/tokenizer_config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203D7C6CF40>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/tokenizer_config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203846CA280>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/pytorch_model.bin (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203846CF6D0>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/pytorch_model.bin 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/tokenizer_config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203846CFEE0>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/tokenizer_config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203D8FB4220>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/pytorch_model.bin (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203DFD077C0>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/pytorch_model.bin 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/tokenizer_config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203DFD07FD0>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/tokenizer_config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203DFD2D280>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/pytorch_model.bin (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203E4240850>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/pytorch_model.bin 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/tokenizer_config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203E424A0A0>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/tokenizer_config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203E4268280>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/config.json 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/pytorch_model.bin (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203D7C63250>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/pytorch_model.bin 'HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /LTP/small/resolve/main/tokenizer_config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x00000203DFD0E100>, 'Connection to huggingface.co timed out. (connect timeout=10)'))' thrown while requesting HEAD https://huggingface.co/LTP/small/resolve/main/tokenizer_config.json` 大概是去huggingface.co下载模型失败? 这个会导致识别时间特别长。
1medium
Title: [Question]: Clearer Instructions For Reporting Vulnerabilites Body: ### Question Following up on https://github.com/flairNLP/flair/issues/2656 which was closed as stale - these instructions are still not correct, and there's no clear way to report security issues. Any update on that?
3misc
Title: Update documentation's Filtering.md to include Bitwise Operator Warning Body: There's this Python Bitwise operator warning found in Documentation [API Reference > odmantic.query](https://art049.github.io/odmantic/api_reference/query/#odmantic.query.QueryExpression) which, in my humble opinion, should be added to [Filtering > Logical Operators' section](https://art049.github.io/odmantic/filtering/#logical-operators) as well. This will be a useful reminder to those who forget to add parenthesis when using bitwise operator comparisons and may overlook the API Reference section which explains why it's necessary to do so.
0easy
Title: ENH: support multiple geometry columns in read_postgis Body: #### Is your feature request related to a problem? I'm loading the results of a PostGIS query with multiple geometry columns, and I wish geopandas would convert all of them. The problem is that now, only one of the columns is converted to a real geometry type and the other geometries I have to convert myself using `shapely.wkb`. #### Describe the solution you'd like `geopandas.read_postgis` should have an argument named `geom_cols: list[str]`. When this argument is set, all these columns are parsed into a geometry type. #### API breaking implications This will add an additional optional parameter. Behaviour wouldn't change if the parameter is not included, so it would be backwards compatible if I'm not mistaken. #### Describe alternatives you've considered Current solution is to use `shapely` to do the conversion after loading the data.
1medium
Title: Fails to install with miniconda on Windows Body: ### Operating system Windows 10 ### `nbgrader --version` n/a since the installation failed ### `jupyterhub --version` (if used with JupyterHub) ``` (base) C:\Users\Stefnotch>jupyterhub --version 'jupyterhub' is not recognized as an internal or external command, operable program or batch file. ``` ### `jupyter notebook --version` ``` (base) C:\Users\Stefnotch>jupyter notebook --version 6.4.0 ``` ### Expected behavior I expected nbgrader to get installed ### Actual behavior ``` (base) C:\Users\Stefnotch>conda install -c conda-forge nbgrader Collecting package metadata (current_repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Solving environment: / Found conflicts! Looking for incompatible packages. This can take several minutes. Press CTRL-C to abort. Examining nbgrader: 80%|███████████████████████████████████████████████████▏ | 4/5 [00:00<00:00, 14.02it/s]/failed / UnsatisfiableError: The following specifications were found to be incompatible with the existing python installation in your environment: Specifications: - nbgrader -> python[version='>=2.7,<2.8.0a0|>=3.6,<3.7.0a0|>=3.7,<3.8.0a0|>=3.8,<3.9.0a0'] Your python: python=3.9 If python is on the left-most side of the chain, that's the version you've asked for. When python appears to the right, that indicates that the thing on the left is somehow not available for the python version you are constrained to. Note that conda will not change your python version to a different minor version unless you explicitly specify that. ``` ### Steps to reproduce the behavior 1. Start up Windows 10 2. Install miniconda 3. `conda install -c conda-forge jupyterlab` 4. `conda install jupyter` 5. `conda install -c conda-forge nbgrader`
1medium
Title: Authlib 0.15.x crashing with httpx 0.18.2 Body: After upgrading to HTTPX 0.18.2, the starlette oauth module (provided by Authlib) started to crash. When i call the oauth authorize_redirect method, i get the following error: Invalid "auth" argument: <httpx._config.UnsetType object at 0x7fb5ac920310>"} In HTTPX 0.18.1, everything works like a charm.
1medium
Title: CI: Performance Benchmarking during CI Body: We want our CI to assess the performance of the code to avoid regressions. These are benchmarks that should run via Github Actions, but also be optionally disabled/enabled via a simple boolean flag. * Runtime Benchmarks: Some of these benchmarks should time the execution of certain cleanlab function calls, and report error if the execution time in this version of the code has significantly increased from the previous version of the code. Ideas for these cleanlab function calls including copying some from the more substantial unit tests, or taking some from: github.com/cleanlab/examples/ * Performance/Accuracy Benchmarks: Other benchmarks should measure the accuracy of cleanlab's label error detection capabilities and CleanLearning's supervised learning accuracy. These would report error if the accuracy of certain function calls in this newly updated version of the code has significantly decreased from the previous version of the code. Ideas for sources of data/performance numbers for these benchmarks include: * Copying some of the more substantial unit tests * [Examples](https://github.com/cleanlab/examples/) notebooks, e.g. in particular: 1. https://github.com/cleanlab/examples/blob/master/classifier_comparison.ipynb * Tutorial Colab notebooks * Benchmark repos such as: 1. https://github.com/cleanlab/label-error-detection-benchmarks 2. https://github.com/cleanlab/ood-detection-benchmarks
1medium
Title: Not allowed to use word "Request" as a part of serializer name for some reason Body: **Describe the bug** I was extending my API and creating new serializers. After adding another one and regenerating the schema I encountered this error message: ``` Warning [FilledFormAnswerViewSet > FilledFormAnswerSerializer > FormQuestionSerializer]: Encountered 2 components with identical names "FormQuestionRequest" and different classes <class 'forms.serializers.FormQuestionSerializer'> and <class 'forms.serializers.FormQuestionRequestSerializer'>. This will very likely result in an incorrect schema. Try renaming one. ``` This error appears after I type-hint a SerializerMethodField. Class structure is as follows: ``` class FormQuestionRequestMappingSerializer(serializers.Serializer): label = serializers.CharField() value = serializers.CharField() class Meta: fields = ("label", "value") class FormQuestionRequestSerializer(serializers.Serializer): url = serializers.CharField() mapping = serializers.DictField( child=FormQuestionRequestMappingSerializer(), allow_empty=False, ) params = serializers.DictField() class Meta: fields = ("url", "mapping", "params") class FormQuestionSerializer(serializers.ModelSerializer): choices = FormQuestionChoiceSerializer(many=True, read_only=True) request_params = serializers.SerializerMethodField() @extend_schema_field(FormQuestionRequestSerializer) def get_request_params(self, obj): if obj.data_type != QuestionDataType.REQUEST: return None return dict( url=reverse(obj.request_field_route) if obj.request_field_route else None, mapping={ "value": obj.request_field_mapping.get("value", "id"), "label": obj.request_field_mapping.get("label", "title"), }, request_params=obj.request_field_params, ) class Meta: model = FormQuestion fields = ( "id", "title", "data_type", "request_params", ) ``` And as soon as I rename FormQuestionRequestSerializer to NOT contain the exact "Request" word - the error is gone. This serializer class name is unique in the project - so I am sure it does not clash with an existing one. I also have a model class `FormQuestion` in my app, and maybe somehow that causes the name conflict, but I don't quite get how it may happen. DRF-spectacular settings are as follows: ``` SPECTACULAR_SETTINGS = { "TITLE": "API Project", "DESCRIPTION": "API for my project", "VERSION": "1.0.0", "COMPONENT_SPLIT_REQUEST": True, "POSTPROCESSING_HOOKS": [], } ``` **Expected behavior** Being able to name serializer classes without causing critical errors.
2hard
Title: Supporting JupyterHub singleuser 3.0.0 Body: I had a look at what's required for this to bump `jupyterhub-singleuser` to `3.0.0` (https://github.com/jupyterhub/binderhub/pull/1544#issuecomment-1278971454). JupyterHub 3.0.0 requires Python 3.7+ ## Python 3.7, 3.8, 3.9, 3.10 environments This is easy, just update https://github.com/jupyterhub/repo2docker/blob/d7be04efb590a2a1227614ccaf9b504ad9333470/repo2docker/buildpacks/conda/environment.yml#L11 and run [`freeze.py`](https://github.com/jupyterhub/repo2docker/blob/d7be04efb590a2a1227614ccaf9b504ad9333470/repo2docker/buildpacks/conda/freeze.py) to update Python 3.7, 3.8, 3.9 and 3.10 environments. ## Python 2.7 environment Also easy, since the kernel environment is decoupled from the notebook/JupyterLab environment. ## Python 3.5 environment Not automatically updated: https://github.com/jupyterhub/repo2docker/blob/d7be04efb590a2a1227614ccaf9b504ad9333470/repo2docker/buildpacks/conda/environment.py-3.5.yml#L1-L2 Stuck on a very old version, too old for 3.0.0: https://github.com/jupyterhub/repo2docker/blob/d7be04efb590a2a1227614ccaf9b504ad9333470/repo2docker/buildpacks/conda/requirements.py-3.5.pip#L8 ## Python 3.6 environment Not automatically updated: https://github.com/jupyterhub/repo2docker/blob/d7be04efb590a2a1227614ccaf9b504ad9333470/repo2docker/buildpacks/conda/environment.py-3.6.yml#L1-L2 Stuck on an old version, too old for 3.0.0: https://github.com/jupyterhub/repo2docker/blob/d7be04efb590a2a1227614ccaf9b504ad9333470/repo2docker/buildpacks/conda/environment.py-3.6.lock#L131 ## Options - Separate Python 3.5 and 3.6 environments from the notebook/JupyterLab environment, similar to Python 2.7 - Separate all Python environments from the notebook/JupyterLab environment. If we're going to migrate 3.5 and 3.6 environments to the decoupled setup, it probably makes sense to do it for all Python versions to make things easier in the future, and also solves some potential package conflicts: https://github.com/jupyterhub/repo2docker/issues/741 - Separate all environments for all languages from the notebook/JupyterLab environment. Architecturally I think this makes sense, but is more work: https://github.com/jupyterhub/repo2docker/issues/868
1medium
Title: Can't download video (and subtitles) when many comments Body: ### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting a bug unrelated to a specific site - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) ### Provide a description that is worded well enough to be understood Yt-dlp downloads video page, parses it, extracts links (subtitles, video stream), downloads comments, and then downloads content using extracted links. The problem is downloading comment can take too long, and extracted links become expired, producing 404 error. ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [ ] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-vU', '--get-comments', '--write-subs', 'https://www.youtube.com/watch?v=uD4izuDMUQA'] [debug] Encodings: locale UTF-8, fs utf-8, pref UTF-8, out utf-8 (No ANSI), error utf-8 (No ANSI), screen utf-8 (No ANSI) [debug] yt-dlp version stable@2024.12.13 from yt-dlp/yt-dlp [542166962] (zip) [debug] Python 3.9.4 (CPython x86_64 64bit) - macOS-10.13.6-x86_64-i386-64bit (OpenSSL 1.1.1k 25 Mar 2021) [debug] exe versions: ffmpeg 4.4.1 (setts), ffprobe 4.4.1, phantomjs 2.1.1 [debug] Optional libraries: certifi-2021.10.08, mutagen-1.45.1, requests-2.27.1, sqlite3-3.34.0, urllib3-1.26.9 [debug] Proxy map: {} [debug] Request Handlers: urllib [debug] Loaded 1837 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp/releases/latest Latest version: stable@2024.12.13 from yt-dlp/yt-dlp yt-dlp is up to date (stable@2024.12.13 from yt-dlp/yt-dlp) [youtube] Extracting URL: https://www.youtube.com/watch?v=uD4izuDMUQA [youtube] uD4izuDMUQA: Downloading webpage [youtube] uD4izuDMUQA: Downloading ios player API JSON [youtube] uD4izuDMUQA: Downloading mweb player API JSON [debug] Loading youtube-nsig.03dbdfab from cache [debug] [youtube] Decrypted nsig 1S4AiOPPlr8bwtmrL => XM5rNJw4_pWm0Q [debug] Loading youtube-nsig.03dbdfab from cache [debug] [youtube] Decrypted nsig smffvg_Fcc0uOm2Al => N-Y9lkp46e7kvg [youtube] uD4izuDMUQA: Downloading m3u8 information [info] uD4izuDMUQA: Downloading subtitles: en [debug] Sort order given by extractor: quality, res, fps, hdr:12, source, vcodec, channels, acodec, lang, proto [debug] Formats sorted by: hasvid, ie_pref, quality, res, fps, hdr:12(7), source, vcodec, channels, acodec, lang, proto, size, br, asr, vext, aext, hasaud, id [youtube] Downloading comment section API JSON [youtube] Downloading ~330599 comments [youtube] Sorting comments by newest first [youtube] Downloading comment API JSON page 1 (0/~330599) [youtube] Downloading comment API JSON reply thread 1 (1/~330599) [youtube] Downloading comment replies API JSON page 1 (11/~330599) [youtube] Downloading comment replies API JSON page 2 (61/~330599) [youtube] Downloading comment replies API JSON page 3 (111/~330599) [youtube] Downloading comment replies API JSON page 4 (161/~330599) [youtube] Downloading comment replies API JSON page 5 (211/~330599) [youtube] Downloading comment replies API JSON page 6 (261/~330599) [youtube] Downloading comment replies API JSON page 7 (311/~330599) [youtube] Downloading comment replies API JSON page 8 (361/~330599) [youtube] Downloading comment replies API JSON page 9 (411/~330599) [youtube] Downloading comment replies API JSON page 10 (461/~330599) [youtube] Downloading comment replies API JSON page 11 (511/~330599) [youtube] Downloading comment replies API JSON page 12 (561/~330599) [youtube] Downloading comment API JSON reply thread 2 (589/~330599) [youtube] Downloading comment API JSON reply thread 3 (591/~330599) [youtube] Downloading comment API JSON page 2 (600/~330599) [youtube] Downloading comment API JSON page 3 (620/~330599) [youtube] Downloading comment API JSON reply thread 1 (633/~330599) [youtube] Downloading comment API JSON page 4 (641/~330599) [youtube] Downloading comment API JSON reply thread 1 (642/~330599) [youtube] Downloading comment API JSON page 5 (662/~330599) [youtube] Downloading comment API JSON reply thread 1 (672/~330599) [youtube] Downloading comment API JSON page 6 (683/~330599) [youtube] Downloading comment API JSON reply thread 1 (688/~330599) [youtube] Downloading comment API JSON reply thread 2 (700/~330599) [youtube] Downloading comment API JSON reply thread 3 (707/~330599) [youtube] Downloading comment API JSON page 7 (713/~330599) [youtube] Downloading comment API JSON reply thread 1 (724/~330599) [youtube] Downloading comment API JSON reply thread 2 (726/~330599) [youtube] Downloading comment API JSON page 8 (737/~330599) [youtube] Downloading comment API JSON reply thread 1 (747/~330599) [youtube] Downloading comment API JSON page 9 (758/~330599) [youtube] Downloading comment API JSON reply thread 1 (766/~330599) [youtube] Downloading comment API JSON reply thread 2 (769/~330599) [youtube] Downloading comment API JSON reply thread 3 (778/~330599) [youtube] Downloading comment API JSON page 10 (781/~330599) [youtube] Downloading comment API JSON reply thread 1 (788/~330599) [youtube] Downloading comment API JSON page 11 (802/~330599) [youtube] Downloading comment API JSON reply thread 1 (811/~330599) [youtube] Downloading comment API JSON page 12 (823/~330599) [youtube] Downloading comment API JSON page 13 (843/~330599) [youtube] Downloading comment API JSON reply thread 1 (853/~330599) [youtube] Downloading comment API JSON page 14 (865/~330599) [youtube] Downloading comment API JSON reply thread 1 (870/~330599) [youtube] Downloading comment API JSON reply thread 2 (872/~330599) [youtube] Downloading comment API JSON reply thread 3 (882/~330599) [youtube] Downloading comment API JSON reply thread 4 (884/~330599) [youtube] Downloading comment API JSON page 15 (890/~330599) [youtube] Downloading comment API JSON reply thread 1 (891/~330599) [youtube] Downloading comment API JSON reply thread 2 (911/~330599) [youtube] Downloading comment API JSON page 16 (913/~330599) [youtube] Downloading comment API JSON reply thread 1 (929/~330599) [youtube] Downloading comment API JSON page 17 (934/~330599) [youtube] Downloading comment API JSON reply thread 1 (945/~330599) [youtube] Downloading comment API JSON page 18 (955/~330599) [youtube] Downloading comment API JSON reply thread 1 (961/~330599) [youtube] Downloading comment API JSON reply thread 2 (971/~330599) [youtube] Downloading comment API JSON page 19 (979/~330599) [youtube] Downloading comment API JSON reply thread 1 (987/~330599) [youtube] Downloading comment API JSON reply thread 2 (997/~330599) [youtube] Downloading comment API JSON reply thread 3 (1003/~330599) ... [youtube] Downloading comment API JSON page 10700 (328997/~330599) [youtube] Downloading comment API JSON reply thread 1 (329007/~330599) [youtube] Downloading comment API JSON page 10701 (329018/~330599) [youtube] Downloading comment API JSON reply thread 1 (329028/~330599) [youtube] Downloading comment API JSON page 10702 (329042/~330599) [youtube] Downloading comment API JSON page 10703 (329062/~330599) [youtube] Downloading comment API JSON reply thread 1 (329078/~330599) [youtube] Downloading comment API JSON page 10704 (329083/~330599) [youtube] Downloading comment API JSON reply thread 1 (329085/~330599) [youtube] Downloading comment API JSON reply thread 2 (329095/~330599) [youtube] Downloading comment API JSON page 10705 (329112/~330599) [youtube] Downloading comment API JSON reply thread 1 (329124/~330599) [youtube] Downloading comment API JSON page 10706 (329133/~330599) [youtube] Downloading comment API JSON reply thread 1 (329150/~330599) [youtube] Downloading comment API JSON page 10707 (329157/~330599) [youtube] Downloading comment API JSON reply thread 1 (329168/~330599) [youtube] Downloading comment API JSON reply thread 2 (329179/~330599) [youtube] Downloading comment API JSON page 10708 (329180/~330599) [youtube] Downloading comment API JSON reply thread 1 (329196/~330599) [youtube] Downloading comment replies API JSON page 1 (329206/~330599) [youtube] Downloading comment API JSON page 10709 (329212/~330599) [youtube] Downloading comment API JSON reply thread 1 (329214/~330599) [youtube] Downloading comment API JSON reply thread 2 (329231/~330599) [youtube] Downloading comment API JSON page 10710 (329240/~330599) [youtube] Downloading comment API JSON reply thread 1 (329246/~330599) [youtube] Downloading comment API JSON reply thread 2 (329252/~330599) [youtube] Downloading comment API JSON reply thread 3 (329258/~330599) [youtube] Downloading comment API JSON page 10711 (329263/~330599) [youtube] Downloading comment API JSON reply thread 1 (329267/~330599) [youtube] Downloading comment API JSON page 10712 (329284/~330599) [youtube] Downloading comment API JSON reply thread 1 (329288/~330599) [youtube] Downloading comment API JSON page 10713 (329306/~330599) [youtube] Downloading comment API JSON reply thread 1 (329309/~330599) [youtube] Downloading comment API JSON reply thread 2 (329320/~330599) [youtube] Downloading comment API JSON reply thread 3 (329334/~330599) [youtube] Downloading comment API JSON page 10714 (329338/~330599) [youtube] Downloading comment API JSON reply thread 1 (329350/~330599) [youtube] Downloading comment replies API JSON page 1 (329360/~330599) [youtube] Downloading comment API JSON reply thread 2 (329369/~330599) [youtube] Downloading comment API JSON page 10715 (329371/~330599) [youtube] Downloading comment API JSON reply thread 1 (329386/~330599) [youtube] Downloading comment API JSON reply thread 2 (329392/~330599) [youtube] Downloading comment API JSON page 10716 (329393/~330599) [youtube] Downloading comment API JSON reply thread 1 (329402/~330599) [youtube] Downloading comment API JSON reply thread 2 (329413/~330599) [youtube] Downloading comment API JSON page 10717 (329419/~330599) [youtube] Downloading comment API JSON reply thread 1 (329427/~330599) [youtube] Downloading comment API JSON reply thread 2 (329432/~330599) [youtube] Downloading comment API JSON page 10718 (329441/~330599) [youtube] Downloading comment API JSON reply thread 1 (329461/~330599) [youtube] Downloading comment API JSON page 10719 (329462/~330599) [youtube] Downloading comment API JSON reply thread 1 (329468/~330599) [youtube] Downloading comment API JSON reply thread 2 (329472/~330599) [youtube] Downloading comment API JSON page 10720 (329484/~330599) [youtube] Downloading comment API JSON page 10721 (329504/~330599) [youtube] Downloading comment API JSON reply thread 1 (329524/~330599) [youtube] Downloading comment API JSON page 10722 (329526/~330599) [youtube] Downloading comment API JSON reply thread 1 (329527/~330599) [youtube] Downloading comment API JSON reply thread 2 (329536/~330599) [youtube] Downloading comment API JSON page 10723 (329555/~330599) [youtube] Downloading comment API JSON reply thread 1 (329565/~330599) [youtube] Downloading comment API JSON reply thread 2 (329567/~330599) [youtube] Downloading comment API JSON page 10724 (329578/~330599) [youtube] Downloading comment API JSON reply thread 1 (329591/~330599) [youtube] Downloading comment API JSON page 10725 (329599/~330599) [youtube] Downloading comment API JSON reply thread 1 (329600/~330599) [youtube] Downloading comment API JSON page 10726 (329620/~330599) [youtube] Downloading comment API JSON reply thread 1 (329628/~330599) [youtube] Downloading comment API JSON reply thread 2 (329649/~330599) [youtube] Downloading comment API JSON page 10727 (329651/~330599) [youtube] Downloading comment API JSON reply thread 1 (329653/~330599) [youtube] Downloading comment replies API JSON page 1 (329663/~330599) [youtube] Downloading comment API JSON reply thread 2 (329673/~330599) [youtube] Downloading comment API JSON page 10728 (329687/~330599) [youtube] Downloading comment API JSON reply thread 1 (329694/~330599) [youtube] Downloading comment API JSON reply thread 2 (329698/~330599) [youtube] Downloading comment API JSON reply thread 3 (329702/~330599) [youtube] Downloading comment API JSON page 10729 (329719/~330599) [youtube] Downloading comment API JSON reply thread 1 (329737/~330599) [youtube] Downloading comment replies API JSON page 1 (329747/~330599) [youtube] Downloading comment API JSON page 10730 (329776/~330599) [youtube] Downloading comment API JSON reply thread 1 (329787/~330599) [youtube] Downloading comment API JSON page 10731 (329803/~330599) [youtube] Downloading comment API JSON reply thread 1 (329812/~330599) [youtube] Downloading comment API JSON reply thread 2 (329817/~330599) [youtube] Downloading comment API JSON reply thread 3 (329823/~330599) [youtube] Downloading comment API JSON page 10732 (329828/~330599) [youtube] Downloading comment API JSON reply thread 1 (329837/~330599) [youtube] Downloading comment API JSON reply thread 2 (329843/~330599) [youtube] Downloading comment API JSON reply thread 3 (329848/~330599) [youtube] Downloading comment replies API JSON page 1 (329858/~330599) [youtube] Downloading comment API JSON page 10733 (329863/~330599) [youtube] Downloading comment API JSON reply thread 1 (329879/~330599) [youtube] Downloading comment replies API JSON page 1 (329889/~330599) [youtube] Downloading comment API JSON reply thread 2 (329912/~330599) [youtube] Downloading comment API JSON page 10734 (329914/~330599) [youtube] Downloading comment API JSON reply thread 1 (329922/~330599) [youtube] Downloading comment API JSON reply thread 2 (329926/~330599) [youtube] Downloading comment API JSON reply thread 3 (329933/~330599) [youtube] Downloading comment API JSON page 10735 (329945/~330599) [youtube] Downloading comment API JSON reply thread 1 (329949/~330599) [youtube] Downloading comment API JSON reply thread 2 (329955/~330599) [youtube] Downloading comment API JSON reply thread 3 (329963/~330599) [youtube] Downloading comment API JSON reply thread 4 (329967/~330599) [youtube] Downloading comment API JSON reply thread 5 (329970/~330599) [youtube] Downloading comment API JSON page 10736 (329975/~330599) [youtube] Downloading comment API JSON reply thread 1 (329976/~330599) [youtube] Downloading comment API JSON reply thread 2 (329979/~330599) [youtube] Downloading comment replies API JSON page 1 (329989/~330599) [youtube] Downloading comment API JSON reply thread 3 (329993/~330599) [youtube] Downloading comment API JSON reply thread 4 (329999/~330599) [youtube] Downloading comment replies API JSON page 1 (330009/~330599) [youtube] Downloading comment replies API JSON page 2 (330059/~330599) [youtube] Downloading comment API JSON reply thread 5 (330067/~330599) [youtube] Downloading comment replies API JSON page 1 (330077/~330599) [youtube] Downloading comment replies API JSON page 2 (330127/~330599) [youtube] Downloading comment replies API JSON page 3 (330177/~330599) [youtube] Downloading comment replies API JSON page 4 (330227/~330599) [youtube] Downloading comment replies API JSON page 5 (330277/~330599) [youtube] Downloading comment replies API JSON page 6 (330327/~330599) [youtube] Downloading comment replies API JSON page 7 (330377/~330599) [youtube] Downloading comment replies API JSON page 8 (330427/~330599) [youtube] Downloading comment replies API JSON page 9 (330477/~330599) [youtube] Downloading comment replies API JSON page 10 (330527/~330599) [youtube] Downloading comment API JSON reply thread 6 (330538/~330599) [youtube] Downloading comment API JSON reply thread 7 (330540/~330599) [youtube] Downloading comment replies API JSON page 1 (330550/~330599) [youtube] Downloading comment API JSON reply thread 8 (330557/~330599) [youtube] Downloading comment API JSON page 10737 (330558/~330599) [youtube] Downloading comment API JSON reply thread 1 (330564/~330599) [youtube] Downloading comment API JSON reply thread 2 (330568/~330599) [youtube] Downloading comment API JSON reply thread 3 (330574/~330599) [youtube] Extracted 330580 comments [debug] Default format spec: bestvideo*+bestaudio/best [info] uD4izuDMUQA: Downloading 1 format(s): 401+251 [info] Writing video subtitles to: TIMELAPSE OF THE FUTURE: A Journey to the End of Time (4K) [uD4izuDMUQA].en.vtt [debug] Invoking http downloader on "https://www.youtube.com/api/timedtext?v=uD4izuDMUQA&ei=QQxiZ_uZN-_UxN8P0ufXoQc&caps=asr&opi=112496729&exp=xbt&xoaf=5&hl=en&ip=0.0.0.0&ipbits=0&expire=1734504113&sparams=ip%2Cipbits%2Cexpire%2Cv%2Cei%2Ccaps%2Copi%2Cexp%2Cxoaf&signature=5C32FB21273E3176945C8CDF31245E71038E40BD.19F6AEC3D4E5045E0BAFC6CB0B74DAACB6B8DBAC&key=yt8&lang=en&fmt=vtt" ERROR: Unable to download video subtitles for 'en': HTTP Error 404: Not Found Traceback (most recent call last): File "/usr/local/bin/yt-dlp/yt_dlp/networking/_urllib.py", line 398, in _send res = opener.open(urllib_req, timeout=self._calculate_timeout(request)) File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py", line 523, in open response = meth(req, response) File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py", line 632, in http_response response = self.parent.error( File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py", line 561, in error return self._call_chain(*args) File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py", line 494, in _call_chain result = func(*args) File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py", line 641, in http_error_default raise HTTPError(req.full_url, code, msg, hdrs, fp) urllib.error.HTTPError: HTTP Error 404: Not Found The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 4351, in _write_subtitles self.dl(sub_filename, sub_copy, subtitle=True) File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 3199, in dl return fd.download(name, new_info, subtitle) File "/usr/local/bin/yt-dlp/yt_dlp/downloader/common.py", line 464, in download ret = self.real_download(filename, info_dict) File "/usr/local/bin/yt-dlp/yt_dlp/downloader/http.py", line 367, in real_download establish_connection() File "/usr/local/bin/yt-dlp/yt_dlp/downloader/http.py", line 118, in establish_connection ctx.data = self.ydl.urlopen(request) File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 4162, in urlopen return self._request_director.send(req) File "/usr/local/bin/yt-dlp/yt_dlp/networking/common.py", line 117, in send response = handler.send(request) File "/usr/local/bin/yt-dlp/yt_dlp/networking/_helper.py", line 208, in wrapper return func(self, *args, **kwargs) File "/usr/local/bin/yt-dlp/yt_dlp/networking/common.py", line 340, in send return self._send(request) File "/usr/local/bin/yt-dlp/yt_dlp/networking/_urllib.py", line 403, in _send raise HTTPError(UrllibResponseAdapter(e.fp), redirect_loop='redirect error' in str(e)) from e yt_dlp.networking.exceptions.HTTPError: HTTP Error 404: Not Found During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 1624, in wrapper return func(self, *args, **kwargs) File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 1780, in __extract_info return self.process_ie_result(ie_result, download, extra_info) File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 1839, in process_ie_result ie_result = self.process_video_result(ie_result, download=download) File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 3011, in process_video_result self.process_info(new_info) File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 177, in wrapper return func(self, *args, **kwargs) File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 3267, in process_info sub_files = self._write_subtitles(info_dict, temp_filename) File "/usr/local/bin/yt-dlp/yt_dlp/YoutubeDL.py", line 4359, in _write_subtitles raise DownloadError(msg) yt_dlp.utils.DownloadError: Unable to download video subtitles for 'en': HTTP Error 404: Not Found ```
2hard
Title: Not installing on OS X El Capitan with Python 2.7 Body: EDIT: The problem below was actually triggered by a binary compatible but different Python(Stackless). There is currently a problem on OS X. Actually, this is a cryptography issue. But since I think this package is much more popular, it is probably adequate to report the error here. The cure to this problem is this: ``` brew install openssl env ARCHFLAGS="-arch x86_64" \ LDFLAGS="-L/usr/local/opt/openssl/lib" \ CFLAGS="-I/usr/local/opt/openssl/include" \ pip install cryptography ``` ## <bountysource-plugin> --- Want to back this issue? **[Post a bounty on it!](https://www.bountysource.com/issues/30276887-not-installing-on-os-x-el-capitan-with-python-2-7?utm_campaign=plugin&utm_content=tracker%2F183477&utm_medium=issues&utm_source=github)** We accept bounties via [Bountysource](https://www.bountysource.com/?utm_campaign=plugin&utm_content=tracker%2F183477&utm_medium=issues&utm_source=github). </bountysource-plugin>
1medium
Title: [Question] Would you like to have a recorder for pyppeteer? Body: Hi, I'm Thach - Smart Monkey's author. I have added a functionality to Smart Money for exporting a project to Puppeteer code (jest puppeteer). Here is the video for demo: https://www.youtube.com/watch?v=eBzK85MOo-A In the most of cases, you don't need to write any line of code for creating a test suite. I have one question: would you like to have similar functionality for exporting project to pyppeteer code? If yes, please react :+1: this post! In case there are enough votes (1000), I will add the function! Sincerely, Thach
3misc
Title: DHT22 unable to activate with daemon Body: ## Mycodo Issue Report: - Specific Mycodo Version: 7.4.3 #### Problem Description Please list: - trying to add and activate DHT22 unit - tested the unit seperately and works but seems to run into an error with the mycodo daemon ### Errors Error: Could not activate Input controller with ID 7829a1e3-f8bf-4430-a1e4-04ff0ed4c403: int() argument must be a string, a bytes-like object or a number, not 'NoneType' DAEMON LOG 2019-04-21 13:57:00,148 - mycodo.daemon - WARNING - Input controller with ID 7829a1e3-f8bf-4430-a1e4-04ff0ed4c403 not found 2019-04-21 13:57:23,466 - mycodo.daemon - ERROR - Could not activate Input controller with ID 495f207f-ed95-4f2c-b9d6-3635ea7c4f0f: int() argument must be a string, a bytes-like object or a number, not 'NoneType' Traceback (most recent call last): File "/var/mycodo-root/mycodo/mycodo_daemon.py", line 556, in controller_activate ready, cont_id) File "/var/mycodo-root/mycodo/controller_input.py", line 173, in __init__ self.measure_input = input_loaded.InputModule(self.input_dev) File "/home/pi/Mycodo/mycodo/inputs/dht22.py", line 117, in __init__ self.gpio = int(input_dev.gpio_location) TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType' from line; https://github.com/kizniche/Mycodo/blob/b220ed6f04b9718653e6b8a77ca7f9a4a2e70811/mycodo/mycodo_daemon.py#L564-L569 ### Steps to Reproduce the issue: How can this issue be reproduced? 1. Add DHT to Mycodo using Setup > Data > Input dropdown > DHT22 2. Activate DHT using the Activate button 3. Error thrown up saying; > "Error: Could not activate Input controller with ID 495f207f-ed95-4f2c-b9d6-3635ea7c4f0f: int() argument must be a string, a bytes-like object or a number, not 'NoneType'
1medium
Title: ValueError when unpickling ParentedTree with Python 3.7 or higher Body: While working in Python 3.6, when unpickling a ParentedTree with Python 3.7 or Python 3.8 following ValueError occurs: `ValueError: Can not insert a subtree that already has a parent.` Following example script produces the Error: ```python import pickle from nltk.tree import ParentedTree tree = ParentedTree.fromstring('(S (NN x) (NP x) (NN x))') pickled = pickle.dumps(tree) tree_2 = pickle.loads(pickled) print(tree) print(tree_2) ``` Output of Python 3.6 (working): ``` (S (NN x) (NP x) (NN x)) (S (NN x) (NP x) (NN x)) ``` Output in Python 3.7 / 3.8: ``` Traceback (most recent call last): File "nltk_pickle_test.py", line 7, in <module> tree_2 = pickle.loads(pickled) File "pickletest/venv3.8/lib/python3.8/site-packages/nltk/tree.py", line 1192, in extend self._setparent(child, len(self)) File "pickletest/venv3.8/lib/python3.8/site-packages/nltk/tree.py", line 1358, in _setparent raise ValueError('Can not insert a subtree that already ' 'has a parent.') ValueError: Can not insert a subtree that already has a parent. ``` The error also occurs when saving and loading via a file. Tested with nltk 3.4.5.
2hard
Title: permessage-deflate compression support Body: Official Socket.IO [since 1.4.0](https://socket.io/blog/socket-io-1-4-0/) supports compression via [permessage-deflate (rfc7692)](https://tools.ietf.org/html/rfc7692). What would be needed to support that here? Or is it better to support that perhaps with a middleware or something?
1medium
Title: How do you train custom corpus with bert? Body: I am using a domain specific dataset for text classification. But major of my data points are treated with [UNK] token in Bert. Can I please get help on how to keep my custom corpus tokens?
1medium
Title: !python no longer working in colab Body: !python is not working (for me) in Colab any longer. Fix: Use %run instead of !python in ALL instances. This fixes the issue. Also, if .jpg not working, but sure not using saved version from clipboard in windows which stores as JPG (all caps) --- be sure extension is all lower case.
0easy
Title: [BUG] transform does not work for Fugue DataFrames Body: **Describe the bug** The problem is here https://github.com/fugue-project/fugue/blob/ff004917b48b31796f064cc390e1465efcd6cfd4/fugue/interfaceless.py#L67 **Expected behavior** It should be `result`, otherwise it will just return the original dataframe **Environment (please complete the following information):** - Backend: pandas/dask/ray? - Backend version: - Python version: - OS: linux/windows
1medium
Title: Functionality to resume from checkpoint in `TimeSeriesPredictor` Body: ## Description `MultiModelPredictor.load` allows one to specify `resume=True` to allow you to resume training from a checkpoint. Is there any plan to include similar functionality for `TimeSeriesPredictor.load` and the associated training procedures? Or a way to hack it perhaps. I have a large selection of large time series datasets and I'm interested in training a big global model to predict them. ## References - multi modal [docs](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.load.html) - time series [docs](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.load.html)
1medium
Title: snt.Conv2DTranspose and tf.layers.conv2d_transpose yield different results Body: The sonnet documentation states the about the Conv2DTranspose: > This acts as a light wrapper around the TensorFlow op `tf.nn.conv2d_transpose` > abstracting away variable creation and sharing. ```tf.layers.conv2d_transpose(inputs, filters=64, kernel_size=1, strides=5, padding='valid')``` --> yields shape `(?, 5, 5, 64)` `snt.Conv2DTranspose(64, 1, 5, padding='VALID')(inputs)` --> yields shape `(?, 1, 1, 64)` for `inputs` shape `(?, 1, 1, 218)` Changing the semantics of the called parameters from `input_channels` (tensorflow) to `output_channel` (Sonnet) in the API to me does not state not a 'light' wrapper and either the wording or the code should therefore be adjusted in Sonnet.
1medium
Title: Fix Ivy Failing Test: torch - shape.shape__rmul__ Body:
1medium
Title: Django signal user_logged_in is not always fired when login via login endpoint is performed successfully Body: ### Checklist * [x] I read [Contribution Guidelines](https://github.com/apragacz/django-rest-registration/blob/master/CONTRIBUTING.md#issues) * [x] I searched existing issues before opening this one * [x] This is not a major security issue * [x] I reproduced the bug with the newest version #### Optional checklist * [ ] I attached a PR with a test case reproducing the problem ### Describe the bug This is spin-off from issue #276 For session-based logins, we're using `auth.login()`: https://github.com/apragacz/django-rest-registration/blob/e6421ac9541b683dcb86e8136df39d59c0d5f3b4/rest_registration/api/views/login.py#L103 which in turn fires `user_logged_in` signal: https://github.com/django/django/blob/5e98959d9242c57a55c65847758781f82d386fa4/django/contrib/auth/__init__.py#L152 which will run connected `update_last_login` handler: https://github.com/django/django/blob/9c19aff7c7561e3a82978a272ecdaad40dda5c00/django/contrib/auth/apps.py#L28 However, for token-based logins, we're not using `auth.login()` for obvious reasons. but we neither fire `user_logged_in` signal, which should be fired in that case. The consequence of that is `last_login` field is not updated. ### Expected behavior `user_logged_in` is being fired exactly once when successful login happens using the `LoginView` / `login()` API view. ### Actual behavior `user_logged_in` is being fired only when session-based login happens. ### Steps to reproduce Steps to reproduce the behavior: Provide a token-only login based configuration ### Diagnostic info n/a ### Additional context n/a
1medium
Title: Namespace error handlers broken when propagate_exceptions=True Body: ### Details When an `errorhandler` is registered on a namespace, and `PROPAGATE_EXCEPTIONS` is set to `True` in the Flask app, then the namespace handler will not catch the exceptions. It looks like this is due to the `handle_error` function not checking the error handlers that exist in any child classes. ### **Code** `api.py:653` ```python if ( not isinstance(e, HTTPException) and current_app.propagate_exceptions and not isinstance(e, tuple(self.error_handlers.keys())) ): ``` Should check for potential error handlers in the class and child classes: ```python if ( not isinstance(e, HTTPException) and current_app.propagate_exceptions and not isinstance(e, tuple(self._own_and_child_error_handlers.keys())) ): ``` ### **Repro Steps** (if applicable) 1. Set `propagate_exceptions=True` in the app 2. Create a namespace, and register it to the API 3. Add a `@namespace.errorhandler` function 4. Raise error in a route, which won't get caught by namespace's error handler ### **Expected Behavior** Error handler defined on a namespace should still catch exceptions when `propagate_exceptions` is `True`.
1medium
Title: Segfault when iterating on a transform-mapped Vector in a thread Body: <!-- In the following, please describe your issue in detail! --> <!-- If some sections do not apply, just remove them. --> ### Short description Take a Vector, map it with a transform, put it in a _threading_ Thread, iterate, and BOOM. ### Code to reproduce <!-- Please provide a minimal working example that reproduces the issue in the code block below. Ideally, this should be a full example someone else could run without additional setup. --> ```python import pyqtgraph as pg import threading def do_it(): xform = pg.SRTTransform3D() v = xform.map(pg.Vector((0, 0, 0))) tuple(v) pg.mkQApp() threading.Thread(target=do_it).start() ``` ### Expected behavior <!-- What should happen? --> ### Real behavior <!-- What happens? --> `SIGSEGV` ### Tested environment(s) * PyQtGraph version: 0.13.8dev0 * Qt Python binding: PyQt5 5.15.10 Qt 5.15.2 * Python version: 3.11 * NumPy version: 1.26.3 * Operating system: linux * Installation method: git ### Additional context Workaround: use a `QThread`, and this isn't an issue.
2hard
Title: word wrap : the text box should be set to word wrap by default Body: ## Classification:UI/Usability ## Reproducibility: Always ## Version AutoKey version: 0.95.7 Used GUI (Gtk, Qt, or both): Gtk If the problem is known to be present in more than one version, please list all of those. Installed via: (PPA, pip3, …). Linux Distribution: Linux Mint Cinnamon 19.3 ## Summary There is a big box, but sentences appear as a long text string. Word wrap would allow it to be easier edit. ## Steps to Reproduce (if applicable) - type long sentence - I do that ## Expected Results - should be able to see everything that have typed. ## Actual Results - Instead, this happens. :(I cannot see the rest of the sentence, until hit ENTER
0easy
Title: Tensorboard crashes when a scalar is added to a histogram Body: `tensorboardX==1.6.0` See title, eg tensorboard will report: ``` ValueError: can only convert an array of size 1 to a Python scalar E0117 23:32:28.772649 Thread-1 _internal.py:88] Error on request: Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/werkzeug/serving.py", line 270, in run_wsgi execute(self.server.app) File "/usr/local/lib/python3.7/site-packages/werkzeug/serving.py", line 258, in execute application_iter = app(environ, start_response) File "/usr/local/lib/python3.7/site-packages/tensorboard/backend/application.py", line 307, in __call__ return self.data_applications[clean_path](environ, start_response) File "/usr/local/lib/python3.7/site-packages/werkzeug/wrappers.py", line 308, in application resp = f(*args[:-2] + (request,)) File "/usr/local/lib/python3.7/site-packages/tensorboard/plugins/scalar/scalars_plugin.py", line 199, in scalars_route (body, mime_type) = self.scalars_impl(tag, run, experiment, output_format) File "/usr/local/lib/python3.7/site-packages/tensorboard/plugins/scalar/scalars_plugin.py", line 161, in scalars_impl for tensor_event in tensor_events] File "/usr/local/lib/python3.7/site-packages/tensorboard/plugins/scalar/scalars_plugin.py", line 161, in <listcomp> for tensor_event in tensor_events] ValueError: can only convert an array of size 1 to a Python scalar ```
2hard
Title: Update the tests so that they run pytest (move to "meta-testing") Body: Basically we should copy what is done in [pytest-harvest](https://smarie.github.io/python-pytest-harvest/). Note that the continuous integration configuration should also be updated so as to run the correct matrix of pytest version x python version
1medium
Title: Pass dict to provider Body: Hi, I have a dict in my Configuration that I want to pass to a provider but I can't figure out how to do it. ``` container = Container() container.wire(packages=[__name__]) container.configuration.from_dict({ "provider1": { "config": { "key1": "value1", "key2": "value2" } } }) ``` ``` class Container(containers.DeclarativeContainer): configuration = providers.Configuration() provider1 = providers.Singleton( Provider1, config=configuration.provider1.config # I want to pass this as a dict ) ```
1medium
Title: KEEP_ALIVE doesn't work from the 21.3 sanic version Body: ### Is there an existing issue for this? - [X] I have searched the existing issues ### Describe the bug When you put in the sanic config keep_alive to false, it doesn't work you can see in all responses "Connection": "keep-alive". I tryed with version 20.12.7 and sanic works correctly but in the version 21.3.0 it doesn't works ### Code snippet ```python import asyncio import uvloop from sanic import Sanic from sanic.response import text asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) loop = asyncio.get_event_loop() app = Sanic('appname') @app.get('/status') async def status_handler(request): return text("", status=200) def main(): app.config.KEEP_ALIVE = False server = app.run(host='0.0.0.0', port=8000) asyncio.run(server, loop=loop) if __name__ == '__main__': main() ``` ### Expected Behavior I expect that the header "connection" of the response should be close if you put the config of KEEP_ALIVE=false ### How do you run Sanic? As a script (`app.run` or `Sanic.serve`) ### Operating System Linux ### Sanic Version >=21.3.0 ### Additional context _No response_
1medium
Title: A user can change its password without specifying the current one Body: It should not be allowed. # Impacted versions * Modoboa: 2.0.4
1medium
Title: Support .env files for configuration Body: ### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar issues. - [x] I added a very descriptive title to this issue. - [x] I have provided sufficient information below to help reproduce this issue. ### Summary Configuration options provided through the environment are ignored by streamlit and default are used instead. This directly contradicts intended behaviour: - As per described the [configuration options](https://docs.streamlit.io/develop/concepts/configuration/options) - As per described per option when running `streamlit run --help` ### Reproducible Code Example ```Python `.env` .env # ? Streamlit STREAMLIT_GLOBAL_DEVELOPMENT_MODE=False ## ? Server variables STREAMLIT_SERVER_HOST='localhost' STREAMLIT_SERVER_PORT=80 STREAMLIT_SERVER_MAX_UPLOAD_SIZE=1000 STREAMLIT_SERVER_ENABLE_STATIC_SERVING=True ## ? Theme variables STREAMLIT_BROWSER_SERVER_ADDRESS='localhost' STREAMLIT_BROWSER_SERVER_PORT=80 STREAMLIT_BROWSER_GATHER_USAGE_STATS=False ## ? Theme variables STREAMLIT_THEME_BASE="dark" STREAMLIT_THEME_PRIMARY_COLOR="#5c49e1" STREAMLIT_THEME_BACKGROUND_COLOR="#0E1117" STREAMLIT_THEME_SECONDARY_BACKGROUND_COLOR="#373e75" STREAMLIT_THEME_TEXT_COLOR="#FAFAFA" `main.py` import os import streamlit as st from dotenv import load_dotenv load_dotenv() options = [ "global.developmentMode", "server.address", "server.port", "server.maxUploadSize", "server.enableStaticServing", "browser.serverAddress", "browser.serverPort", "browser.gatherUsageStats", "theme.base", "theme.primaryColor", "theme.backgroundColor", "theme.secondaryBackgroundColor", "theme.textColor" ] st.header("Variables matching `STREAMLIT_*` in ENV") env_matches = [] for entry in os.environ: if "STREAMLIT" in entry: env_matches.append(f"{entry}={os.getenv(entry)}") st.write(env_matches) st.header("Used variables, as read by `st.get_option()`") option_matches = [] for option in options: option_matches.append(f"{option}={st.get_option(option)}") st.write(option_matches) ``` ### Steps To Reproduce With the folder structure: ``` /error_to_reproduce /main.py /.env ``` 1. Create folder and step into it: `mkdir error_to_reproduce && cd error_to_reproduce` 2. Copy contents under `.env` to `error_to_reproduce/.env` and `main.py` to `error_to_reproduce/main.py` 3. Create a `virtualenv` and activate it: `python -m venv venv && source venv/bin/activate` 4. Install dependencies: `pip3 install streamlit python-dotenv` 5. Execute application `streamlit run main.py` ### Expected Behavior The expected behaviour would be for streamlit to use the supplied environment variables: - As per described in the [configuration options](https://docs.streamlit.io/develop/concepts/configuration/options) - As per described per option when running `streamlit run --help` - See environment examples in image: ![Image](https://github.com/user-attachments/assets/32188d24-daa4-4fe1-b3ed-2dab54864757) ### Current Behavior The current behaviour is that the configuration options set in the environment are ignored for defaults. See example using the provided reproducible steps below. ![Image](https://github.com/user-attachments/assets/8210a131-939e-4661-88b2-0a1e7813aa5e) ### Is this a regression? - [ ] Yes, this used to work in a previous version. ### Debug info - Streamlit version: `1.41.1` - Python DotEnv version: `1.0.1` - Python version: `3.10.12` - Operating System: Linux - Distribution `Pop!_OS 22.04 LTS x86_64` - Kernel: `6.9.3-76060903-generic` - Browser: Firefox `134.0.2` ### Additional Information _No response_
1medium
Title: [🐛 BUG] Scenario Selector: "Delete" button is active/inactive when it shouldn't Body: ### What went wrong? 🤔 "Delete" button in scenario selector (when editing the scenario) is active when it should be inactive and vice-versa. ![image](https://github.com/user-attachments/assets/e923dd3d-4ee2-4c04-b26d-1f9a8c2f344e) ### Expected Behavior They should be active (clickable) when the scenario can be deleted. ### Steps to Reproduce Issue Run this code, create a scenario and edit the scenario in the scenario selector. You should see the "Delete" button. ```python from taipy import Config, Frequency import taipy as tp import pandas as pd import datetime as dt data = pd.read_csv( "https://raw.githubusercontent.com/Avaiga/taipy-getting-started-core/develop/src/daily-min-temperatures.csv" ) # Normal function used by Taipy def predict( historical_temperature: pd.DataFrame, date_to_forecast: dt.datetime ) -> float: print(f"Running baseline...") historical_temperature["Date"] = pd.to_datetime(historical_temperature["Date"]) historical_same_day = historical_temperature.loc[ (historical_temperature["Date"].dt.day == date_to_forecast.day) & (historical_temperature["Date"].dt.month == date_to_forecast.month) ] return historical_same_day["Temp"].mean() # Configuration of Data Nodes historical_temperature_cfg = Config.configure_data_node("historical_temperature") date_to_forecast_cfg = Config.configure_data_node("date_to_forecast") predictions_cfg = Config.configure_data_node("predictions", storage_type="json") # Configuration of tasks predictions_cfg = Config.configure_task( "predict", predict, [historical_temperature_cfg, date_to_forecast_cfg], predictions_cfg, ) # Configuration of scenario scenario_cfg = Config.configure_scenario( id="my_scenario", task_configs=[predictions_cfg], frequency=Frequency.MONTHLY ) if __name__ == "__main__": # Run of the Core tp.Core().run() # Creation of the scenario and execution scenario = tp.create_scenario(scenario_cfg) scenario.historical_temperature.write(data) scenario.date_to_forecast.write(dt.datetime.now()) tp.submit(scenario) scenario_md = """ <|{scenario}|scenario_selector|> <|{scenario}|scenario|> """ tp.Gui(scenario_md).run() ``` ### Screenshots ![image](https://github.com/user-attachments/assets/094d2c5d-6c38-4ee3-833f-97b3bbd86a9f) ### Version of Taipy 4.0.0 ### Acceptance Criteria - [ ] Ensure new code is unit tested, and check code coverage is at least 90%. - [ ] Create related issue in taipy-doc for documentation and Release Notes. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)ue (optional)
1medium
Title: Segmentation Fault - wait_signal.wait & _WaitWidgetContextManager.__exit__ Body: Hi, With python 3.8 I am getting a segmentation fault at some wait functions when using macOS and WIndows. I could not reproduce it with Linux. With Python 3.7 and 2.7 everything works fine for all OS flavors. ## Versions: OS: macOS 10.14.6 Qt: 5.12.5 (conda-forge) PyQt: 5.12.3 (conda-forge) pytest-qt: master pytest: 5.4.1 (conda-forge) ## Stacktrace - wait_signal.wait For this particular test I am using `qtbot.waitSignal`. ``` Fatal Python error: Segmentation fault Current thread 0x00000001098155c0 (most recent call first): File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pytestqt/wait_signal.py", line 51 in wait File "/Users/slepicka/sandbox/git-slaclab/pydm-git/pydm/tests/widgets/test_rules.py", line 97 in test_rules_full File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/python.py", line 184 in pytest_pyfunc_call File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/python.py", line 1479 in runtest File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/runner.py", line 135 in pytest_runtest_call File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/runner.py", line 217 in <lambda> File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/runner.py", line 244 in from_call File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/runner.py", line 216 in call_runtest_hook File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/runner.py", line 186 in call_and_report File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/runner.py", line 100 in runtestprotocol File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/runner.py", line 85 in pytest_runtest_protocol File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/main.py", line 272 in pytest_runtestloop File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/main.py", line 247 in _main File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/main.py", line 191 in wrap_session File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/main.py", line 240 in pytest_cmdline_main File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/Users/slepicka/mc/envs/py38/lib/python3.8/site-packages/_pytest/config/__init__.py", line 124 in main File "run_tests.py", line 21 in <module> Segmentation fault: 11 ``` ## Stacktrace.- _WaitWidgetContextManager.__exit__ In this case my test was using `qtbot.waitExposed`. ``` Current thread 0x000000010f0e35c0 (most recent call first): File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pytestqt/qtbot.py", line 723 in __exit__ File "/Users/runner/runners/2.165.2/work/1/s/pydm/tests/widgets/test_drawing.py", line 508 in test_pydmdrawingline_draw_item File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/python.py", line 184 in pytest_pyfunc_call File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/python.py", line 1479 in runtest File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/runner.py", line 135 in pytest_runtest_call File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/runner.py", line 217 in <lambda> File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/runner.py", line 244 in from_call File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/runner.py", line 216 in call_runtest_hook File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/runner.py", line 186 in call_and_report File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/runner.py", line 100 in runtestprotocol File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/runner.py", line 85 in pytest_runtest_protocol File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/main.py", line 272 in pytest_runtestloop File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/main.py", line 247 in _main File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/main.py", line 191 in wrap_session File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/main.py", line 240 in pytest_cmdline_main File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/callers.py", line 187 in _multicall File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 84 in <lambda> File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/manager.py", line 93 in _hookexec File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/pluggy/hooks.py", line 286 in __call__ File "/usr/local/miniconda/envs/test-environment-3.8/lib/python3.8/site-packages/_pytest/config/__init__.py", line 124 in main File "run_tests.py", line 21 in <module> /Users/runner/runners/2.165.2/work/_temp/7e5f89e4-e30b-455e-83d2-e2695b1f105e.sh: line 2: 955 Segmentation fault: 11 ```
2hard
Title: Multi-file upload: All files are uploaded to same folder (subfolders are not created) Body: As the title says, when using multi-file upload functionality, all the uploaded files are uploaded into same folder. The uploader does not create subfolders. - Affected dash-uploader version: 0.7.0dev 279ee87 ### Todo - [ ] Check if this can be fixed on Chrome - [ ] Check if this can be fixed on other browsers - [ ] If not, check if an alert could be shown to users with unsupported browsers
1medium
Title: 监听群消息时会报错 Body: Exception in thread _listen: Traceback (most recent call last): File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/bot.py", line 504, in _listen msg = Message(self.core.msgList.get(timeout=0.5), self) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/messages/message.py", line 49, in __init__ setattr(self, 'reply' + method, getattr(self.chat, 'send' + method)) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/messages/message.py", line 319, in chat return self.sender File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/messages/message.py", line 329, in sender return self._get_chat_by_user_name(self.raw.get('FromUserName')) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/messages/message.py", line 379, in _get_chat_by_user_name _chat = match_in_chats(self.bot.groups()) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/utils/misc.py", line 96, in wrapped ret = Groups(ret) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/chats/groups.py", line 35, in __init__ if group.bot.self in group: File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/chats/group.py", line 42, in __contains__ for member in self.members: File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/chats/group.py", line 36, in members raw_member_list() or raw_member_list(True) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/chats/group.py", line 30, in raw_member_list self.update_group() File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/chats/group.py", line 112, in update_group super(Group, self).__init__(do(), self.bot) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/utils/misc.py", line 67, in wrapped ret = func(*args, **kwargs) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/wxpy/api/chats/group.py", line 110, in do return self.bot.core.update_chatroom(self.user_name, members_details) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/itchat/components/contact.py", line 74, in update_chatroom update_local_chatrooms(self, chatroomList) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/itchat/storage.py", line 11, in _contact_change return fn(core, *args, **kwargs) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/itchat/components/contact.py", line 154, in update_local_chatrooms 'UserName', oldChatroom['ChatRoomOwner']).get('Uin', 0) AttributeError: 'NoneType' object has no attribute 'get'
2hard
Title: feature request: Aws eks add aws-ebs-csi-driver Body: ### Is there an existing issue for this? - [x] I have searched the existing issues ### Feature description We need this EKS add-on support as Prometheus will not work without this. As per documentation from k8s 1.23 Prometheus needs aws-ebs-csi-driver to be installed in eks to work. ### 🧑‍💻 Implementation _No response_ ### Anything else? _No response_
1medium
Title: Mutually Exclusive Traits Body: #### The problem Traits are an awesome feature, but sometimes I build a factory where there are several traits that should never be used with each other. While I understand that it is an up to the user thing to make sure that people don't do something dumb with their factories and traits and documentation should be present to prevent people from using them incorrectly, a functional solution would also be great. #### Proposed solution Allow setting traits to False inside of each other. I believe this currently kind of exists, but if you set 2 different traits to false inside of each other, the execution of the factory throws an error indicating that there is a loop in the trait calls. I simply suggest an update to the logic of that check that can detect when a trait is negating another one instead of activating it, and allow that through, overriding whatever was placed on the actual factory call. #### Extra notes The traits are executed in alphabetical order as normal, and the value of a trait passed in as a kwarg on the factory call is overriden by the value from the other trait, for example the following factory setting the type of user to 'A' every time with the call made below because the admin trait is evaluated first and prevents the evaluation of the user trait. Sample factory ``` class UserFactory(ModelFactory) type = factory.LazyAttribute(lambda: choice('A', 'U')) class Params: admin = factory.Trait( type='A', user=False ) user = factory.Trait( type='U', admin=False ) ``` Sample call ``` user = UserFactory(user=True, admin=True) user.type == 'A' ```
1medium
Title: tiered proxy documentation or coding error involving 'None' Body: Please scroll down to the tiered proxy section on [this](https://crawlee.dev/python/docs/guides/proxy-management) page. Both tabbed code examples include the following: ``` # No proxy tier. (Not needed, but optional in case you do not want to use any proxy on lowest tier.) [None], ``` However, the Pydantic validator rejects the None value in the list. Something needs to be fixed. I’m not sure whether the sample code in the documentation is incorrect or if the validation code has an issue. Here is a related [closed issue](https://github.com/apify/crawlee-python/issues/687). Sample code: ``` import asyncio from crawlee.proxy_configuration import ProxyConfiguration async def config_proxy() -> ProxyConfiguration: # Create and return a ProxyConfiguration object. proxy_configuration = ProxyConfiguration( tiered_proxy_urls=[ # No proxy tier. (Not needed, but optional in case you do not want to use any proxy on lowest tier.) [None], # lower tier, cheaper, preferred as long as they work ['http://example.com:8080', 'https://example.com:8080'], # higher tier, more expensive, used as a fallback ['http://domain.com:8080', 'https://domain.com:8080'], ] ) return proxy_configuration asyncio.run(config_proxy()) ``` Terminal output: ``` /Users/matecsaj/PycharmProjects/wat-crawlee/venv/bin/python /Users/matecsaj/Library/Application Support/JetBrains/PyCharm2024.3/scratches/scratch_1.py Traceback (most recent call last): File "/Users/matecsaj/Library/Application Support/JetBrains/PyCharm2024.3/scratches/scratch_1.py", line 19, in <module> asyncio.run(config_proxy()) ~~~~~~~~~~~^^^^^^^^^^^^^^^^ File "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/asyncio/runners.py", line 194, in run return runner.run(main) ~~~~~~~~~~^^^^^^ File "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^ File "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/asyncio/base_events.py", line 720, in run_until_complete return future.result() ~~~~~~~~~~~~~^^ File "/Users/matecsaj/Library/Application Support/JetBrains/PyCharm2024.3/scratches/scratch_1.py", line 6, in config_proxy proxy_configuration = ProxyConfiguration( tiered_proxy_urls=[ ...<6 lines>... ] ) File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/crawlee/proxy_configuration.py", line 103, in __init__ [[URL(url) for url in tier if self._url_validator.validate_python(url)] for tier in tiered_proxy_urls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/pydantic/type_adapter.py", line 412, in validate_python return self.validator.validate_python( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ object, ^^^^^^^ ...<3 lines>... allow_partial=experimental_allow_partial, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ pydantic_core._pydantic_core.ValidationError: 1 validation error for function-wrap[wrap_val()] URL input should be a string or URL [type=url_type, input_value=None, input_type=NoneType] For further information visit https://errors.pydantic.dev/2.10/v/url_type Process finished with exit code 1 ```
1medium
Title: Traning process get stuck at the first and fails to lauch Body: Hi there, I am using `Ubuntu 18.04` `Tensorflow 1.15` `Cuda 10.0` `cuDNN 7.6.5` The `tf.test.is_gpu_available()` returns True. The whole program just gets stuck when I try to train the model no matter how small the model is. Sometime after waiting for minutes I got the exception `InternalError: (0) Internal: Blass GEMM launch failed` I know this error occurs when there are multiple sessions running at the same time but I just have exact one session. I have been tortured for days, can someone give me some advice on it?
2hard
Title: Getting CORS Error Body: When I run the code there is a cors error shown as below: Access to fetch at 'http://127.0.0.1:8080/api/cancel' from origin 'http://0.0.0.0:3000' has been blocked by CORS policy: The request client is not a secure context and the resource is in more-private address space `local`.
1medium
Title: [Bug] SyntaxError: invalid syntax after installing the library Body: I'm getting SyntaxError: invalid syntax after installing the library Traceback (most recent call last): File "script.py", line 1, in <module> import twelvedata File "/Users/work/Library/Python/2.7/lib/python/site-packages/twelvedata/__init__.py", line 3, in <module> from .client import TDClient File "/Users/work/Library/Python/2.7/lib/python/site-packages/twelvedata/client.py", line 2, in <module> from .endpoints import ( File "/Users/work/Library/Python/2.7/lib/python/site-packages/twelvedata/endpoints.py", line 113 def get_symbol(symbol) -> (str, bool): ^ SyntaxError: invalid syntax **To Reproduce** Steps to reproduce the behavior: 1- pip install twelvedata 2- in script.py: from twelvedata import TDClient 3- run python script.py
1medium
Title: Print in different Line in Zeppelin Body: - [x] I have visited the [source website], and in particular read the [known issues] - [x] I have searched through the [issue tracker] for duplicates - [x] I have mentioned version numbers, operating system and environment, where applicable: ```python import tqdm, sys print(tqdm.__version__, sys.version, sys.platform) >>> 4.24.0 3.5.2 (default, Nov 23 2017, 16:37:01) >>> [GCC 5.4.0 20160609] linux ``` The issue is the library does not work in zeppelin (>= 0.7). Indeed, it just write each progress bar in a differerent line. I should have mentioned that we can set the progress bar manually in zeppelin 0.8.0 likes[ this](https://github.com/apache/zeppelin/pull/2454). [source website]: https://github.com/tqdm/tqdm/ [known issues]: https://github.com/tqdm/tqdm/#faq-and-known-issues [issue tracker]: https://github.com/tqdm/tqdm/issues?q=
1medium
Title: Classifier Classes do not have unified interfaces Body: .classes напр у бертклассифаера BertClassifier and KerasClassifier do not share the list of public fields. (e.g. `.classes` field of classifier)
1medium
Title: Add support for PMTiles Body: The source code is adapted from [folium-pmtiles](https://github.com/jtmiclat/folium-pmtiles). For now, it only supports folium. It would be great to support ipyleaflet as well. ```python import folium from folium.elements import JSCSSMixin from folium.map import Layer from jinja2 import Template class PMTilesMapLibreLayer(JSCSSMixin, Layer): """Based of https://github.com/python-visualization/folium/blob/56d3665fdc9e7280eae1df1262450e53ec4f5a60/folium/plugins/vectorgrid_protobuf.py """ _template = Template( """ {% macro script(this, kwargs) -%} let protocol = new pmtiles.Protocol(); maplibregl.addProtocol("pmtiles", protocol.tile); {{ this._parent.get_name() }}.createPane('overlay'); {{ this._parent.get_name() }}.getPane('overlay').style.zIndex = 650; {{ this._parent.get_name() }}.getPane('overlay').style.pointerEvents = 'none'; var {{ this.get_name() }} = L.maplibreGL({ pane: 'overlay', style: {{ this.style|tojson}} }).addTo({{ this._parent.get_name() }}); {%- endmacro %} """ ) default_css = [ ("maplibre_css", "https://unpkg.com/maplibre-gl@2.4.0/dist/maplibre-gl.css") ] default_js = [ ("pmtiles", "https://unpkg.com/pmtiles@2.7.1/dist/index.js"), ("maplibre-lib", "https://unpkg.com/maplibre-gl@2.2.1/dist/maplibre-gl.js"), ( "maplibre-leaflet", "https://unpkg.com/@maplibre/maplibre-gl-leaflet@0.0.19/leaflet-maplibre-gl.js", ), ] def __init__(self, url, layer_name=None, style=None, **kwargs): self.layer_name = layer_name if layer_name else "PMTilesVector" super().__init__(name=self.layer_name, **kwargs) self.url = url self._name = "PMTilesVector" if style is not None: self.style = style else: self.style = {} m = folium.Map(location=[43.7798, 11.24148], zoom_start=13) pmtiles_url = "https://open.gishub.org/data/pmtiles/protomaps_firenze.pmtiles" pmtiles_layer = PMTilesMapLibreLayer( "folium_layer_name", overlay=True, style={ "version": 8, "sources": { "example_source": { "type": "vector", "url": "pmtiles://" + pmtiles_url, "attribution": '<a href="https://protomaps.com">Protomaps</a> © <a href="https://openstreetmap.org/copyright">OpenStreetMap</a>', } }, "layers": [ { "id": "buildings", "source": "example_source", "source-layer": "landuse", "type": "fill", "paint": {"fill-color": "steelblue"}, }, { "id": "roads", "source": "example_source", "source-layer": "roads", "type": "line", "paint": {"line-color": "black"}, }, ], }, ) m.add_child(pmtiles_layer) folium.LayerControl().add_to(m) m ``` ![image](https://github.com/opengeos/leafmap/assets/5016453/b688540f-6e05-448c-bbb3-c2edba0b8f50) ****
1medium
Title: I have meet an unknown error when I try the mnist nas example. Body: **Describe the issue**: [2022-04-13 19:34:12] INFO (nni.experiment/MainThread) Creating experiment, Experiment ID: cau4bj2g [2022-04-13 19:34:12] INFO (nni.experiment/MainThread) Connecting IPC pipe... [2022-04-13 19:34:13] INFO (nni.experiment/MainThread) Starting web server... [2022-04-13 19:34:15] INFO (nni.experiment/MainThread) Setting up... [2022-04-13 19:34:17] INFO (nni.runtime.msg_dispatcher_base/Thread-3) Dispatcher started [2022-04-13 19:34:17] INFO (nni.retiarii.experiment.pytorch/MainThread) Web UI URLs: http://169.254.240.252:8081 http://169.254.175.234:8081 http://169.254.108.7:8081 http://169.254.237.19:8081 http://192.168.195.1:8081 http://192.168.75.1:8081 http://192.168.160.7:8081 http://169.254.27.48:8081 http://127.0.0.1:8081 [2022-04-13 19:34:17] INFO (nni.retiarii.experiment.pytorch/MainThread) Start strategy... [2022-04-13 19:34:21] INFO (root/MainThread) Successfully update searchSpace. [2022-04-13 19:34:21] INFO (nni.retiarii.strategy.bruteforce/MainThread) Random search running in fixed size mode. Dedup: on. Exception in thread Thread-3: Traceback (most recent call last): File "D:\anaconda_home\envs\nni_test\lib\threading.py", line 916, in _bootstrap_inner self.run() File "D:\anaconda_home\envs\nni_test\lib\threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "D:\anaconda_home\envs\nni_test\lib\site-packages\nni\runtime\msg_dispatcher_base.py", line 51, in run command, data = receive() File "D:\anaconda_home\envs\nni_test\lib\site-packages\nni\runtime\protocol.py", line 61, in receive header = _in_file.read(16) OSError: [Errno 22] Invalid argument **Environment**: - NNI version: 2.6.1 - Training service (local|remote|pai|aml|etc): local - Client OS:windows - Server OS (for remote mode only): - Python version:3.6 - PyTorch/TensorFlow version:1.10 - Is conda/virtualenv/venv used?:is - Is running in Docker?: **<html> <body> absl-py | 1.0.0 |   -- | -- | -- bzip2 | 1.0.8 |   ca-certificates | 2021.10.8 |   cachetools | 4.2.4 |   certifi | 2021.10.8 |   charset-normalizer | 2.0.12 |   cloudpickle | 2.0.0 |   colorama | 0.4.4 |   contextlib2 | 21.6.0 |   cudatoolkit | 9.2.148 |   dill | 0.3.4 |   filelock | 3.3.2 |   google-auth | 2.6.2 |   google-auth-oauthlib | 0.4.6 |   grpcio | 1.45.0 |   idna | 3.3 |   importlib-resources | 5.4.0 |   json-tricks | 3.15.5 |   libffi | 3.4.2 |   libzlib | 1.2.11 |   markdown | 3.3.6 |   networkx | 2.5.1 |   nni | 2.6.1 |   numpy | 1.19.3 |   oauthlib | 3.2.0 |   openssl | 3.0.2 |   pandas | 1.1.5 |   pillow | 8.4.0 |   pip | 21.3.1 |   protobuf | 3.19.4 |   pyasn1 | 0.4.8 |   pyasn1-modules | 0.2.8 |   python | 3.6.15 |   python-dateutil | 2.8.2 |   pytz | 2022.1 |   requests | 2.27.1 |   requests-oauthlib | 1.3.1 |   rsa | 4.8 |   schema | 0.7.5 |   scipy | 1.5.4 |   setuptools | 59.6.0 |   six | 1.16.0 |   sqlite | 3.38.2 |   tensorboard | 2.8.0 |   tensorboard-data-server | 0.6.1 |   tensorboard-plugin-wit | 1.8.1 |   thop | 0.0.31-2005241907 |   tk | 8.6.12 |   torch | 1.10.0+cpu |   torchaudio | 0.10.0+cu113 |   torchvision | 0.11.0+cpu |   tqdm | 4.63.0 |   typeguard | 2.13.3 |   typing-extensions | 4.1.1 |   ucrt | 10.0.20348.0 |   urllib3 | 1.26.9 |   vc | 14.2 |   vs2015_runtime | 14.29.30037 |   wcwidth | 0.2.5 |   werkzeug | 2.0.3 |   wheel | 0.37.1 |   xz | 5.2.5 |   zipp | 3.6.0 |   </body> </html>** **Configuration**: - Experiment config (remember to remove secrets!): - Search space: **Log message**: - nnimanager.log: [2022-04-13 20:17:33] INFO (NNIManager) Trial job x70fi status changed from WAITING to RUNNING [2022-04-13 20:17:41] INFO (NNIManager) Trial job x70fi status changed from RUNNING to FAILED - dispatcher.log: [2022-04-13 20:16:58] INFO (nni.experiment/MainThread) Creating experiment, Experiment ID: bntk1sfo [2022-04-13 20:16:58] INFO (nni.experiment/MainThread) Connecting IPC pipe... [2022-04-13 20:17:00] INFO (nni.experiment/MainThread) Starting web server... [2022-04-13 20:17:02] INFO (nni.experiment/MainThread) Setting up... [2022-04-13 20:17:04] INFO (nni.runtime.msg_dispatcher_base/Thread-3) Dispatcher started [2022-04-13 20:17:04] INFO (nni.retiarii.experiment.pytorch/MainThread) Web UI URLs: http://169.254.240.252:8081 http://169.254.175.234:8081 http://169.254.108.7:8081 http://169.254.237.19:8081 http://192.168.195.1:8081 http://192.168.75.1:8081 http://192.168.160.7:8081 http://169.254.27.48:8081 http://127.0.0.1:8081 [2022-04-13 20:17:04] INFO (nni.retiarii.experiment.pytorch/MainThread) Start strategy... [2022-04-13 20:17:08] INFO (root/MainThread) Successfully update searchSpace. [2022-04-13 20:17:08] INFO (nni.retiarii.strategy.bruteforce/MainThread) Random search running in fixed size mode. Dedup: on. - nnictl stdout and stderr: stdout: ERROR: C:\Users\suntao\nni-experiments\bntk1sfo\log\nnictl_stdout.log does not exist! stderr: ERROR: C:\Users\suntao\nni-experiments\bntk1sfo\log\nnictl_stderr.log does not exist! <!-- Where can you find the log files: LOG: https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/HowToDebug.md#experiment-root-director STDOUT/STDERR: https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/Nnictl.md#nnictl%20log%20stdout --> **How to reproduce it?**:
2hard
Title: 在RealESRNet基础上finetune RealESRGAN 随着迭代次数的增加 出现了模式崩塌? Body: 您好, 我在训练GAN模型的过程中,随着迭代次数的增多,产生的超分图片效果出现了比较严重的色彩的改变,请问训练GAN模型的参数是默认就是repo里面的那个yml文件中的吗? 不知道您训练的过程中是否遇到过类似的问题。 **结果展示** 低分辨率: ![5](https://github.com/xinntao/Real-ESRGAN/assets/26103763/e26c072b-7ef0-44ae-926b-2065021a65f5) fintune 10000 iterration: ![5_ESRGAN](https://github.com/xinntao/Real-ESRGAN/assets/26103763/8bceb72e-4f14-407a-9f75-723d492562b7) finetune 100000 iteration: ![5_ESRGAN](https://github.com/xinntao/Real-ESRGAN/assets/26103763/3107837b-b890-437f-8176-c13ae2257ace) fintune 260000 iteration: ![5_ESRGAN](https://github.com/xinntao/Real-ESRGAN/assets/26103763/f1e45057-4358-4cf1-a756-d8cb211549a3)
2hard
Title: Include evaluation metrics of officially-supported models in model cards Body: I think it'd be useful for the model cards of officially-supported models to report the evaluation metrics / model performance. I know I can check for myself with `allennlp evaluate`, it's nice to have this sort of information on-hand (e.g., in this case I want to see whether a model is ~ the published performance)
0easy
Title: TypeScript / JavaScript Support Body: ### Description Hello, I recently discovered marimo and am impressed with its reactive programming model and improved notebook experience. However, our team heavily relies on TypeScript alongside Python in our development workflow. Currently, we use Jupyter Notebooks with the [tslab TypeScript kernel](https://github.com/yunabe/tslab), which has been essential for our development process. After reviewing the documentation, I couldn't find any information about support for other programming languages, particularly TypeScript. I understand this might be architecturally challenging given marimo's current design, but I believe TypeScript support would be valuable for several reasons. I'd appreciate any insights into whether this kind of language support is possible within marimo's architecture, and if so, whether it's being considered for future development. Would love to hear your thoughts on this potential feature. Happy to provide more details about our use case if helpful. ### Suggested solution ### Support JavaScript / Typescript ## Business Impact & Use Cases: 1. Supports teams transitioning from Jupyter+tslab who want to leverage marimo's improved features. 2. Allows for prototyping and testing TypeScript code in the same interactive environment as Python. 3. Facilitates documentation and knowledge sharing in mixed Python/TypeScript codebases. ### Alternative _No response_ ### Additional context Technical Context: - Current solution: Jupyter Notebooks + tslab TypeScript kernel - Desired: Similar TypeScript execution capabilities within marimo's reactive environment
2hard
Title: [Bug]: ROCm fail to build due to compilation error of `moe_wna16.cu` Body: ### Your current environment <details> <summary>The output of `python collect_env.py`</summary> ```text INFO 03-12 09:10:06 [__init__.py:256] Automatically detected platform rocm. Collecting environment information... PyTorch version: 2.7.0a0+git6c0e746 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 6.3.42133-1b9c17779 OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 18.0.0git (https://github.com/RadeonOpenCompute/llvm-project roc-6.3.1 24491 1e0fda770a2079fbd71e4b70974d74f62fd3af10) CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.12.9 (main, Feb 5 2025, 08:49:00) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-116-generic-x86_64-with-glibc2.35 GPU models and configuration: AMD Instinct MI300X (gfx942:sramecc+:xnack-) Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: 6.3.42133 MIOpen runtime version: 3.3.0 Is XNNPACK available: True PYTORCH_ROCM_ARCH=gfx942 LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/cv2/../../lib64:/opt/rocm/lib:/usr/local/lib: NCCL_CUMEM_ENABLE=0 TORCHINDUCTOR_COMPILE_THREADS=1 CUDA_MODULE_LOADING=LAZY ``` </details> ### 🐛 Describe the bug When compiling the latest vLLM commit on ROCm, it gives the following error. ![Image](https://github.com/user-attachments/assets/7e950073-9dae-4918-8e0f-ec7881ed76d0) The error comes from the compilation of CUDA only kernels, introduced in https://github.com/vllm-project/vllm/commit/90e88ab75632745c137647bf710d63997529fb89. ### Before submitting a new issue... - [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
2hard
Title: Document migration from aioresponses Body: For those using aioresponses to mock aiohttp
0easy
Title: AI separation models don't support audio files with surround sound. Body: Hey UVR devs, I know you probably don't make the separation models yourselves but you should know that the models don't support audio files with surround sound. What you do with this information is up to you, I ain't telling you what to do (but a warning [or fix :o] would be nice I guess). Thank you for the program, it's absolutely fantastic. Crash report in the picture below ![ddsada](https://github.com/Anjok07/ultimatevocalremovergui/assets/124627217/8bc5368b-43be-43cf-b368-194c55beb966)
1medium
Title: [BUG] `import deepspeed` crashes on `deepspeed==0.16.3` with `triton==3.2.0` on CPU machine Body: **Describe the bug** A clear and concise description of what the bug is. - [deepspeed uses the @triton.autotuner decorator](https://github.com/deepspeedai/DeepSpeed/blob/22d7fdc0f444571131d77ab13be858b5118770ef/deepspeed/ops/transformer/inference/triton/triton_matmul_kernel.py#L51), which leads to the autotuner being initialized when `import deepspeed` happens - in triton 3.2.0, they add [logic to the autotuner](https://github.com/triton-lang/triton/blob/7685e96ae428e1de5750d4c171d78b9bfdf1e73b/python/triton/runtime/autotuner.py#L126) that leads to [a check for torch.cuda.is_available()](https://github.com/triton-lang/triton/blob/7685e96ae428e1de5750d4c171d78b9bfdf1e73b/python/triton/runtime/driver.py#L5) in the autotuner constructor Before this updates of triton, it's safe to import deepspeed on a CPU machine. **To Reproduce** run `import deepspeed` on a CPU machine will lead to the following error message: ``` >>> import deepspeed [2025-02-12 18:28:06,516] [WARNING] [real_accelerator.py:181:get_accelerator] Setting accelerator to CPU. If you have GPU or other accelerator, we were unable to detect it. [2025-02-12 18:28:06,530] [INFO] [real_accelerator.py:222:get_accelerator] Setting ds_accelerator to cpu (auto detect) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/__init__.py", line 25, in <module> from . import ops File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/ops/__init__.py", line 11, in <module> from . import transformer File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/ops/transformer/__init__.py", line 7, in <module> from .inference.config import DeepSpeedInferenceConfig File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/ops/transformer/inference/__init__.py", line 7, in <module> from ....model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/model_implementations/__init__.py", line 6, in <module> from .transformers.ds_transformer import DeepSpeedTransformerInference File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/model_implementations/transformers/ds_transformer.py", line 18, in <module> from deepspeed.ops.transformer.inference.triton.mlp import TritonMLP File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/ops/transformer/inference/triton/__init__.py", line 10, in <module> from .ops import * File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/ops/transformer/inference/triton/ops.py", line 6, in <module> import deepspeed.ops.transformer.inference.triton.matmul_ext as matmul_ext File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/ops/transformer/inference/triton/matmul_ext.py", line 10, in <module> import deepspeed.ops.transformer.inference.triton.triton_matmul_kernel as triton_matmul_kernel File "/home/ray/anaconda3/lib/python3.9/site-packages/deepspeed/ops/transformer/inference/triton/triton_matmul_kernel.py", line 120, in <module> def _fp_matmul( File "/home/ray/anaconda3/lib/python3.9/site-packages/triton/runtime/autotuner.py", line 368, in decorator return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, restore_value, pre_hook=pre_hook, File "/home/ray/anaconda3/lib/python3.9/site-packages/triton/runtime/autotuner.py", line 130, in __init__ self.do_bench = driver.active.get_benchmarker() File "/home/ray/anaconda3/lib/python3.9/site-packages/triton/runtime/driver.py", line 23, in __getattr__ self._initialize_obj() File "/home/ray/anaconda3/lib/python3.9/site-packages/triton/runtime/driver.py", line 20, in _initialize_obj self._obj = self._init_fn() File "/home/ray/anaconda3/lib/python3.9/site-packages/triton/runtime/driver.py", line 8, in _create_driver raise RuntimeError(f"{len(actives)} active drivers ({actives}). There should only be one.") RuntimeError: 0 active drivers ([]). There should only be one. ``` **Expected behavior** A clear and concise description of what you expected to happen. import deepspeed on a CPU mahcine should not crash. **ds_report output** Please run `ds_report` to give us details about your setup. **Screenshots** If applicable, add screenshots to help explain your problem. **System info (please complete the following information):** - OS: [e.g. Ubuntu 18.04] - GPU count and types [e.g. two machines with x8 A100s each] - Interconnects (if applicable) [e.g., two machines connected with 100 Gbps IB] - Python version - Any other relevant info about your setup **Launcher context** Are you launching your experiment with the `deepspeed` launcher, MPI, or something else? **Docker context** Are you using a specific docker image that you can share? **Additional context** Add any other context about the problem here.
2hard
Title: stride asserts should name the operator involved Body: ``` File "/packages/aps.ads.icvr/icvr_launcher#link-tree/torch/_inductor/output_code.py", line 460, in __call__ return self.current_callable(inputs) File "/packages/aps.ads.icvr/icvr_launcher#link-tree/torch/_inductor/utils.py", line 2348, in run return model(new_inputs) File "/tmp/torchinductor_nobody/27/c2765fyur2v7aek4rc762oibztfzekpdgupovpfnad463vcqmrtj.py", line 205, in call assert_size_stride(primals_1, (768, 192), (192, 1)) AssertionError: expected size 1024==768, stride 192==192 at dim=0 This error most often comes from a incorrect fake (aka meta) kernel for a custom op. Use torch.library.opcheck to test your custom op. See https://pytorch.org/docs/stable/library.html#torch.library.opcheck ``` pitch: we can probably pass the name of the operator to assert_size_stride. I have debugged 3 of these in the last week cc @ezyang @gchanan @kadeng @msaroufim @chauhang @penguinwu
1medium
Title: Want to understand the loss Body: Hi, Thank you for the awesome work. I have read the issues about blurred outputs like: [1](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1388#issuecomment-1062187740) and [2](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/656#issuecomment-510935442). May i have your explanations why increase the weight of identity loss and cycle-consistenty loss can improve the problem? Thank you!
3misc
Title: Can't get RTX 3090 to work with deepfacelab. Body: THIS IS NOT TECH SUPPORT FOR NEWBIE FAKERS POST ONLY ISSUES RELATED TO BUGS OR CODE ## Expected behavior I have the highest specs with an rtx 3090 and a ryzen 5800x cpu. I expect it to run, but it comes up with this error:Error: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[5376,34,34] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[node Pad_38 (defined at C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. [[concat_4/concat/_1141]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. (1) Resource exhausted: OOM when allocating tensor with shape[5376,34,34] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[node Pad_38 (defined at C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. 0 successful operations. 0 derived errors ignored. Errors may have originated from an input operation. Input Source operations connected to node Pad_38: LeakyRelu_28 (defined at C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py:29) Input Source operations connected to node Pad_38: LeakyRelu_28 (defined at C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py:29) Original stack trace for 'Pad_38': File "threading.py", line 884, in _bootstrap File "threading.py", line 916, in _bootstrap_inner File "threading.py", line 864, in run File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread debug=debug) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__ self.on_initialize() File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 410, in on_initialize gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__ return self.forward(*args, **kwargs) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 225, in forward x = self.upscale2(x) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__ return self.forward(*args, **kwargs) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 71, in forward x = self.conv1(x) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__ return self.forward(*args, **kwargs) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 87, in forward x = tf.pad (x, padding, mode='CONSTANT') File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper return target(*args, **kwargs) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\array_ops.py", line 3528, in pad result = gen_array_ops.pad(tensor, paddings, name=name) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 6487, in pad "Pad", input=input, paddings=paddings, name=name) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper attrs=attr_protos, op_def=op_def) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal op_def=op_def) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__ self._traceback = tf_stack.extract_stack_for_node(self._c_op) Traceback (most recent call last): File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1375, in _do_call return fn(*args) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1360, in _run_fn target_list, run_metadata) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1453, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[5376,34,34] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node Pad_38}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. [[concat_4/concat/_1141]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. (1) Resource exhausted: OOM when allocating tensor with shape[5376,34,34] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node Pad_38}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. 0 successful operations. 0 derived errors ignored. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 129, in trainerThread iter, iter_time = model.train_one_iter() File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 474, in train_one_iter losses = self.onTrainOneIter() File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 774, in onTrainOneIter src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 584, in src_dst_train self.target_dstm_em:target_dstm_em, File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 968, in run run_metadata_ptr) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1191, in _run feed_dict_tensor, options, run_metadata) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1369, in _do_run run_metadata) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1394, in _do_call raise type(e)(node_def, op, message) # pylint: disable=no-value-for-parameter tensorflow.python.framework.errors_impl.ResourceExhaustedError: 2 root error(s) found. (0) Resource exhausted: OOM when allocating tensor with shape[5376,34,34] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[node Pad_38 (defined at C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. [[concat_4/concat/_1141]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. (1) Resource exhausted: OOM when allocating tensor with shape[5376,34,34] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[node Pad_38 (defined at C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:87) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode. 0 successful operations. 0 derived errors ignored. Errors may have originated from an input operation. Input Source operations connected to node Pad_38: LeakyRelu_28 (defined at C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py:29) Input Source operations connected to node Pad_38: LeakyRelu_28 (defined at C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py:29) Original stack trace for 'Pad_38': File "threading.py", line 884, in _bootstrap File "threading.py", line 916, in _bootstrap_inner File "threading.py", line 864, in run File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\mainscripts\Trainer.py", line 58, in trainerThread debug=debug) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\ModelBase.py", line 193, in __init__ self.on_initialize() File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 410, in on_initialize gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__ return self.forward(*args, **kwargs) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 225, in forward x = self.upscale2(x) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in __call__ return self.forward(*args, **kwargs) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 71, in forward x = self.conv1(x) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in __call__ return self.forward(*args, **kwargs) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 87, in forward x = tf.pad (x, padding, mode='CONSTANT') File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\dispatch.py", line 206, in wrapper return target(*args, **kwargs) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\array_ops.py", line 3528, in pad result = gen_array_ops.pad(tensor, paddings, name=name) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 6487, in pad "Pad", input=input, paddings=paddings, name=name) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 750, in _apply_op_helper attrs=attr_protos, op_def=op_def) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _create_op_internal op_def=op_def) File "C:\Users\Redux\Downloads\Reface\DeepFaceLab_NVIDIA_RTX3000_series\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 2045, in __init__ self._traceback = tf_stack.extract_stack_for_node(self._c_op) ## Actual behavior I go through all the settings in SAEHD without changing anything and it comes up with this long paragraph that I can't understand or it says bad allocation or out of memory. ## Steps to reproduce I cannot recall exactly what i changed but i don't think it would be detrimental because I then used the cpu instead of the gpu and worked fine, but I don't think im getting the quickest result with the cpu. resolution: 128 == == face_type: wf == == models_opt_on_gpu: True == == archi: df-ud == == ae_dims: 256 == == e_dims: 64 == == d_dims: 64 == == d_mask_dims: 22 == == masked_training: True == == eyes_mouth_prio: True == == uniform_yaw: True == == blur_out_mask: True == == adabelief: True == == lr_dropout: n == == random_warp: False == == random_hsv_power: 0.0 == == true_face_power: 0.0 == == face_style_power: 0.0 == == bg_style_power: 0.0 == == ct_mode: none == == clipgrad: True == == pretrain: True == == autobackup_hour: 1 == == write_preview_history: True == == target_iter: 0 == == random_src_flip: False == == random_dst_flip: False == == batch_size: 21 == == gan_power: 0.0 == == gan_patch_size: 16 == == gan_dims: 16 == == == ==------------------ Running On ------------------== == == == Device index: 0 == == Name: NVIDIA GeForce RTX 3090 == == VRAM: 21.17GB == == ## Other relevant information - **Command lined used (if not specified in steps to reproduce)**: main.py ... - **Operating system and version:** Windows, macOS, Linux - **Python version:** 3.5, 3.6.4, ... (if you are not using prebuilt windows binary)
2hard
Title: About implementation and transformations Body: Hi, First of all great work! But I have some questions: 1) Your implementation is using Conv2D and in the first layer it has kernel size of (1,3) so it is basically taking linear combinations of the coordinates (assume no activation here). So instead of using Conv2D using Conv1D on the points and taking the x, y, z coordinates as channels should be the same right? Is there a reasong why you prefer Conv2D? 2) I did not understand the underlying theory for using the transformation nets. I get the fact that the network should not be effected by the transformations but we are not learning transformations separately. Can you provide me a document so I can understand what is going on there?
1medium
Title: How can I get all Alola pokémon including alolan forms? Body: I'm working on a command-line Pokémon Sun and Moon game and I'm trying to figure out how to get the alola id and name of all the Pokémon in alola. The entry for the Alolan Raichu has the id 10100 and the name is "raichu-alola", rather than 26 and "raichu".(It would be very confusing for two entries to have the same name) How can I get the alola id and the species name of all the pokemon?
1medium
Title: handle cast of postgresql empty ARRAY using specified type Body: ### Describe the use case [PostgreSQL requires an explicit cast when constructing an empty `ARRAY`](https://www.postgresql.org/docs/17/sql-expressions.html#SQL-SYNTAX-ARRAY-CONSTRUCTORS). In SQLAlchemy, when using `postgresql.array([], type_=CHAR)` (with the `type_` argument specified) to build an `ARRAY` literal, it would be nice if the cast could be handled automatically instead of requiring users to write `cast(postgresql.array([]), ARRAY(CHAR))`. ### Databases / Backends / Drivers targeted postgresql ### Example Use Current behaviour: ```python >>> import sqlalchemy >>> from sqlalchemy.dialects import postgresql >>> str(postgresql.array([], type_=sqlalchemy.CHAR).compile()) 'ARRAY[]' ``` which then fails to execute in the backend. Proposal: ```python >>> str(postgresql.array([], type_=sqlalchemy.CHAR).compile()) 'ARRAY[]::CHAR[]' ``` ### Additional context I've been hacking on this in https://github.com/dlax/sqlalchemy/commit/1dc325cc8687ee6f1d22b13dd327df4628510b0c, so if this is okay, I can open a PR.
1medium
Title: Also changelog non-request-based changes Body: ### NetBox version v4.1.6 ### Feature type Change to existing functionality ### Triage priority I volunteer to perform this work (if approved) ### Proposed functionality Currently, the `handle_changed_object` function bails out if the change does not originate from a request. It would be desirable to log these changes as well. ### Use case We have added custom management commands that alter data, but the changes never appear in the change log. ### Database changes ### External dependencies
1medium
Title: [BUG] Error occurred while consuming big pdf document SubprocessOutputError tesseract get_deskew Body: ### Description After I successfully imported loads of PDFs, I now try to upload a big PDF with 170 MB and 114 pages. After some minutes of processing an error appears when running tesseract. I already tried putting `'tesseract_timeout': 1800` which didn't help. I tried finding the `/tmp/ocrmypdf.io.2fpa9ots/000022_rasterize.png` to rerun the command on my own, but wasn't able to find it in any of the Paperless docker containers. ### Steps to reproduce Drag & Drop the PDF file into the web page and wait for the processing to run for a few minutes. ### Webserver logs ```bash [2025-02-08 17:09:52,920] [INFO] [paperless.consumer] Consuming 20250208_155934.PDF [2025-02-08 17:09:52,965] [DEBUG] [paperless.consumer] Detected mime type: application/pdf [2025-02-08 17:09:52,978] [DEBUG] [paperless.consumer] Parser: RasterisedDocumentParser [2025-02-08 17:09:52,980] [DEBUG] [paperless.consumer] Parsing 20250208_155934.PDF... [2025-02-08 17:09:53,027] [INFO] [paperless.parsing.tesseract] pdftotext exited 0 [2025-02-08 17:09:53,132] [DEBUG] [paperless.parsing.tesseract] Calling OCRmyPDF with args: {'input_file': PosixPath('/tmp/paperless/paperless-ngx18j4guwj/20250208_155934.PDF'), 'output_file': PosixPath('/tmp/paperless/paperless-cmazb6rc/archive.pdf'), 'use_threads': True, 'jobs': '4', 'language': 'deu+eng', 'output_type': 'pdfa', 'progress_bar': False, 'color_conversion_strategy': 'RGB', 'skip_text': True, 'clean': True, 'deskew': True, 'rotate_pages': True, 'rotate_pages_threshold': 12.0, 'sidecar': PosixPath('/tmp/paperless/paperless-cmazb6rc/sidecar.txt'), 'tesseract_timeout': 1800} [2025-02-08 17:09:53,519] [INFO] [ocrmypdf._pipelines.ocr] Start processing 4 pages concurrently [2025-02-08 17:09:54,801] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:09:54,801] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:09:54,801] [ERROR] [ocrmypdf._exec.tesseract] [tesseract] Error during processing. [2025-02-08 17:09:54,802] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 0.00 - no change [2025-02-08 17:09:54,936] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:09:54,936] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:09:54,936] [ERROR] [ocrmypdf._exec.tesseract] [tesseract] Error during processing. [2025-02-08 17:09:54,936] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 0.00 - no change [2025-02-08 17:09:55,425] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 4.51 - no change [2025-02-08 17:09:55,444] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 15.13 - rotation appears correct [2025-02-08 17:10:20,990] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:10:20,990] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:10:20,990] [ERROR] [ocrmypdf._exec.tesseract] [tesseract] Error during processing. [2025-02-08 17:10:20,990] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 0.00 - no change [2025-02-08 17:10:21,361] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 11.87 - no change [2025-02-08 17:10:36,136] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 11.58 - no change [2025-02-08 17:10:41,760] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 11.87 - no change [2025-02-08 17:11:06,505] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 10.01 - no change [2025-02-08 17:11:39,599] [WARNING] [ocrmypdf._exec.tesseract] [tesseract] lots of diacritics - possibly poor OCR [2025-02-08 17:11:40,989] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 1.61 - no change [2025-02-08 17:11:50,335] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 11.64 - no change [2025-02-08 17:11:52,248] [WARNING] [ocrmypdf._exec.tesseract] [tesseract] lots of diacritics - possibly poor OCR [2025-02-08 17:11:53,194] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 6.17 - no change [2025-02-08 17:11:54,100] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 10.52 - no change [2025-02-08 17:12:09,975] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:12:09,976] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:12:09,976] [ERROR] [ocrmypdf._exec.tesseract] [tesseract] Error during processing. [2025-02-08 17:12:09,976] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 0.00 - no change [2025-02-08 17:12:30,485] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 10.14 - no change [2025-02-08 17:12:31,139] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Image too small to scale!! (2x36 vs min width of 3) [2025-02-08 17:12:31,139] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Line cannot be recognized!! [2025-02-08 17:12:31,139] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Image too small to scale!! (2x36 vs min width of 3) [2025-02-08 17:12:31,139] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Line cannot be recognized!! [2025-02-08 17:12:32,418] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:12:32,418] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:12:32,419] [ERROR] [ocrmypdf._exec.tesseract] [tesseract] Error during processing. [2025-02-08 17:12:32,419] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 0.00 - no change [2025-02-08 17:12:36,605] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 10.93 - no change [2025-02-08 17:12:39,684] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 6.72 - no change [2025-02-08 17:13:00,726] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 7.65 - no change [2025-02-08 17:13:14,728] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:13:14,728] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:13:14,728] [ERROR] [ocrmypdf._exec.tesseract] [tesseract] Error during processing. [2025-02-08 17:13:14,728] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 0.00 - no change [2025-02-08 17:13:18,729] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 11.09 - no change [2025-02-08 17:13:19,787] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:13:19,787] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Too few characters. Skipping this page [2025-02-08 17:13:19,787] [ERROR] [ocrmypdf._exec.tesseract] [tesseract] Error during processing. [2025-02-08 17:13:19,788] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 0.00 - no change [2025-02-08 17:13:23,342] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Empty page!! [2025-02-08 17:13:29,250] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 8.29 - no change [2025-02-08 17:13:29,592] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Empty page!! [2025-02-08 17:13:45,015] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Empty page!! [2025-02-08 17:13:45,015] [INFO] [ocrmypdf._exec.tesseract] [tesseract] Empty page!! [2025-02-08 17:14:04,896] [WARNING] [ocrmypdf._exec.tesseract] [tesseract] lots of diacritics - possibly poor OCR [2025-02-08 17:14:13,230] [DEBUG] [paperless.parsing.tesseract] Deleting directory /tmp/paperless/paperless-cmazb6rc [2025-02-08 17:14:13,242] [ERROR] [paperless.consumer] Error occurred while consuming document 20250208_155934.PDF: SubprocessOutputError: . See logs for more information. Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_exec/tesseract.py", line 201, in get_deskew p = run(args_tesseract, stdout=PIPE, stderr=STDOUT, timeout=timeout, check=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/subprocess/__init__.py", line 62, in run proc = subprocess_run(args, env=env, check=check, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/subprocess.py", line 571, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['tesseract', '-l', 'deu+eng', '--psm', '2', '/tmp/ocrmypdf.io.2fpa9ots/000022_rasterize.png', 'stdout']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/src/paperless/src/paperless_tesseract/parsers.py", line 382, in parse ocrmypdf.ocr(**args) File "/usr/local/lib/python3.12/site-packages/ocrmypdf/api.py", line 380, in ocr return run_pipeline(options=options, plugin_manager=plugin_manager) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/ocr.py", line 214, in run_pipeline return _run_pipeline(options, plugin_manager) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/ocr.py", line 181, in _run_pipeline optimize_messages = exec_concurrent(context, executor) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/ocr.py", line 117, in exec_concurrent executor( File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_concurrent.py", line 78, in __call__ self._execute( File "/usr/local/lib/python3.12/site-packages/ocrmypdf/builtin_plugins/concurrency.py", line 144, in _execute result = future.result() ^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 449, in result return self.__get_result() ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 401, in __get_result raise self._exception File "/usr/local/lib/python3.12/concurrent/futures/thread.py", line 59, in run result = self.fn(*self.args, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/ocr.py", line 78, in _exec_page_sync ocr_image_out, pdf_page_from_image_out, orientation_correction = process_page( ^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/_common.py", line 417, in process_page ocr_image, preprocess_out = make_intermediate_images( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/_common.py", line 370, in make_intermediate_images preprocess_out = preprocess( ^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/_common.py", line 340, in preprocess image = preprocess_deskew(image, page_context) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipeline.py", line 595, in preprocess_deskew deskew_angle_degrees = ocr_engine.get_deskew(input_file, page_context.options) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/builtin_plugins/tesseract_ocr.py", line 259, in get_deskew return tesseract.get_deskew( ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_exec/tesseract.py", line 212, in get_deskew raise SubprocessOutputError() from e ocrmypdf.exceptions.SubprocessOutputError The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/asgiref/sync.py", line 327, in main_wrap raise exc_info[1] File "/usr/src/paperless/src/documents/consumer.py", line 477, in run document_parser.parse(self.working_copy, mime_type, self.filename) File "/usr/src/paperless/src/paperless_tesseract/parsers.py", line 405, in parse raise ParseError( documents.parsers.ParseError: SubprocessOutputError: . See logs for more information. [2025-02-08 17:14:13,247] [ERROR] [paperless.tasks] ConsumeTaskPlugin failed: 20250208_155934.PDF: Error occurred while consuming document 20250208_155934.PDF: SubprocessOutputError: . See logs for more information. Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_exec/tesseract.py", line 201, in get_deskew p = run(args_tesseract, stdout=PIPE, stderr=STDOUT, timeout=timeout, check=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/subprocess/__init__.py", line 62, in run proc = subprocess_run(args, env=env, check=check, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/subprocess.py", line 571, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['tesseract', '-l', 'deu+eng', '--psm', '2', '/tmp/ocrmypdf.io.2fpa9ots/000022_rasterize.png', 'stdout']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/src/paperless/src/paperless_tesseract/parsers.py", line 382, in parse ocrmypdf.ocr(**args) File "/usr/local/lib/python3.12/site-packages/ocrmypdf/api.py", line 380, in ocr return run_pipeline(options=options, plugin_manager=plugin_manager) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/ocr.py", line 214, in run_pipeline return _run_pipeline(options, plugin_manager) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/ocr.py", line 181, in _run_pipeline optimize_messages = exec_concurrent(context, executor) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/ocr.py", line 117, in exec_concurrent executor( File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_concurrent.py", line 78, in __call__ self._execute( File "/usr/local/lib/python3.12/site-packages/ocrmypdf/builtin_plugins/concurrency.py", line 144, in _execute result = future.result() ^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 449, in result return self.__get_result() ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 401, in __get_result raise self._exception File "/usr/local/lib/python3.12/concurrent/futures/thread.py", line 59, in run result = self.fn(*self.args, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/ocr.py", line 78, in _exec_page_sync ocr_image_out, pdf_page_from_image_out, orientation_correction = process_page( ^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/_common.py", line 417, in process_page ocr_image, preprocess_out = make_intermediate_images( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/_common.py", line 370, in make_intermediate_images preprocess_out = preprocess( ^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipelines/_common.py", line 340, in preprocess image = preprocess_deskew(image, page_context) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_pipeline.py", line 595, in preprocess_deskew deskew_angle_degrees = ocr_engine.get_deskew(input_file, page_context.options) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/builtin_plugins/tesseract_ocr.py", line 259, in get_deskew return tesseract.get_deskew( ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ocrmypdf/_exec/tesseract.py", line 212, in get_deskew raise SubprocessOutputError() from e ocrmypdf.exceptions.SubprocessOutputError The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/asgiref/sync.py", line 327, in main_wrap raise exc_info[1] File "/usr/src/paperless/src/documents/consumer.py", line 477, in run document_parser.parse(self.working_copy, mime_type, self.filename) File "/usr/src/paperless/src/paperless_tesseract/parsers.py", line 405, in parse raise ParseError( documents.parsers.ParseError: SubprocessOutputError: . See logs for more information. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/src/paperless/src/documents/tasks.py", line 154, in consume_file msg = plugin.run() ^^^^^^^^^^^^ File "/usr/src/paperless/src/documents/consumer.py", line 509, in run self._fail( File "/usr/src/paperless/src/documents/consumer.py", line 151, in _fail raise ConsumerError(f"{self.filename}: {log_message or message}") from exception documents.consumer.ConsumerError: 20250208_155934.PDF: Error occurred while consuming document 20250208_155934.PDF: SubprocessOutputError: . See logs for more information. ``` ### Browser logs ```bash ``` ### Paperless-ngx version 2.14.5 ### Host OS Ubuntu 22.04.5 ### Installation method Docker - official image ### System status ```json ``` ### Browser _No response_ ### Configuration changes PAPERLESS_TIME_ZONE=Europe/Berlin PAPERLESS_OCR_LANGUAGE=deu+eng PAPERLESS_SECRET_KEY=XXX PAPERLESS_CONSUMER_RECURSIVE=true PAPERLESS_FILENAME_DATE_ORDER=DMY PAPERLESS_TASK_WORKERS=4 PAPERLESS_THREADS_PER_WORKER=4 PAPERLESS_OCR_USER_ARGS: '{"tesseract_timeout": 1800}' ### Please confirm the following - [x] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [x] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [x] I have already searched for relevant existing issues and discussions before opening this report. - [x] I have updated the title field above with a concise description.
2hard
Title: Suggestion on how to improve acquisition.UCB for active GP example Body:
1medium
Title: [QUESTION] How to decorate a provider? Body: dependency-injector is great! Using the Decorator pattern, `Foo` decorates `Bar`. Goal is that `foo_factory` will return `Bar` instances which use `Foo` instances. How can this be achieved? Really appreciate any help ... Example (read the comments): ```python from dependency_injector import providers # This is just a service. class Foo: def __init__(self, dep1, dep2, dep3) -> None: self.dep1 = dep1 self.dep1 = dep2 self.dep1 = dep3 def do_something(self): print('foo ') # This is a service which decorates Foo (decorator pattern). class Bar: def __init__(self, foo: Foo) -> None: self.foo = foo def do_something(self): self.foo.do_something() print('bar ') # Foo has a factory to pass in dependencies. foo_factory = providers.Factory(Foo, dep1=1, dep2=2, dep3=3) # Case_1 : Pass foo_factory in order to instantiate as late as possible. bar_factory = providers.Factory(Bar, foo=foo_factory) # Case_2 : Pass foo_factory instance. # bar_factory = providers.Factory(Bar, foo=foo_factory()) # override the factory foo_factory.override(bar_factory) # Triggers recursion error in Case_1 bar_1 = foo_factory() bar_2 = foo_factory() # Goal_1: foo bar bar_1.do_something() # Goal_2: Have different foo objects. Achieved only with Case_1. assert bar_1.foo != bar_2.foo ``` Error sample: ``` File "src/dependency_injector/providers.pxd", line 445, in dependency_injector.providers.__provide_keyword_args File "src/dependency_injector/providers.pxd", line 365, in dependency_injector.providers.__get_value File "src/dependency_injector/providers.pyx", line 223, in dependency_injector.providers.Provider.__call__ File "src/dependency_injector/providers.pyx", line 225, in dependency_injector.providers.Provider.__call__ File "src/dependency_injector/providers.pyx", line 2689, in dependency_injector.providers.Factory._provide File "src/dependency_injector/providers.pxd", line 650, in dependency_injector.providers.__factory_call File "src/dependency_injector/providers.pxd", line 577, in dependency_injector.providers.__call File "src/dependency_injector/providers.pxd", line 445, in dependency_injector.providers.__provide_keyword_args File "src/dependency_injector/providers.pxd", line 365, in dependency_injector.providers.__get_value File "src/dependency_injector/providers.pyx", line 223, in dependency_injector.providers.Provider.__call__ RecursionError: maximum recursion depth exceeded while calling a Python object ```
1medium
Title: Abandon Python 3.8 Body: Hello. Are you OK with bumping the Python from 3.8 to 3.9 as a minimum supported version? References: - https://endoflife.date/python - https://devguide.python.org/versions/
3misc
Title: General question about embedding size Body: Hey, I am interested in training a one-language model, which also has less accent. I would like to train a good quality model on about 1000 speakers. Then I want to fine tune on a single speaker (like #437) (with 5 minutes or even hours of audio) to finally get a good single speaker model. Now my question is: Does the model benefit from an embedding size (or only hidden size in encoder) of 768 like sberryman did in #126, even if training time and Vram usage increases heavily? Or is it only interesting for multi-language/multi-accent models and I would definitely waste my time with that? Or even get worse results? I also use 48000 as sample_rate, as most of my samples (of commonVoice) are in 48k, maybe this has an impact? Thanks in advance :)
3misc
Title: Can not install diff-gaussian-rasterization Body: I have installed CUDA11.8 already, but when i executed python setup.py install, there met some problems. RuntimeError: The detected CUDA version (10.1) mismatches the version that was used to compile PyTorch (11.8). Please make sure to use the same CUDA versions. (guassian_splatting) work@work:~/data_ssd/3D/gaussian-splatting-main/submodules/diff-gaussian-rasterization$ nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed_Sep_21_10:33:58_PDT_2022 Cuda compilation tools, release 11.8, V11.8.89 Build cuda_11.8.r11.8/compiler.31833905_0
1medium
Title: Accumulate autogenerated migrations over multiple calls to `run_migrations()` Body: I am creating a multi-tenant application, with several tenant-specific schema and also public shared tables. For this I made a setup that works quite well. I'm now only struggling with the auto-generation of migrations. I have simplified my use case to this minimal example. In `run_migrations_online`, I call several times the `context.run_migrations()`, every time with a different `target_metadata` that only concerns the table that are linked to one schema: ```python def run_migrations_online(): connectable = create_engine(os.environ["DATABASE_URL"]) with connectable.connect() as connection: schema = Schema.PUBLIC print() print("-" * 80) print(f"Migrating schema {schema.schema_name}\n") context.configure( connection=connection, target_metadata=schema.base.metadata, include_schemas=True, ) with context.begin_transaction(): context.run_migrations() schema = Schema.TENANT print() print("-" * 80) print(f"Migrating schema {schema.schema_name}\n") context.configure( connection=connection, target_metadata=schema.base.metadata, include_schemas=True, ) with context.begin_transaction(): context.run_migrations() ``` When running `alembic revision --autogenerate -m "create tables"`, we can see that alembic detect correctly the modifications (one table added) for each call: ``` -------------------------------------------------------------------------------- Migrating schema public INFO [alembic.runtime.migration] Context impl PostgresqlImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. INFO [alembic.autogenerate.compare] Detected added table 'exchange_rate' -------------------------------------------------------------------------------- Migrating schema tenant INFO [alembic.runtime.migration] Context impl PostgresqlImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. INFO [alembic.autogenerate.compare] Detected added table 'tenant.inventory' ``` But the problem is that when it generate the migration script, it keeps only the modifications detected during the last call of `context.run_migrations()`, namely `tenant.inventory` table in this case: ```python def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('inventory', sa.Column('id', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('id'), schema='tenant' ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('inventory', schema='tenant') # ### end Alembic commands ### ``` Now if I invert the order in which TENANT and PUBLIC are processed, both changes are correctly discovered, but in this case the migration script only keep tracks of `public.exchange_rate` table: ``` -------------------------------------------------------------------------------- Migrating schema tenant INFO [alembic.runtime.migration] Context impl PostgresqlImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. INFO [alembic.autogenerate.compare] Detected added table 'tenant.inventory' -------------------------------------------------------------------------------- Migrating schema public INFO [alembic.runtime.migration] Context impl PostgresqlImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. INFO [alembic.autogenerate.compare] Detected added table 'exchange_rate' ``` ```python def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('exchange_rate', sa.Column('date', sa.DateTime(), nullable=False), sa.PrimaryKeyConstraint('date'), schema='public' ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('exchange_rate', schema='public') # ### end Alembic commands ### ``` In other words the auto-generate features generate the script only for the last run of `context.run_migrations()`. --- **Question**: Is it somehow possible to accumulate the changes over multiple calls to `context.run_migrations()` when using `autogenerate` feature? («No» is a perfectly valid answer, at least I would know I should stop trying :smile:) _Some notes_: - I have to keep this structure where I reconfigure the context several time, because when I have multiple tenants I actually want one `version_table` per tenant, and this is set using `context.configure()`. - Online upgrade (with `alembic upgrade head`) does not have this problem because the changes are applied directly, there is no need to accumulate them.
1medium
Title: How to change the structure of the app Body: Hi @miguelgrinberg thanks for your great e-book about the app. Now I want to reconstruct the app. when I access the app, I found that I should sign in firstly the app and then I can see the posts in app. Now I want to change this. I mean when users firstly access the site, the posts or blog should be seen at the Home or explore webpage even they haven't sign in the app. After they click posts or user, the sign up should be required. Do you have advices how to get this or what parts should be changed. thanks!
1medium
Title: Mangum 0.12 regression: Unable to determine handler from trigger event Body: A lambda invoke call against mangum 0.11 works fine but with upgrade to version 0.12 same call fails with: [ERROR] TypeError: Unable to determine handler from trigger event Traceback (most recent call last):   File "/var/task/mangum/adapter.py", line 86, in __call__     handler = AbstractHandler.from_trigger(   File "/var/task/mangum/handlers/abstract_handler.py", line 113, in from_trigger     raise TypeError("Unable to determine handler from trigger event") START RequestId: 7d86054b-94df-4bba-b5e0-60106f2d9fa9 Version: $LATEST
1medium
Title: add optional text to approval steps Body: ### Please confirm the following - [X] I agree to follow this project's [code of conduct](https://docs.ansible.com/ansible/latest/community/code_of_conduct.html). - [X] I have checked the [current issues](https://github.com/ansible/awx/issues) for duplicates. - [X] I understand that AWX is open source software provided for free and that I might not receive a timely response. ### Feature type Enhancement to Existing Feature ### Feature Summary it would be great if the user could motivate rejection /approval in the approval steps of workflow. at its simplest this would be an optional text area where the user can input text that would then populate an artifact within the workflow, to be used in further steps ### Select the relevant components - [X] UI - [ ] API - [ ] Docs - [ ] Collection - [ ] CLI - [ ] Other ### Steps to reproduce .. ### Current results .. ### Sugested feature result .. ### Additional information _No response_
1medium
Title: Import error in example from README.md Body: When trying to create a type similar to the example in README.md, an error occurs: ![imagen](https://user-images.githubusercontent.com/58057324/120525607-ebe70600-c39d-11eb-8282-2a89eafff1e4.png) This is the example in README.md: ![imagen](https://user-images.githubusercontent.com/58057324/120525650-fb664f00-c39d-11eb-8903-741cf2bc7a81.png) The error can be solved by changing `import strawberry` to `import strawberry.django`, so I think README.md should be changed: ![imagen](https://user-images.githubusercontent.com/58057324/120525755-19cc4a80-c39e-11eb-827c-df31054f593d.png)
0easy
Title: [BUG] - search_for_music and search_for_users methods does not return results Body: **Describe the bug** search_for_music and search_for_users methods do not return results, always empty arrays **The buggy code** Please insert the code that is throwing errors or is giving you weird unexpected results. ``` TikTokApi.get_instance().search_for_music('say so', 5) TikTokApi.get_instance().search_for_users('baka prase', 5) ``` **Expected behavior** To get 5 songs or users, regarding the method we are using. **Error Trace (if any)** Put the error trace below if there's any error thrown. ``` No trace error ``` **Desktop (please complete the following information):** - OS: [macOS Mojave] - TikTokApi Version [3.9.4]
1medium
Title: Add layers for tf and tf.keras Body: Continuing discussion started in pull-request #25 . So far: `tf.keras` и `keras` are different things now, they work on different input and have different recommendations for creating custom layers. This version seems to work for me with tensorflow. ```python import tensorflow as tf from einops.layers.keras import RearrangeMixin, ReduceMixin, UnknownSize class Rearrange(RearrangeMixin, tf.keras.layers.Layer): def call(self, inputs): return self._apply_recipe(inputs) class Reduce(ReduceMixin, tf.keras.layers.Layer): def call(self, inputs): return self._apply_recipe(inputs) ``` Example for eager execution ```python tf.enable_eager_execution() x = tf.zeros([4, 5], dtype='float32') Rearrange('i j -> j i')(x).shape Reduce('i j -> j', 'max')(x).shape ``` And example without eager execution ```python import numpy x = tf.placeholder('float32') x.set_shape([None, None]) with tf.Session().as_default(): y = Rearrange('i j -> j i')(x).eval({x: numpy.zeros([5, 6], dtype='float32')}) y = Reduce('i j -> j', 'max')(x).eval({x: numpy.zeros([5, 6], dtype='float32')}) ``` At least this seems to comply with tf guide https://www.tensorflow.org/tutorials/eager/custom_layers My env: ```python python 3.6 (should not affect) In [2]: tensorflow.__version__ Out[2]: '1.10.0' In [4]: keras.__version__ (should not affect) Out[4]: '2.2.4' ```
1medium
Title: DAG Processor crashing Asset.ref & Asset.ref Body: ### Apache Airflow version 3.0.0 ### If "Other Airflow 2 version" selected, which one? _No response_ ### What happened? DAG Processor crashing with `triggering_asset_events ` DAG **LOGS** ``` Traceback (most recent call last): File "/usr/local/bin/airflow", line 10, in <module> sys.exit(main()) File "/opt/airflow/airflow/__main__.py", line 58, in main args.func(args) File "/opt/airflow/airflow/cli/cli_config.py", line 49, in command return func(*args, **kwargs) File "/opt/airflow/airflow/utils/cli.py", line 111, in wrapper return f(*args, **kwargs) File "/opt/airflow/airflow/utils/providers_configuration_loader.py", line 55, in wrapped_function return func(*args, **kwargs) File "/opt/airflow/airflow/cli/commands/local_commands/dag_processor_command.py", line 54, in dag_processor run_command_with_daemon_option( File "/opt/airflow/airflow/cli/commands/local_commands/daemon_utils.py", line 86, in run_command_with_daemon_option callback() File "/opt/airflow/airflow/cli/commands/local_commands/dag_processor_command.py", line 57, in <lambda> callback=lambda: run_job(job=job_runner.job, execute_callable=job_runner._execute), File "/opt/airflow/airflow/utils/session.py", line 101, in wrapper return func(*args, session=session, **kwargs) File "/opt/airflow/airflow/jobs/job.py", line 342, in run_job return execute_job(job, execute_callable=execute_callable) File "/opt/airflow/airflow/jobs/job.py", line 371, in execute_job ret = execute_callable() File "/opt/airflow/airflow/jobs/dag_processor_job_runner.py", line 61, in _execute self.processor.run() File "/opt/airflow/airflow/dag_processing/manager.py", line 252, in run return self._run_parsing_loop() File "/opt/airflow/airflow/dag_processing/manager.py", line 341, in _run_parsing_loop self._collect_results() File "/opt/airflow/airflow/utils/session.py", line 101, in wrapper return func(*args, session=session, **kwargs) File "/opt/airflow/airflow/dag_processing/manager.py", line 778, in _collect_results self._file_stats[file] = process_parse_results( File "/opt/airflow/airflow/dag_processing/manager.py", line 1099, in process_parse_results update_dag_parsing_results_in_db( File "/opt/airflow/airflow/dag_processing/collection.py", line 326, in update_dag_parsing_results_in_db for attempt in run_with_db_retries(logger=log): File "/usr/local/lib/python3.9/site-packages/tenacity/__init__.py", line 443, in __iter__ do = self.iter(retry_state=retry_state) File "/usr/local/lib/python3.9/site-packages/tenacity/__init__.py", line 376, in iter result = action(retry_state) File "/usr/local/lib/python3.9/site-packages/tenacity/__init__.py", line 398, in <lambda> self._add_action_func(lambda rs: rs.outcome.result()) File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 439, in result return self.__get_result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 391, in __get_result raise self._exception File "/opt/airflow/airflow/dag_processing/collection.py", line 336, in update_dag_parsing_results_in_db DAG.bulk_write_to_db(bundle_name, bundle_version, dags, session=session) File "/opt/airflow/airflow/utils/session.py", line 98, in wrapper return func(*args, **kwargs) File "/opt/airflow/airflow/models/dag.py", line 1888, in bulk_write_to_db asset_op.add_dag_asset_name_uri_references(session=session) File "/opt/airflow/airflow/dag_processing/collection.py", line 685, in add_dag_asset_name_uri_references self._add_dag_asset_references( File "/opt/airflow/airflow/dag_processing/collection.py", line 680, in _add_dag_asset_references session.execute(delete(model).where(tuple_(model.dag_id, getattr(model, attr)).in_(old_refs))) File "/usr/local/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 1717, in execute result = conn._execute_20(statement, params or {}, execution_options) File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1710, in _execute_20 return meth(self, args_10style, kwargs_10style, execution_options) File "/usr/local/lib/python3.9/site-packages/sqlalchemy/sql/elements.py", line 334, in _execute_on_connection return connection._execute_clauseelement( File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1577, in _execute_clauseelement ret = self._execute_context( File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1816, in _execute_context self._handle_dbapi_exception( File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 2134, in _handle_dbapi_exception util.raise_( File "/usr/local/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 211, in raise_ raise exception File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1810, in _execute_context context = constructor( File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 1037, in _init_compiled expanded_state = compiled._process_parameters_for_postcompile( File "/usr/local/lib/python3.9/site-packages/sqlalchemy/sql/compiler.py", line 1257, in _process_parameters_for_postcompile new_processors.update( File "/usr/local/lib/python3.9/site-packages/sqlalchemy/sql/compiler.py", line 1265, in <genexpr> and processors[name][j - 1] is not None sqlalchemy.exc.StatementError: (builtins.IndexError) tuple index out of range [SQL: DELETE FROM dag_schedule_asset_name_reference WHERE (dag_schedule_asset_name_reference.dag_id, dag_schedule_asset_name_reference.name) IN (__[POSTCOMPILE_param_1])] [parameters: [{}]] root@4b44e5c6544e:/opt/airflow# ``` ### What you think should happen instead? _No response_ ### How to reproduce 1. Use below DAG ``` from __future__ import annotations from airflow.decorators import dag, task from airflow.sdk.definitions.asset import Asset from airflow.sdk.definitions.asset.decorators import asset @asset(uri="s3://bucket/asset1_producer", schedule=None) def producer1(): pass @asset(uri="s3://bucket/asset2_producer", schedule=None) def producer2(): pass @dag( schedule=Asset.ref(name="asset1_producer") & Asset.ref(name="asset2_producer"), catchup=False, tags=["asset"], ) def consumer(): @task() def process_nothing(triggering_asset_events): for a, events in triggering_asset_events.items(): print(a.name, events) consumer() ``` ### Operating System Linux ### Versions of Apache Airflow Providers _No response_ ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### Anything else? _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
2hard
Title: Reduce RAM and ROM footprint Body: I'm using `m2cgen` to convert some classifier to C. It works great and results are consistent, thanks for the library! 1. I have the problem that the compiled binaries are too large to fit on my embedded device. I checked and the binaries are around double the size of the binaries created with e.g [`sklearn_porter`](https://github.com/nok/sklearn-porter). However, `m2cgen` is the only libraries that can convert my python classifiers to C without introducing errors into the classification. 2. Even if I reduce the size of the classifier, I run into the problem that the RAM of the device is exceeded (think of something in the kB range). Do you have any idea how the footprint of the c code could be reduced?
1medium
Title: Can't install development dependencies with documentation instructions Body: According to the [contribution guide](https://flask-restplus.readthedocs.io/en/latest/contributing.html), to install the development dependencies we should run `pip install -e .[dev]`. When I execute the command I get the following warning: > flask-restplus 0.12.2.dev0 does not provide the extra 'dev' Some packages are installed, but not everything listed in requirements/develop.pip. Here is the result of pip freeze: ```bash $ pip freeze aniso8601==4.0.1 Click==7.0 Flask==1.0.2 -e git+git@github.com:hygorxaraujo/flask-restplus.git@a8f35823fe40b2c7385632a2ad6b35b26467402c#egg=flask_restplus itsdangerous==1.1.0 Jinja2==2.10 jsonschema==2.6.0 MarkupSafe==1.1.0 pytz==2018.7 six==1.11.0 Werkzeug==0.14.1 ``` Steps to reproduce: 1. Fork flask-restplus repository in GitHub 2. Clone forked repository 3. Create new branch `git checkout -b new-branch` 4. Run `pip install -e .[dev]` Am I missing something or is the documentation outdated? Python: 3.6.7 Flask-Restplus: 0.12.2.dev
1medium
Title: Cannot open other tabs with custom preset Body: Cannot open other tabs with custom preset https://www.youtube.com/watch?v=jTUiHbFnbP8
1medium
Title: topic_model.transform(docs)[0][i] is sometimes different from topic_model.transform(docs[i])[0][0] Body: Hello I read https://maartengr.github.io/BERTopic/api/bertopic.html#bertopic._bertopic.BERTopic.transform and understood from the documents parameter (described as "A single document or a list of documents to predict on") that I could submit a list of documents or a single document and still receive the same result when predicting with a fitted model. I found that this is not true. Am I overlooking something? Below you find a minimal working example ``` from bertopic import BERTopic from sklearn.datasets import fetch_20newsgroups docs = fetch_20newsgroups(subset='all')['data'][:200] topic_model = BERTopic().fit(docs) topics,_=topic_model.transform(docs) import numpy as np topics=np.array(topics) #calling the model with a single document several times import tqdm topics_single = [] for doc in tqdm.tqdm(docs): topic, _ = topic_model.transform([doc]) topics_single.append(topic[0]) topics_single = np.array(topics_single) mask_identical = topics_single == topics percentage_equal = 100 * np.sum(mask_identical) / len(mask_identical) print(f"{percentage_equal=}%") #returns for example about 60%, but varying #loop till finding a different entry for i in range(len(docs)): print( i, topic_model.transform(docs[i])[0][0], topic_model.transform([docs[i]])[0][0], topics[i], topic_model.transform(docs)[0][i], ) if topic_model.transform(docs[i])[0][0] != topic_model.transform(docs)[0][i]: print(f"Different outcome at iteration {i}") break ``` The repeated execution with the same documents seems fine: ``` topics2,_=topic_model.transform(docs) percentage_equal_executed_with_multiple_docs = 100*np.sum(np.array(topics2)==topics)/len(topics) print(f"{percentage_equal_executed_with_multiple_docs=}%") #this gives 100% ``` ![topic frequency](https://github.com/MaartenGr/BERTopic/assets/5189693/b9db0e45-8987-4811-97e5-508045ce7ae2) Thank you in advance! PS: The python version is 3.10.12 The list of installed packages is ``` absl-py==1.0.0 accelerate==0.23.0 adagio==0.2.4 aiohttp==3.8.6 aiosignal==1.3.1 ansi2html==1.9.1 antlr4-python3-runtime==4.11.1 anyio==3.5.0 appdirs==1.4.4 arch==6.2.0 argon2-cffi==21.3.0 argon2-cffi-bindings==21.2.0 astor==0.8.1 asttokens==2.0.5 astunparse==1.6.3 async-timeout==4.0.3 attrs==22.1.0 audioread==3.0.1 azure-core==1.29.1 azure-cosmos==4.3.1 azure-storage-blob==12.19.0 azure-storage-file-datalake==12.14.0 backcall==0.2.0 bcrypt==3.2.0 beautifulsoup4==4.11.1 bertopic==0.16.0 black==22.6.0 bleach==4.1.0 blinker==1.4 blis==0.7.11 boto3==1.24.28 botocore==1.27.96 cachetools==5.3.2 catalogue==2.0.10 category-encoders==2.6.2 certifi==2022.12.7 cffi==1.15.1 chardet==4.0.0 charset-normalizer==2.0.4 click==8.1.7 cloudpathlib==0.16.0 cloudpickle==2.0.0 cmake==3.27.7 cmdstanpy==1.2.0 comm==0.1.2 confection==0.1.3 configparser==5.2.0 contourpy==1.0.5 cryptography==39.0.1 cycler==0.11.0 cymem==2.0.8 Cython==0.29.32 dacite==1.8.1 dash==2.14.2 dash-core-components==2.0.0 dash-html-components==2.0.0 dash-table==5.0.0 dask==2023.12.0 databricks-automl-runtime==0.2.20 databricks-cli==0.18.0 databricks-feature-engineering==0.1.2 databricks-feature-store==0.16.1 databricks-sdk==0.1.6 dataclasses-json==0.6.2 datasets==2.14.5 dbl-tempo==0.1.26 dbus-python==1.2.18 debugpy==1.6.7 decorator==5.1.1 deepspeed==0.11.1 defusedxml==0.7.1 dill==0.3.6 diskcache==5.6.3 distlib==0.3.7 distributed==2023.12.0 distro==1.7.0 distro-info==1.1+ubuntu0.1 docstring-to-markdown==0.11 dtw-python==1.3.0 einops==0.7.0 entrypoints==0.4 evaluate==0.4.1 executing==0.8.3 facets-overview==1.1.1 fastjsonschema==2.19.0 fasttext==0.9.2 filelock==3.9.0 filterpy==1.4.5 flash-attn==2.3.2 Flask==2.2.5 flatbuffers==23.5.26 fonttools==4.25.0 frozenlist==1.4.0 fs==2.4.16 fsspec==2023.6.0 fugue==0.8.7 fugue-sql-antlr==0.2.0 future==0.18.3 gast==0.4.0 gitdb==4.0.11 GitPython==3.1.27 gluonts==0.14.3 google-api-core==2.14.0 google-auth==2.21.0 google-auth-oauthlib==1.0.0 google-cloud-core==2.3.3 google-cloud-storage==2.11.0 google-crc32c==1.5.0 google-pasta==0.2.0 google-resumable-media==2.6.0 googleapis-common-protos==1.61.0 greenlet==2.0.1 grpcio==1.48.2 grpcio-status==1.48.1 gunicorn==20.1.0 gviz-api==1.10.0 h5py==3.7.0 hdbscan==0.8.33 hjson==3.1.0 hmmlearn==0.3.0 holidays==0.35 horovod==0.28.1 htmlmin==0.1.12 httplib2==0.20.2 huggingface-hub==0.16.4 idna==3.4 ImageHash==4.3.1 imbalanced-learn==0.11.0 importlib-metadata==7.0.0 importlib-resources==6.1.1 ipykernel==6.25.0 ipython==8.14.0 ipython-genutils==0.2.0 ipywidgets==7.7.2 isodate==0.6.1 itsdangerous==2.0.1 jedi==0.18.1 jeepney==0.7.1 Jinja2==3.1.2 jmespath==0.10.0 joblib==1.2.0 joblibspark==0.5.1 jsonpatch==1.33 jsonpointer==2.4 jsonschema==4.17.3 jupyter-client==7.3.4 jupyter-server==1.23.4 jupyter_core==5.2.0 jupyterlab-pygments==0.1.2 jupyterlab-widgets==1.0.0 keras==2.14.0 keras-self-attention==0.51.0 keyring==23.5.0 kiwisolver==1.4.4 kotsu==0.3.3 langchain==0.0.314 langcodes==3.3.0 langsmith==0.0.64 launchpadlib==1.10.16 lazr.restfulclient==0.14.4 lazr.uri==1.0.6 lazy_loader==0.3 libclang==15.0.6.1 librosa==0.10.1 lightgbm==4.1.0 lit==17.0.5 llvmlite==0.39.1 locket==1.0.0 lxml==4.9.1 Mako==1.2.0 Markdown==3.4.1 MarkupSafe==2.1.1 marshmallow==3.20.1 matplotlib==3.7.0 matplotlib-inline==0.1.6 mccabe==0.7.0 mistune==0.8.4 ml-dtypes==0.2.0 mlflow-skinny==2.8.0 mne==1.6.0 more-itertools==8.10.0 mpmath==1.2.1 msgpack==1.0.7 multidict==6.0.4 multimethod==1.10 multiprocess==0.70.14 murmurhash==1.0.10 mypy-extensions==0.4.3 nbclassic==0.5.2 nbclient==0.5.13 nbconvert==6.5.4 nbformat==5.7.0 nest-asyncio==1.5.6 networkx==2.8.4 ninja==1.11.1.1 nltk==3.7 nodeenv==1.8.0 notebook==6.5.2 notebook_shim==0.2.2 numba==0.56.4 numpy==1.23.5 oauthlib==3.2.0 openai==0.28.1 opt-einsum==3.3.0 packaging==22.0 pandas==1.5.3 pandocfilters==1.5.0 paramiko==2.9.2 parso==0.8.3 partd==1.4.1 pathspec==0.10.3 pathy==0.10.3 patsy==0.5.3 petastorm==0.12.1 pexpect==4.8.0 phik==0.12.3 pickleshare==0.7.5 Pillow==9.4.0 platformdirs==2.5.2 plotly==5.9.0 pluggy==1.0.0 pmdarima==2.0.3 polars==0.19.19 pooch==1.8.0 preshed==3.0.9 prompt-toolkit==3.0.36 prophet==1.1.5 protobuf==4.24.0 psutil==5.9.0 psycopg2==2.9.3 ptyprocess==0.7.0 pure-eval==0.2.2 py-cpuinfo==9.0.0 pyaml==23.9.7 pyarrow==8.0.0 pyarrow-hotfix==0.5 pyasn1==0.4.8 pyasn1-modules==0.2.8 pybind11==2.11.1 pycatch22==0.4.2 pycparser==2.21 pydantic==1.10.6 pyflakes==3.1.0 Pygments==2.11.2 PyGObject==3.42.1 PyJWT==2.3.0 pykalman-bardo==0.9.7 PyNaCl==1.5.0 pynndescent==0.5.11 pyod==1.1.2 pyodbc==4.0.32 pyparsing==3.0.9 pyright==1.1.294 pyrsistent==0.18.0 pytesseract==0.3.10 python-apt==2.4.0+ubuntu2 python-dateutil==2.8.2 python-editor==1.0.4 python-lsp-jsonrpc==1.1.1 python-lsp-server==1.8.0 pytoolconfig==1.2.5 pytz==2022.7 PyWavelets==1.4.1 PyYAML==6.0 pyzmq==23.2.0 qpd==0.4.4 regex==2022.7.9 requests==2.28.1 requests-oauthlib==1.3.1 responses==0.18.0 retrying==1.3.4 rope==1.7.0 rsa==4.9 s3transfer==0.6.2 safetensors==0.4.0 scikit-base==0.6.1 scikit-learn==1.1.1 scikit-optimize==0.9.0 scikit-posthocs==0.8.0 scipy==1.10.0 seaborn==0.12.2 seasonal==0.3.1 SecretStorage==3.3.1 Send2Trash==1.8.0 sentence-transformers==2.2.2 sentencepiece==0.1.99 shap==0.43.0 simplejson==3.17.6 six==1.16.0 skpro==2.1.1 sktime==0.24.1 slicer==0.0.7 smart-open==5.2.1 smmap==5.0.0 sniffio==1.2.0 sortedcontainers==2.4.0 soundfile==0.12.1 soupsieve==2.3.2.post1 soxr==0.3.7 spacy==3.7.1 spacy-legacy==3.0.12 spacy-loggers==1.0.5 spark-tensorflow-distributor==1.0.0 SQLAlchemy==1.4.39 sqlglot==20.2.0 sqlparse==0.4.2 srsly==2.4.8 ssh-import-id==5.11 stack-data==0.2.0 stanio==0.3.0 statsforecast==1.6.0 statsmodels==0.13.5 stumpy==1.12.0 sympy==1.11.1 tabulate==0.8.10 tangled-up-in-unicode==0.2.0 tbats==1.1.3 tblib==3.0.0 tenacity==8.1.0 tensorboard==2.14.0 tensorboard-data-server==0.7.2 tensorboard-plugin-profile==2.14.0 tensorflow==2.14.0 tensorflow-estimator==2.14.0 tensorflow-io-gcs-filesystem==0.34.0 termcolor==2.3.0 terminado==0.17.1 thinc==8.2.1 threadpoolctl==2.2.0 tiktoken==0.5.1 tinycss2==1.2.1 tokenize-rt==4.2.1 tokenizers==0.14.0 tomli==2.0.1 toolz==0.12.0 torch==2.0.1+cu118 torchvision==0.15.2+cu118 tornado==6.1 tqdm==4.64.1 traitlets==5.7.1 transformers==4.34.0 triad==0.9.3 triton==2.0.0 tsfresh==0.20.1 tslearn==0.5.3.2 typeguard==2.13.3 typer==0.9.0 typing-inspect==0.9.0 typing_extensions==4.4.0 ujson==5.4.0 umap-learn==0.5.5 unattended-upgrades==0.1 urllib3==1.26.14 virtualenv==20.16.7 visions==0.7.5 wadllib==1.3.6 wasabi==1.1.2 wcwidth==0.2.5 weasel==0.3.4 webencodings==0.5.1 websocket-client==0.58.0 Werkzeug==2.2.2 whatthepatch==1.0.2 widgetsnbextension==3.6.1 wordcloud==1.9.2 wrapt==1.14.1 xarray==2023.12.0 xgboost==1.7.6 xxhash==3.4.1 yapf==0.33.0 yarl==1.9.2 ydata-profiling==4.2.0 zict==3.0.0 zipp==3.11.0 ```
2hard
Title: GPU performance issues of flask framework Body: When I loaded an ultralytics YOLO model outside the framework, I read the image from the client in a request processing function and performed inference. I found that the inference speed was 10 times slower than normal. I don’t have this problem when I use fastapi. ```python from flask import Flask, request from ultralytics import YOLO import cv2 import numpy import base64 model = YOLO("/workspace/yolov8s.pt") def b64_cv(frame_b64): return cv2.imdecode(numpy.frombuffer(base64.b64decode(frame_b64), numpy.uint8), cv2.IMREAD_COLOR) app = Flask(__name__) @app.route('/frame', methods=['POST']) def read_item(): data = request.json frame = data.get('frame', None) results = model(source=b64_cv(frame)) return {} if __name__ == '__main__': app.run(host='0.0.0.0', port=8000) ``` ```python import requests import cv2 import numpy import base64 def cv_b64(frame_cv): return str(base64.b64encode(cv2.imencode(".jpg", frame_cv)[1]))[2:-1] while True: stream = cv2.VideoCapture("/workspace/road_30_1920x1080.mp4") while stream.isOpened(): ret, frame = stream.read() if not ret: break data = {"frame": cv_b64(frame)} response = requests.post(url="http://127.0.0.1:8000/frame", json=data) ``` Environment: - Python version: 3.10.12 - Flask version: 3.0.0
2hard
Title: Should we port bottleneck to C? Body: I'm trying to port nansum to C (without using cython) to get a feel for how bottleneck would look written in pure C. What I have so far (in the c_rewrite branch) is a nansum with reduced features that compiles but does not work at all. I have not yet tried to deal with reference counting because I don't yet know how. Any help, comments, appreciated. Here's a demo on how to compile: ``` /bottleneck/bottleneck/template (c_rewrite)$ python setup.py build_ext --inplace running build_ext building 'nansum' extension <snip> In [1]: from nansum import nansum In [2]: a=np.random.rand(4) In [3]: nansum(a) --------------------------------------------------------------------------- SystemError Traceback (most recent call last) <ipython-input-3-1d96a990bfd9> in <module>() ----> 1 nansum(a) SystemError: error return without exception set ```
2hard
Title: `predict_proba` documented with wrong output shape Body: According the docs, `predict_proba` returns > numpy array of shape (n_samples,) However it actually returns `(n_samples, n_classes)` https://github.com/yzhao062/pyod/blob/c8d07f723c588aee40fccad6d0258c814384a057/pyod/models/base.py#L197-L203
0easy
Title: How to install go,goland,clion,clang ctc,thank you Body:
3misc
Title: CMake Error at C:/dlib-19.6/dlib/cmake_utils/add_python_module:116 (message): Boost python library not found. Call Stack (most recent call first): CMakeLists.txt:9 (include) -- Configuring incomplete, errors occurred! See also "C:/dlib-19.6/tools/python/build/CMakeFiles/CMakeOutput.log". error: cmake configuration failed! Body: * face_recognition version: * Python version: 3.5 * Operating System: windows 10 ### Description trying to install face_recognition library ### What I Did ``` C:\dlib-19.6>python setup.py install running install running bdist_egg running build Detected Python architecture: 64bit Detected platform: win32 Removing build directory C:\dlib-19.6\./tools/python/build Configuring cmake ... -- Building for: Visual Studio 15 2017 -- The C compiler identification is MSVC 19.15.26730.0 -- The CXX compiler identification is MSVC 19.15.26730.0 -- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.15.26726/bin/Hostx86/x86/cl.exe -- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.15.26726/bin/Hostx86/x86/cl.exe -- works -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Detecting C compile features -- Detecting C compile features - done -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.15.26726/bin/Hostx86/x86/cl.exe -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.15.26726/bin/Hostx86/x86/cl.exe -- works -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Detecting CXX compile features -- Detecting CXX compile features - done CMake Warning at C:/Program Files/CMake/share/cmake-3.12/Modules/FindBoost.cmake:1727 (message): No header defined for python-py34; skipping header check Call Stack (most recent call first): C:/dlib-19.6/dlib/cmake_utils/add_python_module:61 (FIND_PACKAGE) CMakeLists.txt:9 (include) -- Could NOT find Boost CMake Warning at C:/Program Files/CMake/share/cmake-3.12/Modules/FindBoost.cmake:1727 (message): No header defined for python-py35; skipping header check Call Stack (most recent call first): C:/dlib-19.6/dlib/cmake_utils/add_python_module:63 (FIND_PACKAGE) CMakeLists.txt:9 (include) -- Could NOT find Boost -- Could NOT find Boost -- Could NOT find Boost -- Found PythonLibs: C:/Users/DELL/Anaconda3/libs/python36.lib (found suitable version "3.6.5", minimum required is "3.4") -- ***************************************************************************************************** -- We couldn't find the right version of boost python. If you installed boost and you are still getting this error then you might have installed a version of boost that was compiled with a different version of visual studio than the one you are using. So you have to make sure that the version of visual studio is the same version that was used to compile the copy of boost you are using. -- Set the BOOST_ROOT and BOOST_LIBRARYDIR environment variables before running cmake. -- E.g. Something like this: -- set BOOST_ROOT=C:\local\boost_1_57_0 -- set BOOST_LIBRARYDIR=C:\local\boost_1_57_0\stage\lib -- -- You will also likely need to compile boost yourself rather than using one of the precompiled -- windows binaries. Do this by going to the folder tools\build\ within boost and running -- bootstrap.bat. Then run the command: -- b2 install -- And then add the output bin folder to your PATH. Usually this is the C:\boost-build-engine\bin -- folder. Finally, go to the boost root and run a command like this: -- b2 -a --with-python address-model=64 toolset=msvc runtime-link=static -- When it completes, set BOOST_LIBRARYDIR equal to wherever b2 put the compiled libraries. -- Note that you will need to set the address-model based on if you want a 32 or 64bit python library. -- -- Next, when you invoke cmake to compile dlib you may have to use cmake's -G option to set the -- 64 vs. 32bit mode of visual studio. Also, if you want a Python3 library you will need to -- add -DPYTHON3=1. You do this with a statement like: -- cmake -G "Visual Studio 12 2013 Win64" -DPYTHON3=1 ..\..\tools\python -- Rather than: -- cmake ..\..\tools\python -- Which will build a 32bit Python2 module by default on most systems. -- -- ***************************************************************************************************** CMake Error at C:/dlib-19.6/dlib/cmake_utils/add_python_module:116 (message): Boost python library not found. Call Stack (most recent call first): CMakeLists.txt:9 (include) -- Configuring incomplete, errors occurred! See also "C:/dlib-19.6/tools/python/build/CMakeFiles/CMakeOutput.log". error: cmake configuration failed! ```
2hard
Title: Incompatible options: paragraph=True, output_format='dict' Body: Running the example: ```python import easyocr reader = easyocr.Reader(['ch_sim','en']) # need to run only once to load model into memory result = reader.readtext('chinese.jpg', paragraph=True, output_format='dict') ``` gives the error: ```python .../easyocr/easyocr.py in <listcomp>(.0) 365 return [item[1] for item in result] 366 elif output_format == 'dict': --> 367 return [ {'boxes':item[0],'text':item[1],'confident':item[2]} for item in result] 368 else: 369 return result IndexError: list index out of range ``` because `paragraph=True` option produces `result` that is list of 2-element lists, while `output_format='dict'` waits for 3-element list ("confident" is missing).
1medium
Title: Cannot move session to another day Body: **Is your feature request related to a problem? Please describe.** In https://indico.cern.ch/event/1381446/ I had a session scheduled on Wednesday and wanted to move the whole session to Friday. Strangely I could edit the start and end **times** of the session but not the day. ![Screenshot from 2024-06-17 09-12-26](https://github.com/indico/indico/assets/14927192/6460dec6-4a3d-4831-badf-76c8ea657ce9) **Describe the solution you'd like** I would like a calendar next to the starting times. **Describe alternatives you've considered** Instead I created a session on Friday and moved the talks to this new session one-by-one. That works for 5 talks, but can be painful when there are 20.
1medium
Title: ValueError while importing spacy module related to thinc (?) Body: This is the description of the error: "ValueError: numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject" ![image](https://github.com/user-attachments/assets/6976731b-630e-4a97-bcbd-39e0f47edb0a) ## Your Environment * Operating System: Windows * Python Version Used: 3.9.18 * spaCy Version Used: 3.7.6 * Environment Information: Enterprise codespace I encounter the error below when importing spacy module. It happens sometimes: ![image](https://github.com/user-attachments/assets/ab7bc2e1-e3ea-4a9e-a5b0-d9c7d471a15f)
2hard
Title: Update Spark notebook to use DataFrames Body: Spark 1.3 introduced DataFrames: > A DataFrame is a distributed collection of data organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood. DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs. https://spark.apache.org/docs/1.3.0/sql-programming-guide.html#dataframes Spark 1.6 introduces DataSets: > A new Dataset API. This API is an extension of Spark’s DataFrame API that supports static typing and user functions that run directly on existing JVM types (such as user classes, Avro schemas, etc). Dataset’s use the same runtime optimizer as DataFrames, but support compile-time type checking and offer better performance. More details on Datasets can be found on the SPARK-9999 JIRA. https://databricks.com/blog/2015/11/20/announcing-spark-1-6-preview-in-databricks.html Note: PySpark will included DataSets in the upcoming Spark 2.0.
1medium
Title: Integrate ZLUDA for AMD CUDA Body: **Describe the feature** @sklam, https://github.com/vosen/ZLUDA it can give feature run CUDA program on amd video cards if cuda code is optimized, and speed up work on amd.
2hard
Title: Issue with predictions values being too low (explain in body) Body: Ok, so i got this very frustrating issue where i have some timeseries that are, not linear, but they are cumulative. Its another electricity data usage dataset. What is going wrong is that the predictions are BELOW/LOWER than the historic series when there is no way that such a pattern would be learned. Since the series values are either 0 or positive i cant fathom why the predictions would start below the last known value. However, the actual predictions (what is returned by model.predict() are increasing in an accumulative manner, but they start to low. First i thought that there was some kind of issue with covariates, but removing them still caused the low predictions. First i used lightGBM, and then I tried nbeats and nhits which also showed the same erroneous predictions. Finally i tried DeepTCN model which does not follow this pattern! Still, when i look at target_series.tail() I can see that the last values were higher than the predictions. And a pattern that never decreases (though there are patches of same values (i.e. no increase)) #! changing the lags , output_chunk_length and metric parameters does not change this pattern LGBM_Model = LightGBMModel( lags=3, output_chunk_length=3, metric="rmse", ) LGBM_Model.fit(target) preds = LGBM_Model.predict(3) preds.values() Its as if the model it not seeing the last values in the target series. Even though i have checked that they are there with target.tail(), plus that TCN seemingly can avoid this pattern. How would i go about trouble shooting this issue? I just cant understand how those other models would find a decreasing pattern when such a pattern is nowhere in the pretty long series. To clarify the pattern a bit further: lets say the target series is [1, 2, 2, 3,4 ,5 ,6, 6, 7, 8,8, 9,10] and then the model with model.pred(n=3) would predict [9,10,11] as if it did not look at the last part of the target series.
2hard
Title: Why is a large proportion of candidates in the initial population = None? Body: Hello, I am working through the example notebook [https://github.com/trevorstephens/gplearn/blob/master/doc/gp_examples.ipynb](url) and am able to reproduce the same results. When I inspect the initial population `est_gp._programs[0]` only 139 candidates are a gplearn program and the remainder are `None`. I get similar results of a high proportion of the initial population being set to `None` when applying to my own regression problem. Why is this the case? Line 222 of [https://github.com/trevorstephens/gplearn/blob/master/gplearn/_program.py](url) (I think this is the right place to look) implies this should never happen. Thank you!
1medium
Title: Vision Transformer Body: Paper: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1medium
Title: Use Snips for offline NLU and Voice AI Body: At https://snips.ai we are working on a 100% private-by-design and offline Voice AI platform which would be perfectly suited for what you are doing: - offline library for NLU that can be used independently: https://github.com/snipsco/snips-nlu - use the whole platform if you also want to do offline and private-by-design speech recognition
1medium