text
stringlengths
20
57.3k
labels
class label
4 classes
Title: Custom metric for LinearRegression.gridsearch Body: Hi! I would like to pass this custom metric to gridsearch: ``` def asymmetric_custom_metric(y_true, y_pred, penalization_factor = 5): """ Custom loss function that penalizes predictions below the true value more than predictions above the value. Parameters: y_true (ndarray): Array of true values. y_pred (ndarray): Array of predicted values. Returns: float: Custom loss value. """ # Calculate the difference between true and predicted values diff = (y_pred - y_true).astype(float) # Calculate the loss loss = np.where(diff < 0, np.square(y_true - y_pred) * (1 + penalization_factor) , np.square(y_true - y_pred)) # Calculate the average loss avg_loss = np.mean(loss) return avg_loss ``` But gridsearch only accepts metrics comming directly from darts.metrics. There is a Wrapper to transform sklearn or custom metrics into a darts metric? Thanks! Brian.
1medium
Title: KeyError: 'LLVMPY_AddSymbol' Body: <!-- hello, I ran into a problem when using the numba library. when running any code using this library, the following error occurs: `File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\llvmlite\binding\ffi.py", line 141, in __getattr__ return self._fntab[name] ~~~~~~~~~~~^^^^^^ KeyError: 'LLVMPY_AddSymbol' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\llvmlite\binding\ffi.py", line 122, in _load_lib self._lib_handle = ctypes.CDLL(str(lib_path)) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\ctypes\__init__.py", line 379, in __init__ self._handle = _dlopen(self._name, mode) ^^^^^^^^^^^^^^^^^^^^^^^^^ FileNotFoundError: Could not find module 'C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\llvmlite\binding\llvmlite.dll' (or one of its dependencies). Try using the full path with constructor syntax. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\workp\test\main.py", line 3, in <module> from numba.core import types File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\numba\__init__.py", line 73, in <module> from numba.core import config File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\numba\core\config.py", line 17, in <module> import llvmlite.binding as ll File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\llvmlite\binding\__init__.py", line 4, in <module> from .dylib import * File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\llvmlite\binding\dylib.py", line 36, in <module> ffi.lib.LLVMPY_AddSymbol.argtypes = [ ^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\llvmlite\binding\ffi.py", line 144, in __getattr__ cfn = getattr(self._lib, name) ^^^^^^^^^ File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\llvmlite\binding\ffi.py", line 136, in _lib self._load_lib() File "C:\Users\admin\AppData\Local\Programs\Python\Python312\Lib\site-packages\llvmlite\binding\ffi.py", line 130, in _load_lib raise OSError("Could not find/load shared object file") from e OSError: Could not find/load shared object file` I run the code through paycharm 2024.2.1, on windows 11 pro. I installed this library via pip versions 25.0.1, 23.1, 23.2. I tried downloading the entire package, and 3 packages separately, checking the documentation. https://numba.readthedocs.io/en/stable/user/installing.html#numba-support-info I ran several versions of these packages, from the latest versions to versions that are supported on Python 3.9 . I tried to solve the problem on my own by reading various forums, checking the integrity and availability of files, and tried to run the code in different ways, but none of this helped. I really hope for your help --> ## Reporting a bug <!-- Before submitting a bug report please ensure that you can check off these boxes: --> - [x] I have tried using the latest released version of Numba (most recent is visible in the release notes (https://numba.readthedocs.io/en/stable/release-notes-overview.html). - [ ] I have included a self contained code sample to reproduce the problem. i.e. it's possible to run as 'python bug.py'. <!-- Please include details of the bug here, including, if applicable, what you expected to happen! -->
2hard
Title: Duplicate Values when use relationship type one-to-many in a JoinConfig with get_multi_joined Body: **Describe the bug or question** I'm trying to get data from tables where a user (table 1) can be a part of a company (table 2) and have multiple posts (table 3) on the company's forum. using get_multi_joined and joins_config, I want to get each user's company info and a list (won't be more than 5 items) of their posts on the forum but the posts are returning duplicate values. **To Reproduce** ```python # Your code here crud_user.get_multi_joined( "db": db, "is_deleted": False, "schema_to_select": UserModelCompPostsRead, "nest_joins": True, "joins_config": [ JoinConfig( model=CompanyInfo, join_on=User.company_id == CompanyInfo.id, join_prefix="company", schema_to_select=CompanyInfoRead, ) JoinConfig( model=ForumPosts, join_on=User.id == ForumPosts.user_id, join_prefix="forum_posts", schema_to_select=ForumPosts, relationship_type="one-to-many", ) ] ) ``` **Description** I'm receiving duplicates in the list of posts when the expected results should be an item in the list once it meets the join_on requirement. expectation: ``` "data": [ { "name": "John Kin", "id": 2, "company_id": 1, "company": { "name": "Company", "created_at": "2024-07-11T18:58:41.460483Z" }, "forum_posts": [ { "title": "Money Talks", "user_id": 2, "id": 41, }, { "title": "Green Goblin vs Spiderman", "user_id": 2, "id": 42, }, ] }, ... # other users ] ``` actual output: ``` "data": [ { "name": "John Kin", "id": 2, "company_id": 1, "company": { "name": "Company", "created_at": "2024-07-11T18:58:41.460483Z" }, "forum_posts": [ { "title": "Money Talks", "user_id": 2, "id": 41, }, { "title": "Green Goblin vs Spiderman", "user_id": 2, "id": 42, }, # values above are returned below too (duplicates) { "title": "Money Talks", "user_id": 2, "id": 41, }, { "title": "Green Goblin vs Spiderman", "user_id": 2, "id": 42, }, ] }, ... # other users ] ``` **Additional context** fastcrud = "^0.13.1" SQLAlchemy = "^2.0.25" fastapi = "^0.109.1"
1medium
Title: model.parameters() return [Parameter containing: tensor([], device='cuda:0', dtype=torch.bfloat16, requires_grad=True)] when using zero3 Body: ### System Info transformers 4.44.2 accelerate 1.2.1 deepspeed 0.12.2 torch 2.2.2 torchaudio 2.2.2 torchvision 0.17.2 ### Who can help? _No response_ ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [x] My own task or dataset (give details below) ### Reproduction Try to print **model.parameters()** in transfomers trainer(), but get **Parameter containing: tensor([], device='cuda:0', dtype=torch.bfloat16, requires_grad=True)** for all layers In fact, I am trying to return the correct **model.parameters()** in DeepSpeed Zero-3 mode and use the EMA model. Could you suggest any ways to solve the above issue, or any other methods to use the EMA model under Zero-3? ### Expected behavior expect to see the gathered parameters
2hard
Title: [BUG] Body: On editing source on "text" plugin of cms loses some of the data and changes it to something else. ## Steps to reproduce 1. Create a cms page 2. Click on the add plugin button and add `Text` plugin. 3. Click on the source button and put the source below ```<ul style="color: white;"> <li> <h4> <a href="https://www.google.com" target="_blank">Google</a> <a class="padding-left-5px" href="https://mail.google.com/" title="Gmail"> <i class="fa fa-envelope" aria-hidden="true"></i></a> </h4> </li> </ul> ``` ## Expected behaviour ![image](https://user-images.githubusercontent.com/79985986/165894654-74734b2a-d411-410c-af65-a8dee265a25a.png) ## Actual behaviour ![image](https://user-images.githubusercontent.com/79985986/165894663-d0e19d77-314e-46dc-ac0c-b2eba3d40686.png) This works fine and as expected Now if we do the above steps and 1. Click on `Text` plugin again and try to edit it. It removes the font-awesome code which was written earlier . ``` <ul style="color: white;"> <li> <h4><a href="https://www.google.com" target="_blank">Google</a> <a class="padding-left-5px" href="https://mail.google.com/" title="Gmail"> </a></h4> </li> </ul> ``` It looks like this after that. Now since the font awesome icon is removed if i save this again. It becomes something like below ![image](https://user-images.githubusercontent.com/79985986/165895021-b076190a-ec0c-445f-85ad-72353ff433cf.png) So my question is why the fontawesome code is getting removed.
1medium
Title: [BUG] Time series tabular model always uses fallback method (SeasonalNaive) for time series of length 1 Body: **Bug Report Checklist** <!-- Please ensure at least one of the following to help the developers troubleshoot the problem: --> - [x] I provided code that demonstrates a minimal reproducible example. <!-- Ideal, especially via source install --> - [x] I confirmed bug exists on the latest mainline of AutoGluon via source install. <!-- Preferred --> - [x] I confirmed bug exists on the latest stable version of AutoGluon. <!-- Unnecessary if prior items are checked --> **Describe the bug** The tabular time series models identify time series of length 1 as too short for inference, even when differencing is set to 0. These time series are thus predicted using the fallback method, SeasonalNaive. Specifically, [this line of code](https://github.com/autogluon/autogluon/blob/ea2e8ff7082454565fbae31ebd5653851d5b4601/timeseries/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py#L368) is causing the issue. **Expected behavior** When differencing isn't applied, I'd expect the tabular time series models to produce predictions for time series of length 1, rather than using a fallback method. **To Reproduce** Following simplified example reproduces the issue. Two time series (item_ids ['4123__23', '7510__21']) are of length 1 and are predicted using the fallback method (SeasonalNaive), although sufficient data is available for a tabular prediction. ```python import pandas from autogluon.timeseries import TimeSeriesPredictor from pandas import Timestamp data = [ {'item_id': '2527__18', 'timestamp': Timestamp('2008-01-01 00:00:00'), 'quantity_sold': 18.0}, {'item_id': '2527__18', 'timestamp': Timestamp('2009-01-01 00:00:00'), 'quantity_sold': 682.0}, {'item_id': '2572__16', 'timestamp': Timestamp('2006-01-01 00:00:00'), 'quantity_sold': 6.0}, {'item_id': '2572__16', 'timestamp': Timestamp('2007-01-01 00:00:00'), 'quantity_sold': 18.0}, {'item_id': '2572__16', 'timestamp': Timestamp('2008-01-01 00:00:00'), 'quantity_sold': 22.0}, {'item_id': '2572__16', 'timestamp': Timestamp('2009-01-01 00:00:00'), 'quantity_sold': 74.0}, {'item_id': '4123__23', 'timestamp': Timestamp('2009-01-01 00:00:00'), 'quantity_sold': 138.0}, {'item_id': '695__24', 'timestamp': Timestamp('2001-01-01 00:00:00'), 'quantity_sold': 4.0}, {'item_id': '695__24', 'timestamp': Timestamp('2002-01-01 00:00:00'), 'quantity_sold': 92.0}, {'item_id': '695__24', 'timestamp': Timestamp('2003-01-01 00:00:00'), 'quantity_sold': 40.0}, {'item_id': '695__24', 'timestamp': Timestamp('2004-01-01 00:00:00'), 'quantity_sold': 116.0}, {'item_id': '695__24', 'timestamp': Timestamp('2005-01-01 00:00:00'), 'quantity_sold': 48.0}, {'item_id': '695__24', 'timestamp': Timestamp('2006-01-01 00:00:00'), 'quantity_sold': 132.0}, {'item_id': '695__24', 'timestamp': Timestamp('2007-01-01 00:00:00'), 'quantity_sold': 6.0}, {'item_id': '695__24', 'timestamp': Timestamp('2008-01-01 00:00:00'), 'quantity_sold': 26.0}, {'item_id': '695__24', 'timestamp': Timestamp('2009-01-01 00:00:00'), 'quantity_sold': 6.0}, {'item_id': '7510__21', 'timestamp': Timestamp('2009-01-01 00:00:00'), 'quantity_sold': 56.0} ] df = pandas.DataFrame.from_dict(data) predictor = TimeSeriesPredictor( target='quantity_sold', prediction_length=2, freq='YS' ) predictor.fit( train_data=df, hyperparameters={ 'DirectTabular': {}, } ) predictor.predict(df) ``` **Screenshots / Logs** <!-- If applicable, add screenshots or logs to help explain your problem. --> ![image](https://github.com/user-attachments/assets/dd1cdd09-ee1d-4736-b7d1-80789a1a9d43) **Installed Versions** <!-- Please run the following code snippet: --> <details> ```python INSTALLED VERSIONS ------------------ date : 2024-08-07 time : 09:35:12.422961 python : 3.11.9.final.0 OS : Darwin OS-release : 23.6.0 Version : Darwin Kernel Version 23.6.0: Fri Jul 5 17:53:24 PDT 2024; root:xnu-10063.141.1~2/RELEASE_ARM64_T6020 machine : arm64 processor : arm num_cores : 12 cpu_ram_mb : 32768.0 cuda version : None num_gpus : 0 gpu_ram_mb : [] avail_disk_size_mb : 871868 accelerate : 0.21.0 autogluon : 1.1.1 autogluon.common : 1.1.1 autogluon.core : 1.1.1 autogluon.features : 1.1.1 autogluon.multimodal : 1.1.1 autogluon.tabular : 1.1.1 autogluon.timeseries : 1.1.1 boto3 : 1.34.154 catboost : None defusedxml : 0.7.1 evaluate : 0.4.2 fastai : 2.7.16 gluonts : 0.15.1 hyperopt : 0.2.7 imodels : None jinja2 : 3.1.4 joblib : 1.4.2 jsonschema : 4.21.1 lightgbm : 4.3.0 lightning : 2.3.3 matplotlib : 3.9.1 mlforecast : 0.10.0 networkx : 3.3 nlpaug : 1.1.11 nltk : 3.8.1 nptyping : 2.4.1 numpy : 1.26.4 nvidia-ml-py3 : 7.352.0 omegaconf : 2.2.3 onnxruntime-gpu : None openmim : 0.3.9 optimum : 1.17.1 optimum-intel : None orjson : 3.10.6 pandas : 2.2.2 pdf2image : 1.17.0 Pillow : 10.4.0 psutil : 5.9.8 pytesseract : 0.3.10 pytorch-lightning : 2.3.3 pytorch-metric-learning: 2.3.0 ray : 2.10.0 requests : 2.32.3 scikit-image : 0.20.0 scikit-learn : 1.4.0 scikit-learn-intelex : None scipy : 1.12.0 seqeval : 1.2.2 setuptools : 72.1.0 skl2onnx : None statsforecast : 1.4.0 tabpfn : None tensorboard : 2.17.0 text-unidecode : 1.3 timm : 0.9.16 torch : 2.3.1 torchmetrics : 1.2.1 torchvision : 0.18.1 tqdm : 4.66.5 transformers : 4.40.2 utilsforecast : 0.0.10 vowpalwabbit : None xgboost : 2.0.3 ``` </details>
1medium
Title: [Feature] window 客户端使用麦克风 Body: ### 产品版本 v4.1 ### 版本类型 - [ ] 社区版 - [ ] 企业版 - [x] 企业试用版 ### 安装方式 - [ ] 在线安装 (一键命令安装) - [x] 离线包安装 - [ ] All-in-One - [ ] 1Panel - [ ] Kubernetes - [ ] 源码安装 ### ⭐️ 需求描述 我们有远程办公的需求,可使用公司電腦上的Telegram或Whatsapp做通話,麥克風的聲音會傳至公司的電腦透過公司電腦再傳送到對方那嘛(windows 远程桌面客户端) ### 解决方案 sorry ### 补充信息 _No response_
1medium
Title: I would like the option to disable the DNS Cache and do name resolution on every request Body: ## Checklist - [ ] I've searched for similar feature requests. --- ## Enhancement request … --- ## Problem it solves E.g. “I'm always frustrated when […]”, “I’m trying to do […] so that […]”. --- ## Additional information, screenshots, or code examples …
1medium
Title: image Docker.io Body: Message in English: Hello Charles, I noticed that the official Docker image for sqlite-web on Docker Hub is from 2020. Because of this, I encountered issues with missing Insert and Update buttons, despite these features being present in the latest version on GitHub. After building a new Docker image from the most recent GitHub code, everything worked perfectly. Could you please update the official Docker Hub image so that users can easily access the newest version of sqlite-web? Thank you and best regards, J.Scheuner
1medium
Title: how to get the envirement mesh Body: it is a great project ,I use the nerf garden dataset to reconstruction and i only get the table in the mesh. but i wanna get all environment in the mesh ,how can i get that ,is there anything i can do to achieve my target
1medium
Title: Messagebus send isn't working Body: ## Software: * Picroft * 19.2.13 ## Problem This used to work before, but I've seen some work with refactoring the messagebus code, and that probably broke it. This is basically my code: ```python from mycroft.messagebus.send import send send("skill.communications.device.new", {"message": "10.0.1.7"}) ``` Which sends the message `skill.communications.device.new` from the code in my (communications) skill which handles new devices, to the Mycroft skill, to be registered. Now it is failing with the error: ```python-traceback Traceback (most recent call last): File "/usr/lib/python3.5/threading.py", line 914, in _bootstrap_inner self.run() File "/home/pi/mycroft-core/.venv/lib/python3.5/site-packages/zeroconf.py", line 1423, in run handler(self.zc) File "/home/pi/mycroft-core/.venv/lib/python3.5/site-packages/zeroconf.py", line 1363, in <lambda> zeroconf=zeroconf, service_type=self.type, name=name, state_change=state_change File "/home/pi/mycroft-core/.venv/lib/python3.5/site-packages/zeroconf.py", line 1250, in fire h(**kwargs) File "/home/pi/mycroft-core/.venv/lib/python3.5/site-packages/zeroconf.py", line 1335, in on_change listener.add_service(*args) File "/opt/mycroft/skills/communications-skill.linuss1/shippingHandling.py", line 107, in add_service send_communication_to_messagebus("device", ip) File "/opt/mycroft/skills/communications-skill.linuss1/shippingHandling.py", line 26, in send_communication_to_messagebus send("skill.communications.{}.new".format(msg_type), {"message": "{}".format(str(msg))}) File "/home/pi/mycroft-core/mycroft/messagebus/send.py", line 70, in send url = MessageBusClient.build_url( AttributeError: type object 'MessageBusClient' has no attribute 'build_url' ```
1medium
Title: OpenLineage can silently lose Snowflake query_ids and can't support multiple query_ids Body: ### Apache Airflow Provider(s) openlineage ### Versions of Apache Airflow Providers latest ### Apache Airflow version 2.X ### Operating System macos ### Deployment Virtualenv installation ### Deployment details _No response_ ### What happened When using `SqlExecuteQueryOperator` with Snowflake, and running a query with multiple statements in it, OpenLineage will only include first `query_id` in `ExternalQueryRunFacet`. This is problematic, as users don't have full control on how the statements are executed (when query consists of multiple statements and `split_statements=False` operator throws an error `snowflake.connector.errors.ProgrammingError: 000008 (0A000): 01bad84f-0000-4392-0000-3d95000110ce: Actual statement count 3 did not match the desired statement count 1.`). The only solution for users to retrieve all query_ids in OL events is to set `split_statements=False` and make sure each task runs a single statement, which is rarely a case. In BQ, similar problem is solved by ["parent_query_job"](https://github.com/apache/airflow/blob/ab3a1869c57def3ee74a925709cece4c7e07b891/providers/google/src/airflow/providers/google/cloud/openlineage/mixins.py#L109) executing each statement within a "child_query_job" with a link to the parent job, so that it's easy to access all ids later on. I couldn't find a similar mechanism in Snowflake. ### What you think should happen instead Ideally, from within a single task (SqlExecuteQueryOperator) we would emit a separate OL event for each statement run, containing parentRunFacet pointing to the Airflow task. This may however take some time to implement properly and may? (or not) need some adjustments from the consumers? As a partial solution, we could extend `ExternalQueryRunFacet` with a new property that accepts multiple `externalQueryIds`. This requires some discussion from OL community as how it fits to the spec. Another small note, right now we are already sending the entire sql query (with all the statements) in `SQLJobFacet`, regardless if they execute as separate "queries" or not. So it would probably need adjustment as well. ### How to reproduce Run a sample query like: ``` USE WAREHOUSE COMPUTE_WH; CREATE OR REPLACE TABLE test.public.result AS SELECT * FROM snowflake_sample_data.tpch_sf1.customer; ``` You can see in Snowflake that this resulted in two queries being run, with two separate query_ids and only first one is included in OpenLineage event. ### Anything else _No response_ ### Are you willing to submit PR? - [x] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
1medium
Title: Validation error on serializer used only for responses Body: Note: This may be what https://github.com/axnsan12/drf-yasg/issues/51 was trying to get at... Trying to do this, but getting a validation error ("... 'ssv': "Unresolvable JSON pointer: 'definitions/Detail'") ``` class DetailSerializer(serializers.Serializer): detail = serializers.CharField() ``` ``` class ManufacturerViewSet(viewsets.ModelViewSet): serializer_class = ManufacturerSerializer model = Manufacturer queryset = Manufacturer.objects.all() @swagger_auto_schema(responses={404: openapi.Response("Not found or Not accessible", DetailSerializer, examples={ 'Not found': DetailSerializer({'detail':'Not found'}).data, 'Not accessible': DetailSerializer({'detail':'Not accessible'}).data, }, )}) def retrieve(self, request, *args, **kwargs): return super().retrieve(self, request, *args, **kwargs) ``` However, if I add the serializer to recognized model, it does work, e.g., ``` class ManufacturerSerializer(serializers.ModelSerializer): status = DetailSerializer(many=False) class Meta: model = Manufacturer fields = '__all__' ``` Full text of validation error... ``` {'flex': "'paths':\n" " - '/manufacturers/{id}/':\n" " - 'get':\n" " - 'responses':\n" " - '404':\n" " - 'referenceObject':\n" " - 'additionalProperties':\n" ' - "When `additionalProperties` is False, ' 'no unspecified properties are allowed. The following unspecified ' "properties were found:\\n\\t`{'headers', 'description', 'examples', " '\'schema\'}`"\n' " - 'required':\n" " - '$ref':\n" " - 'This value is required'\n" " - 'responseObject':\n" " - 'schema':\n" " - '$ref':\n" " - 'The $ref `#/definitions/Detail` " "was not found in the schema'", 'ssv': "Unresolvable JSON pointer: 'definitions/Detail'"} ```
1medium
Title: Accessing unselected columns should raise an error rather that return None Body: Hello! When one select columns with `Table.select()`, the returned object will have only part of attributes. Currently, gino (0.4.1) would return `None` when accessing attributes that weren't selected. However, accessing unselected attributes usually mean that there is a bug somewhere so it would be better to throw an appropriate error.
1medium
Title: Logodds: difference between contributions plot and prediction box Body: From the code ![image](https://github.com/oegedijk/explainerdashboard/assets/145360667/44ae1a9d-5b54-46f7-8ed6-1233d933e4ff) I built an explainer dashboard, which includes the following outputs: <img width="497" alt="ExplainerDashboard_PredictionBox" src="https://github.com/oegedijk/explainerdashboard/assets/145360667/60cf5af5-0c9d-4f1f-acbc-54d9d5bbe82a"> <img width="491" alt="ExplainerDashboard_ContributionsPlot" src="https://github.com/oegedijk/explainerdashboard/assets/145360667/310decbc-dea6-4869-9a1b-bb99661f8e3a"> The underlying problem is one of multiclassification, with classes 0, 1 and 2. The model used was LGBM. In the previous images, I chose class 2 as the positive class. My question is why the logodd predicted in the Contributions Plot is different from the logodd of class 2 in the Prediction box and how is the first logodd calculated?
1medium
Title: Visualization for model interpretation Body: I took at look at AllenNLP Interpret https://arxiv.org/pdf/1909.09251.pdf, which implements the saliency map for important tokens, and adversarial attacks with input reduction or word hotflip. These methods seem to be quite useful in helping users understand what the model learns and when it fails.
1medium
Title: `word2vec.doesnt_match` numpy vstack deprecation warning Body: #### Problem description I followed [this instruction](https://radimrehurek.com/gensim/scripts/glove2word2vec.html) to load GloVe model. When I run: `model.doesnt_match("breakfast cereal dinner lunch".split())` from the [tutorial](https://rare-technologies.com/word2vec-tutorial/), it produces FutureWarning on the `vstack` function. It seems that [I am not the first person to encounter this error as well](https://stackoverflow.com/questions/56593904/word2vec-doesnt-match-function-throws-numpy-warning). It might also be similar to [Issue 2432](https://github.com/RaRe-Technologies/gensim/issues/2432). The error reads: > C:\Path_to_gensim\keyedvectors.py:877: FutureWarning: arrays to stack must be passed as a "sequence" type such as list or tuple. Support for non-sequence iterables such as generators is deprecated as of NumPy 1.16 and will raise an error in the future. > vectors = vstack(self.word_vec(word, use_norm=True) for word in used_words).astype(REAL) #### Steps/code/corpus to reproduce ```python from gensim.test.utils import datapath, get_tmpfile from gensim.models import KeyedVectors from gensim.scripts.glove2word2vec import glove2word2vec glove_file = datapath('test_glove.txt') tmp_file = get_tmpfile("test_word2vec.txt") _ = glove2word2vec(glove_file, tmp_file) model = KeyedVectors.load_word2vec_format(tmp_file) model.doesnt_match("breakfast cereal dinner lunch".split()) ``` #### Versions ```python Windows-10-10.0.17763-SP0 python 3.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2020, 23:03:10) [MSC v.1916 64 bit (AMD64)] Bits 64 NumPy 1.19.0 SciPy 1.5.2 gensim 3.8.3 FAST_VERSION 0 ```
0easy
Title: Having problems using with fairseq Body: ## ❓Question The library [fairseq](https://github.com/facebookresearch/fairseq/) has built in support for aim, but I am struggling to get it working. I'm not sure if it's something I'm doing wrong or if maybe the fairseq support is out of date, but the fairseq repo is fairly inactive so I thought I would ask here. I am working locally and run `aim server`, and see: "Server is mounted on 0.0.0.0:53800". I then run my fairseq experiment, adding to my config.yaml file: ``` common: aim_repo: aim://0.0.0.0:53800 ``` then run my experiment. It seems to be working initially - aim detects the experiment and the log starts with: ``` [2023-11-15 14:31:07,453][fairseq.logging.progress_bar][INFO] - Storing logs at Aim repo: aim://0.0.0.0:53800 [2023-11-15 14:31:07,480][aim.sdk.reporter][INFO] - creating RunStatusReporter for f6f19ecf0e2147b19e24d52f [2023-11-15 14:31:07,482][aim.sdk.reporter][INFO] - starting from: {} [2023-11-15 14:31:07,482][aim.sdk.reporter][INFO] - starting writer thread for <aim.sdk.reporter.RunStatusReporter object at 0x7f57117363e0> [2023-11-15 14:31:08,471][fairseq.trainer][INFO] - begin training epoch 1 [2023-11-15 14:31:08,471][fairseq_cli.train][INFO] - Start iterating over samples [2023-11-15 14:31:10,821][fairseq.trainer][INFO] - NOTE: gradient overflow detected, ignoring gradient, setting loss scale to: 64.0 [2023-11-15 14:31:12,261][fairseq.trainer][INFO] - NOTE: gradient overflow detected, ignoring gradient, setting loss scale to: 32.0 [2023-11-15 14:31:12,261][fairseq_cli.train][INFO] - begin validation on "valid" subset [2023-11-15 14:31:12,266][fairseq.logging.progress_bar][INFO] - Storing logs at Aim repo: aim://0.0.0.0:53800 [2023-11-15 14:31:12,283][fairseq.logging.progress_bar][INFO] - Appending to run: f6f19ecf0e2147b19e24d52f ``` but then I get an error: ``` ... File "/lib/python3.10/site-packages/fairseq/logging/progress_bar.py", line 64, in progress_bar bar = AimProgressBarWrapper( File "/lib/python3.10/site-packages/fairseq/logging/progress_bar.py", line 365, in __init__ self.run = get_aim_run(aim_repo, aim_run_hash) File "/lib/python3.10/site-packages/fairseq/logging/progress_bar.py", line 333, in get_aim_run return Run(run_hash=run_hash, repo=repo) File "/lib/python3.10/site-packages/aim/ext/exception_resistant.py", line 70, in wrapper _SafeModeConfig.exception_callback(e, func) File "/lib/python3.10/site-packages/aim/ext/exception_resistant.py", line 47, in reraise_exception raise e File "/lib/python3.10/site-packages/aim/ext/exception_resistant.py", line 68, in wrapper return func(*args, **kwargs) File "/lib/python3.10/site-packages/aim/sdk/run.py", line 828, in __init__ super().__init__(run_hash, repo=repo, read_only=read_only, experiment=experiment, force_resume=force_resume) File "/lib/python3.10/site-packages/aim/sdk/run.py", line 276, in __init__ super().__init__(run_hash, repo=repo, read_only=read_only, force_resume=force_resume) File "/lib/python3.10/site-packages/aim/sdk/base_run.py", line 50, in __init__ self._lock.lock(force=force_resume) File "/lib/python3.10/site-packages/aim/storage/lock_proxy.py", line 38, in lock return self._rpc_client.run_instruction(self._hash, self._handler, 'lock', (force,)) File "/lib/python3.10/site-packages/aim/ext/transport/client.py", line 260, in run_instruction return self._run_read_instructions(queue_id, resource, method, args) File "/lib/python3.10/site-packages/aim/ext/transport/client.py", line 285, in _run_read_instructions raise_exception(status_msg.header.exception) File lib/python3.10/site-packages/aim/ext/transport/message_utils.py", line 76, in raise_exception raise exception(*args) if args else exception() TypeError: Timeout.__init__() missing 1 required positional argument: 'lock_file' Exception in thread Thread-13 (worker): Traceback (most recent call last): File "lib/python3.10/threading.py", line 1016, in _bootstrap_inner self.run() File "lib/python3.10/threading.py", line 953, in run self._target(*self._args, **self._kwargs) File "/lib/python3.10/site-packages/aim/ext/transport/rpc_queue.py", line 55, in worker if self._try_exec_task(task_f, *args): File "/lib/python3.10/site-packages/aim/ext/transport/rpc_queue.py", line 81, in _try_exec_task task_f(*args) File "/lib/python3.10/site-packages/aim/ext/transport/client.py", line 301, in _run_write_instructions raise_exception(response.exception) File "/python3.10/site-packages/aim/ext/transport/message_utils.py", line 76, in raise_exception raise exception(*args) if args else exception() aim.ext.transport.message_utils.UnauthorizedRequestError: 3310c526-aa51-47ef-ba87-fbf75f80f610 ``` Does anyone have any idea what might be causing this/if there's something wrong with the approach I'm taking? I've tried with a variety of different aim versions (going back to the versions when fairseq was more actively being developed) and I still get errors.
1medium
Title: order: combining different xarray variables followed by a reduction orders very inefficiently Body: Lets look at the following example: ``` import xarray as xr import dask.array as da size = 50 ds = xr.Dataset( dict( u=( ["time", "j", "i"], da.random.random((size, 20, 20), chunks=(10, -1, -1)), ), v=( ["time", "j", "i"], da.random.random((size, 20, 20), chunks=(10, -1, -1)), ), w=( ["time", "j", "i"], da.random.random((size, 20, 20), chunks=(10, -1, -1)), ), ) ) ds["uv"] = ds.u * ds.v ds["vw"] = ds.v * ds.w ds = ds.fillna(199) ``` We are combining u and v and then v and w. Not having a reduction after that step generally works fine: <img width="1321" alt="Screenshot 2025-01-07 at 16 21 32" src="https://github.com/user-attachments/assets/d72431d8-44bf-4bb1-b335-99480128c453" /> The individual chunks in one array are independent of all other chunks, so we can process chunk by chunk for all data arrays. Adding a reduction after these cross dependencies makes things go sideways: Add: ``` ds = ds.count() ``` The ordering algorithm eagerly processes a complete tree reduction for the first variable ``uv`` before touching anything from ``vw``. This means that the data array ``v`` is loaded completely into memory when the first tree reduction is finished before we are tackling the ``vw`` and thus we can't release any chunk from ``v``. <img width="1511" alt="Screenshot 2025-01-07 at 16 21 12" src="https://github.com/user-attachments/assets/977a78f1-a11c-4ecd-b468-392a2c7f9c98" /> I am not sure what a good solution here would look like. Ideally, the ordering algorithm would know that the ``v`` chunks are a lot larger than the reduced chunks of the ``uv`` combination and thus prefer processing ``v`` before starting with a new chunk of ``uv``. Alternatively, we could load ``v`` twice, i.e. drop the v chunks after they are added to ``uv``. This is the pattern that kills https://github.com/coiled/benchmarks/blob/main/tests/geospatial/workloads/atmospheric_circulation.py task graph: ``` from dask.base import collections_to_dsk dsk = collections_to_dsk([ds.uv.data, ds.vw.data], optimize_graph=True) ``` cc @fjetter
2hard
Title: Exporting out of memory dataframe to parquet error Body: I am trying to export an out of memory dataframe to parquet as in the following code but i keep getting the following error. Code: ''' import numpy as np from matplotlib import pyplot as plt import vaex as vd def custom_shift(df, column): # Extract the values of the column values = vd.from_arrays(column=df[f'{column}'].values) # Create a new shifted column with None as the first value d = vd.from_arrays(column=[None]) shifted_values = vd.concat([d, values[:-1]]) shifted_values = vd.from_arrays(ClosePrice_shifted=shifted_values).ClosePrice_shifted.values df.add_column(f'{column}_shifted', shifted_values) # Add the shifted values as a new column return df def get_threshold(daily_returns, lookback=40): ewm_std = np.abs(daily_returns.rolling(window=lookback).std()) threshold = np.exp(ewm_std) return threshold.mean() * 0.1 ddf = custom_shift(ddf, 'ClosePrice') ddf = ddf.dropna() ddf['daily_returns'] = ddf['ClosePrice'] / ddf['ClosePrice_shifted'] - 1 ddf['threshold'] = (ddf['daily_returns'].apply(get_threshold)) ddf.export_parquet('dollar_bars_threshold.parquet', engine='pyarrow') ''' Error: Traceback (most recent call last): File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\scopes.py", line 113, in evaluate result = self[expression] File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\scopes.py", line 198, in __getitem__ raise KeyError("Unknown variables or column: %r" % (variable,)) KeyError: "Unknown variables or column: '((ClosePrice / ClosePrice_shifted) - 1)'" During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 2273, in data_type data = self.evaluate(expression, 0, 1, filtered=False, array_type=array_type, parallel=False) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 3095, in evaluate return self._evaluate_implementation(expression, i1=i1, i2=i2, out=out, selection=selection, filtered=filtered, array_type=array_type, parallel=parallel, chunk_size=chunk_size, progress=progress) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 6562, in _evaluate_implementation value = block_scope.evaluate(expression) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\scopes.py", line 113, in evaluate result = self[expression] File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\scopes.py", line 188, in __getitem__ values = self.evaluate(expression) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\scopes.py", line 119, in evaluate result = eval(expression, expression_namespace, self) File "<string>", line 1, in <module> File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\arrow\numpy_dispatch.py", line 74, in operator result_data = a.add_missing(result_data) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\arrow\numpy_dispatch.py", line 27, in add_missing ar = vaex.array_types.to_arrow(ar) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\array_types.py", line 184, in to_arrow return pa.array(x) File "pyarrow\array.pxi", line 340, in pyarrow.lib.array File "pyarrow\array.pxi", line 86, in pyarrow.lib._ndarray_to_array File "pyarrow\error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\Intijir\PycharmProjects\quantStrategy\Data\Labeling\cumulative_sum.py", line 89, in <module> ddf.export_parquet('dollar_bars_threshold.parquet', engine='pyarrow') File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 6823, in export_parquet schema = self.schema_arrow(reduce_large=True) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 2335, in schema_arrow return pa.schema({name: reduce(dtype.arrow) for name, dtype in self.schema().items()}) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 2323, in schema return {column_name:self.data_type(column_name) for column_name in self.get_column_names()} File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 2323, in <dictcomp> return {column_name:self.data_type(column_name) for column_name in self.get_column_names()} File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 2275, in data_type data = self.evaluate(expression, 0, 1, filtered=True, array_type=array_type, parallel=False) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 3095, in evaluate return self._evaluate_implementation(expression, i1=i1, i2=i2, out=out, selection=selection, filtered=filtered, array_type=array_type, parallel=parallel, chunk_size=chunk_size, progress=progress) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 6402, in _evaluate_implementation max_stop = (len(self) if (self.filtered and filtered) else self.length_unfiltered()) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 4326, in __len__ self._cached_filtered_length = int(self.count()) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 967, in count return self._compute_agg('count', expression, binby, limits, shape, selection, delay, edges, progress, array_type=array_type) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 941, in _compute_agg return self._delay(delay, progressbar.exit_on(var)) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 1780, in _delay self.execute() File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataframe.py", line 421, in execute self.executor.execute() File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\execution.py", line 308, in execute for _ in self.execute_generator(): File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\execution.py", line 432, in execute_generator yield from self.thread_pool.map(self.process_part, dataset.chunk_iterator(run.dataset_deps, chunk_size), File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\multithreading.py", line 100, in map iterator = super(ThreadPoolIndex, self).map(wrapped, cancellable_iter()) File "C:\Users\Intijir\AppData\Local\Programs\Python\Python39\lib\concurrent\futures\_base.py", line 598, in map fs = [self.submit(fn, *args) for args in zip(*iterables)] File "C:\Users\Intijir\AppData\Local\Programs\Python\Python39\lib\concurrent\futures\_base.py", line 598, in <listcomp> fs = [self.submit(fn, *args) for args in zip(*iterables)] File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\multithreading.py", line 86, in cancellable_iter for value in chunk_iterator: File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\dataset.py", line 1257, in chunk_iterator for (i1, i2, ichunks), (j1, j2, jchunks) in zip( File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\arrow\dataset.py", line 182, in chunk_iterator chunks = chunks_future.result() File "C:\Users\Intijir\AppData\Local\Programs\Python\Python39\lib\concurrent\futures\_base.py", line 446, in result return self.__get_result() File "C:\Users\Intijir\AppData\Local\Programs\Python\Python39\lib\concurrent\futures\_base.py", line 391, in __get_result raise self._exception File "C:\Users\Intijir\AppData\Local\Programs\Python\Python39\lib\concurrent\futures\thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "C:\Users\Intijir\PycharmProjects\quantStrategy\venv\lib\site-packages\vaex\arrow\dataset.py", line 114, in reader table = fragment.to_table(columns=list(columns_physical), use_threads=False) File "pyarrow\_dataset.pyx", line 1613, in pyarrow._dataset.Fragment.to_table File "pyarrow\_dataset.pyx", line 3713, in pyarrow._dataset.Scanner.to_table File "pyarrow\error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow\error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowMemoryError: malloc of size 8388608 failed Thanks!
2hard
Title: Looking for performance metric for cyclegan Body: Hi, we often apply cycleGAN for unpaired data. So, some of the performance metric will be not applied - SSIM - PSNR For my dataset, I would like to use cyclegan to mapping an image from winter session to spring session and they have no pair data for each image. Could you tell me how can I evaluate the cyclegan performance (i.e how to know the output is close to a realistic image...)
1medium
Title: Question about the backward of the quantize function Body: Usage Questions Only: I have a question about quantize function in the dorefa paper. ![_20180118155814](https://user-images.githubusercontent.com/19725474/35086679-6ea44784-fc68-11e7-981d-03cd69819feb.png) I have confused to the process about find out the derivative r0/ri
3misc
Title: If I want to use /u as a placeholder instead of /t, what do I need to do Body:
1medium
Title: Using `format` as a query parameter for certain URLs causes `requests` to miss the `?` query string separator Body: <!-- Summary. --> Using `format` as a query parameter for certain URLs causes `requests` to miss the `?` query string separator ## Expected Result I expect the `?` separator to be present whenever any query parameters are provided. <!-- What you expected. --> ## Actual Result The `?` separator is not present. <!-- What happened instead. --> ## Reproduction Steps'' ```python >>> import requests >>> requests.__version__ '2.28.1' >>> requests.get("https://www.uniprot.org/uniprotkb/search", params={"format": "json"}).url 'https://rest.uniprot.org/uniprotkb/searchformat=json' >>> requests.get("https://www.uniprot.org", params={"format": "json"}).url 'https://rest.uniprot.org/format=json' >>> requests.get("https://www.uniprot.org/uniprotkb/search", params={"size": "500"}).url 'https://www.uniprot.org/uniprotkb/search?size=500' >>> requests.get("https://www.google.com", params={"format": "json"}).url 'https://www.google.com/?format=json' ``` Note how the same issue happens in different subdomains of `uniprot.org` but that it doesn't happen with `google.com` ## System Information $ python -m requests.help ```json { "chardet": { "version": null }, "charset_normalizer": { "version": "2.1.0" }, "cryptography": { "version": "" }, "idna": { "version": "3.3" }, "implementation": { "name": "CPython", "version": "3.9.7" }, "platform": { "release": "5.13.0-52-generic", "system": "Linux" }, "pyOpenSSL": { "openssl_version": "", "version": null }, "requests": { "version": "2.28.1" }, "system_ssl": { "version": "101010cf" }, "urllib3": { "version": "1.26.10" }, "using_charset_normalizer": true, "using_pyopenssl": false } ``` <!-- This command is only available on Requests v2.16.4 and greater. Otherwise, please provide some basic information about your system (Python version, operating system, &c). -->
1medium
Title: force_unicode - py3 compatibility Body: ``` 'jet_tags' is not a valid tag library: ImportError raised loading jet.templatetags.jet_tags: cannot import name 'force_unicode' ``` http://django.readthedocs.org/en/latest/topics/python3.html
1medium
Title: NewConnectionError Body: When I pass in a request url for a url that does not respond I get a ```python3 request = requests.get( "url" proxies=proxies, ) ``` ``` Error: SOCKSHTTPSConnectionPool(host='atxdyqbqutne3q0hoidwnjkxzxzyogtw0boudm7ztiwrdxrucedrsolw.onion', port=443): Max retries exceeded with url: / (Caused by NewConnectionError('<urllib3.contrib.socks.SOCKSHTTPSConnection object at 0xffff8fbf9690>: Failed to establish a new connection: 0x01: General SOCKS server failure')) ``` But when I also kill my proxies I get the same error. This should not be, how can I catch the different errors and understand what I'm dealing with? Is this behaviour expected? If so, why?
1medium
Title: Request to add xgboost Body:
1medium
Title: 50etf(510050.SH)基金复权因子数据缺失 Body: data = ts_api.fund_adj(ts_code='510050.SH', start_date='20190101', end_date='20191231') 50etf(510050.SH)基金复权因子缺失下面几个日期的数据: 20190701 20190807 20190826 20191028 20191029 tushare id: 216155(glhyy11313081@163.com)
1medium
Title: [DOC] Install django-cms by hand instruction is incomplete Body: ## Description If you follow the instructions - this will lead to the installation of a broken version of django-cms, because `pip install django-cms` will install django 4 as a dependency, which we don't support * [x] Yes, I want to help fix this issue and I will join #workgroup-documentation on [Slack](https://www.django-cms.org/slack) to confirm with the team that a PR is welcome. * [ ] No, I only want to report the issue.
0easy
Title: Receive empty list of related resources after upgrade from 0.30.1 to 0.31.x Body: Such kind of requests always returns empty list: Request: `/addresses/43/values` Response: `{ "data": [], "links": {"self": "http://127.0.0.1:5000/address_values"}, "meta": {"count": 0}, "jsonapi": {"version": "1.0"} }` If I try to get the same resources using the filter it returns expected result. `/address_values?filter=[{"name":"address__id", "op":"has", "val":43}]` On 0.30.1 everything works as expected.
1medium
Title: After update to 3.4: unknown error: Runtime.evaluate threw exception: SyntaxError: missing ) after argument list Body: Thanks to the author for writing such a powerful, elegant open source product, I'm happy to update to 3.4 now, but I'm having problems after updating to the new version, as the author says it's a major update that may have an impact on the code, and unfortunately I'm having a problem right now after updating to the new version. **### Basic environmental information:** python 3.9.2 debian 11 bullseye google-chrome 109.*stable/110.*beta selenium: The latest docker: No docker **### Error message:** Traceback (most recent call last): File "/usr/local/lib/python3.9/dist-packages/selenium/webdriver/remote/errorhandler.py", line 245, in check_response raise exception_class(message, screen, stacktrace) selenium.common.exceptions.WebDriverException: Message: unknown error: Runtime.evaluate threw exception: SyntaxError: missing ) after argument list (Session info: headless chrome=109.0.5414.119) Stacktrace: #0 0x55e3dc84d303 <unknown> #1 0x55e3dc621d37 <unknown> #2 0x55e3dc62d8df <unknown> #3 0x55e3dc624df1 <unknown> #4 0x55e3dc624931 <unknown> #5 0x55e3dc625351 <unknown> #6 0x55e3dc6256dc <unknown> #7 0x55e3dc65e188 <unknown> #8 0x55e3dc65e6c1 <unknown> #9 0x55e3dc698b34 <unknown> #10 0x55e3dc67e9ad <unknown> #11 0x55e3dc69688c <unknown> #12 0x55e3dc67e753 <unknown> #13 0x55e3dc651a14 <unknown> #14 0x55e3dc652b7e <unknown> #15 0x55e3dc89c32e <unknown> #16 0x55e3dc89fc0e <unknown> #17 0x55e3dc882610 <unknown> #18 0x55e3dc8a0c23 <unknown> #19 0x55e3dc874545 <unknown> #20 0x55e3dc8c16a8 <unknown> #21 0x55e3dc8c1836 <unknown> #22 0x55e3dc8dcd13 <unknown> #23 0x7fa85aafeea7 start_thread **Here's another mistake that sometimes occurs:** FileNotFoundError: [Errno 2] No such file or directory: '/root/.local/share/undetected_chromedriver/undetected_chromedriver'``` **Sometimes it also appears:** * Cannot connect to 127.0.0*... **_I confirm that this issue is related to multithreading/multiprocessing, but I don't know the exact reason because I'm not a professional, if I don't use multithreading/processing using the latest UC 3.4 test, it doesn't show any error. After many tests, the error message mentioned above only appears when the version is upgraded to 3.4, for example, 3.2.1 does not appear._** Thanks!
2hard
Title: Documentation: show examples of good docs Body: # Tasks * [x] Review existing criterias for documentation * [x] Suggest own criterias * [x] Show good examples and explain why
0easy
Title: SARIMAX.predict() exog Body: On SARIMAX.predict(), when you have an exog but the exog is only known today and in the past, how do you predict the endog's next 12 months off just the exog and data known through today? Is that what the SARIMAX.predict() is doing as a default? Example, my exog is SP500 price. I do not know what it will be tomorrow, but I want to use the values through today as an exog to predict the next 12 months forward of my endog. Or is SARIMAX.predict() wanting you to know what the future exog values will be for the 12 months into the future of the endog you are predicting? Example, my exog is days of the week. I know today what day of the week things will happen on so I can fill in the future exog for the next 12 months to predict the endog for the same forward period. And if the exog value is only known for today as in the SP500 example, will SARIMAX.forecast(steps = forecast_period, exog = exog[-forecast_period:]) result in an accurate modeled prediction of the 12 months ahead? Is it by default calculating a single step 12 month ahead forecast. Or is it trying to multistep off the exogs which in this case wouldn't be possible without predicting those exogs 1 step ahead as well. Any help would be greatly appreciated!
1medium
Title: Test dependencies not included in project dependencies? Body: Is there a reason why [`requirements.txt`](https://github.com/frol/flask-restplus-server-example/blob/27dfdb8791f087b0c35b9e929a98e10f9d24ec21/requirements.txt) does not include `-r tests/requirements.txt`?
3misc
Title: Input size does not match Body: ### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question The input tensor size is not equal to the model input type: got [1,3,640,640] expecting [1,3,384,384]. Why am I getting this error and how do I resize the tensor size in my code? ### Additional _No response_
0easy
Title: manual update seems don't work Body: ## ❓ Questions and Help double confirm if manual daily update don't works. If yes, when it will go back to normal? and warnings frequently pop up when running "collector.py". logs of warning: "FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy. For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object. " error logs:"r.utils:wrapper:517 - _get_simple: 1 :get data error: 000003.sz--2020-09-24 00:00:00+08:00--2025-02-12 00:00:00+08:00The stock may be delisted, please check 2025-02-12 08:16:54.421 | WARNING | data_collector.utils:wrapper:517 - _get_simple: 2 :get data error: 000003.sz--2020-09-24 00:00:00+08:00--2025-02-12 00:00:00+08:00The stock may be delisted, please check 2025-02-12 08:16:59.701 | WARNING | data_collector.utils:wrapper:517 - _get_simple: 3 :get data error: 000003.sz--2020-09-24 00:00:00+08:00--2025-02-12 00:00:00+08:00The stock may be delisted, please check 2025-02-12 08:17:05.112 | WARNING | data_collector.utils:wrapper:517 - _get_simple: 4 :get data error: 000003.sz--2020-09-24 00:00:00+08:00--2025-02-12 00:00:00+08:00The stock may be delisted, please check 2025-02-12 08:17:10.313 | WARNING | data_collector.utils:wrapper:517 - _get_simple: 5 :get data error: 000003.sz--2020-09-24 00:00:00+08:00--2025-02-12 00:00:00+08:00The stock may be delisted, please check 2025-02-12 08:17:10.314 | WARNING | data_collector.base:save_instrument:163 - 000003.sz is empty" We sincerely suggest you to carefully read the [documentation](http://qlib.readthedocs.io/) of our library as well as the official [paper](https://arxiv.org/abs/2009.11189). After that, if you still feel puzzled, please describe the question clearly under this issue.
1medium
Title: Tutorial: Creating DB within WSL on Windows Body: ### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python Create database as described in the tutorial using "DB browser" on an WSL drive. ``` ### Description If following the tutorial on WSL2, using the suggested sqlite DB management tool "DB browser" you get strange errors when creating the database on a WSL2 volume (it looks like it is due WSL2 does not support file locking) You can work around this issue by creating the DB on the `C:\` drive and linking to the file from within the WSL volume. Either - add a warning to the docs - or probably the best option, close this issue and leave it for people searching in the future. ### Operating System Windows ### Operating System Details WSL2 ### SQLModel Version 0.0.8 ### Python Version Python 3.10.6 ### Additional Context _No response_
0easy
Title: `test_sftp.SFTPStorageTest` `test_accessed_time` & `test_modified_time` assume EST timezone Body: Hi, It seems as though these tests assume a timezone of UTC-5, resulting in e.g.: ``` ====================================================================== FAIL: test_accessed_time (tests.test_sftp.SFTPStorageTest) ---------------------------------------------------------------------- Traceback (most recent call last): File "/nix/store/6v602p5l3c05iiq7jx8y0rjwiv2n8hhj-python3-3.9.13/lib/python3.9/unittest/mock.py", line 1336, in patched return func(*newargs, **newkeywargs) File "/build/django-storages-1.12.3/tests/test_sftp.py", line 121, in test_accessed_time self.assertEqual(self.storage.accessed_time('foo'), AssertionError: datetime.datetime(2016, 7, 28, 2, 58, 4) != datetime.datetime(2016, 7, 27, 21, 58, 4) ====================================================================== FAIL: test_modified_time (tests.test_sftp.SFTPStorageTest) ---------------------------------------------------------------------- Traceback (most recent call last): File "/nix/store/6v602p5l3c05iiq7jx8y0rjwiv2n8hhj-python3-3.9.13/lib/python3.9/unittest/mock.py", line 1336, in patched return func(*newargs, **newkeywargs) File "/build/django-storages-1.12.3/tests/test_sftp.py", line 128, in test_modified_time self.assertEqual(self.storage.modified_time('foo'), AssertionError: datetime.datetime(2016, 7, 28, 2, 58, 4) != datetime.datetime(2016, 7, 27, 21, 58, 4) ---------------------------------------------------------------------- ``` when it isn't.
1medium
Title: correctness tests Body: I'm guessing: PyGraphistry integration: - github ci: default off - github ci: explicit opt-out - local dev: as part of regular gpu-enabled tests cuCat repo: ???
1medium
Title: Gensim sort_by_descending_frequency changes most_similar results Body: <!-- **IMPORTANT**: - Use the [Gensim mailing list](https://groups.google.com/forum/#!forum/gensim) to ask general or usage questions. Github issues are only for bug reports. - Check [Recipes&FAQ](https://github.com/RaRe-Technologies/gensim/wiki/Recipes-&-FAQ) first for common answers. Github bug reports that do not include relevant information and context will be closed without an answer. Thanks! --> #### Problem description It seems that when retrieving the most similar word vectors, sorting by word frequency will change the results in `Gensim`. #### Steps/code/corpus to reproduce Before sorting: from gensim.models import FastText from gensim.test.utils import common_texts # some example sentences print(len(common_texts)) model = FastText(vector_size=4, window=3, min_count=1) # instantiate model.build_vocab(corpus_iterable=common_texts) model.train(corpus_iterable=common_texts, total_examples=len(common_texts), epochs=1) model.wv.most_similar(positive=["human"]) > [('interface', 0.7432922720909119), > ('minors', 0.6719315052032471), > ('time', 0.3513716757297516), > ('computer', 0.05815044790506363), > ('response', -0.11714297533035278), > ('graph', -0.15643596649169922), > ('eps', -0.2679084539413452), > ('survey', -0.34035828709602356), > ('trees', -0.63677978515625), > ('user', -0.6500451564788818)] However, if I sort the vectors by descending frequency: model.wv.sort_by_descending_frequency() model.wv.most_similar(positive=["human"]) > [('minors', 0.9638221263885498), > ('time', 0.6335864067077637), > ('interface', 0.40014874935150146), > ('computer', 0.03224882856011391), > ('response', -0.14850640296936035), > ('graph', -0.2249641716480255), > ('survey', -0.26847705245018005), > ('user', -0.45202943682670593), > ('eps', -0.497650682926178), > ('trees', -0.6367797255516052)] The most similar word ranking as well as the word similarities change. Any idea why? Include full tracebacks, logs and datasets if necessary. Please keep the examples minimal ("minimal reproducible example"). If your problem is with a specific Gensim model (word2vec, lsimodel, doc2vec, fasttext, ldamodel etc), include the following: ```python print(my_model.lifecycle_events) [{'params': 'FastText(vocab=0, vector_size=4, alpha=0.025)', 'datetime': '2021-07-20T09:46:56.158863', 'gensim': '4.0.1', 'python': '3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) \n[GCC 7.3.0]', 'platform': 'Linux-3.10.0-1160.31.1.el7.csd3.x86_64-x86_64-with-redhat-7.9-Nitrogen', 'event': 'created'}, {'msg': 'effective_min_count=1 retains 12 unique words (100.0%% of original 12, drops 0)', 'datetime': '2021-07-20T09:46:56.159995', 'gensim': '4.0.1', 'python': '3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) \n[GCC 7.3.0]', 'platform': 'Linux-3.10.0-1160.31.1.el7.csd3.x86_64-x86_64-with-redhat-7.9-Nitrogen', 'event': 'prepare_vocab'}, {'msg': 'effective_min_count=1 leaves 29 word corpus (100.0%% of original 29, drops 0)', 'datetime': '2021-07-20T09:46:56.160040', 'gensim': '4.0.1', 'python': '3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) \n[GCC 7.3.0]', 'platform': 'Linux-3.10.0-1160.31.1.el7.csd3.x86_64-x86_64-with-redhat-7.9-Nitrogen', 'event': 'prepare_vocab'}, {'msg': 'downsampling leaves estimated 3.5001157321504532 word corpus (12.1%% of prior 29)', 'datetime': '2021-07-20T09:46:56.160376', 'gensim': '4.0.1', 'python': '3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) \n[GCC 7.3.0]', 'platform': 'Linux-3.10.0-1160.31.1.el7.csd3.x86_64-x86_64-with-redhat-7.9-Nitrogen', 'event': 'prepare_vocab'}, {'update': False, 'trim_rule': 'None', 'datetime': '2021-07-20T09:46:56.233809', 'gensim': '4.0.1', 'python': '3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) \n[GCC 7.3.0]', 'platform': 'Linux-3.10.0-1160.31.1.el7.csd3.x86_64-x86_64-with-redhat-7.9-Nitrogen', 'event': 'build_vocab'}, {'msg': 'training model with 3 workers on 12 vocabulary and 4 features, using sg=0 hs=0 sample=0.001 negative=5 window=3', 'datetime': '2021-07-20T09:46:56.234068', 'gensim': '4.0.1', 'python': '3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) \n[GCC 7.3.0]', 'platform': 'Linux-3.10.0-1160.31.1.el7.csd3.x86_64-x86_64-with-redhat-7.9-Nitrogen', 'event': 'train'}, {'msg': 'training on 29 raw words (3 effective words) took 0.0s, 1377 effective words/s', 'datetime': '2021-07-20T09:46:56.236277', 'gensim': '4.0.1', 'python': '3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) \n[GCC 7.3.0]', 'platform': 'Linux-3.10.0-1160.31.1.el7.csd3.x86_64-x86_64-with-redhat-7.9-Nitrogen', 'event': 'train'}] ``` #### Versions Linux-3.10.0-1160.31.1.el7.csd3.x86_64-x86_64-with-redhat-7.9-Nitrogen Python 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0] Bits 64 NumPy 1.18.1 SciPy 1.4.1 gensim 4.0.1 FAST_VERSION 0
1medium
Title: pip install brokenaxes failed Body: I see the error: ``` Downloading brokenaxes-0.3.tar.gz Complete output from command python setup.py egg_info: Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-build-m8qZrr/brokenaxes/setup.py", line 10, in <module> with open(path.join(here, 'README.md'), encoding='utf-8') as f: File "/usr/lib/python2.7/codecs.py", line 878, in open file = __builtin__.open(filename, mode, buffering) IOError: [Errno 2] No such file or directory: '/tmp/pip-build-m8qZrr/brokenaxes/README.md' ```
1medium
Title: [question] export annotations of a project in subfolders Body: Hello! In CVAT I have a project consisting of jobs (each job is a video with annotations, boxes and class). when I get an export from project labels (Images not included, only labels) the labels get accumulated in a single folder! so a single folder with thousands of yolo files for all frames of all videos. So right now I have to download labels one by one for each video. Is it possible to download all labels structured with job (video) names just like when you download it with images included? (I export in YOLO format btw)
1medium
Title: pytest==6.1.0: processing filter warnings is done before django.setup() Body: Lauching pytest results in the following error: <details> <summary><tt>pytest test_foo.py</tt> click to expand</summary> <pre> Traceback (most recent call last): File "/home/presto/.virtualenvs/presto/bin/pytest", line 8, in <module> sys.exit(console_main()) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/config/__init__.py", line 187, in console_main code = main() File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/config/__init__.py", line 143, in main config = _prepareconfig(args, plugins) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/config/__init__.py", line 318, in _prepareconfig config = pluginmanager.hook.pytest_cmdline_parse( File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/hooks.py", line 286, in __call__ return self._hookexec(self, self.get_hookimpls(), kwargs) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/manager.py", line 93, in _hookexec return self._inner_hookexec(hook, methods, kwargs) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/manager.py", line 84, in <lambda> self._inner_hookexec = lambda hook, methods, kwargs: hook.multicall( File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/callers.py", line 203, in _multicall gen.send(outcome) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/helpconfig.py", line 100, in pytest_cmdline_parse config = outcome.get_result() # type: Config File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/callers.py", line 80, in get_result raise ex[1].with_traceback(ex[2]) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/callers.py", line 187, in _multicall res = hook_impl.function(*args) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/config/__init__.py", line 1003, in pytest_cmdline_parse self.parse(args) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/config/__init__.py", line 1280, in parse self._preparse(args, addopts=addopts) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/config/__init__.py", line 1186, in _preparse self.hook.pytest_load_initial_conftests( File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/hooks.py", line 286, in __call__ return self._hookexec(self, self.get_hookimpls(), kwargs) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/manager.py", line 93, in _hookexec return self._inner_hookexec(hook, methods, kwargs) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/manager.py", line 84, in <lambda> self._inner_hookexec = lambda hook, methods, kwargs: hook.multicall( File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/callers.py", line 208, in _multicall return outcome.get_result() File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/callers.py", line 80, in get_result raise ex[1].with_traceback(ex[2]) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/pluggy/callers.py", line 182, in _multicall next(gen) # first yield File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/warnings.py", line 136, in pytest_load_initial_conftests with catch_warnings_for_item( File "/usr/lib/python3.8/contextlib.py", line 113, in __enter__ return next(self.gen) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/warnings.py", line 52, in catch_warnings_for_item apply_warning_filters(config_filters, cmdline_filters) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/config/__init__.py", line 1602, in apply_warning_filters warnings.filterwarnings(*parse_warning_filter(arg, escape=False)) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/_pytest/config/__init__.py", line 1576, in parse_warning_filter category = warnings._getcategory( File "/usr/lib/python3.8/warnings.py", line 260, in _getcategory m = __import__(module, None, None, [klass]) File "/home/presto/Projects/sandbox/pytest_bug_warning/bunny/models.py", line 10, in <module> class Bunny(models.Model): File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/django/db/models/base.py", line 108, in __new__ app_config = apps.get_containing_app_config(module) File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/django/apps/registry.py", line 253, in get_containing_app_config self.check_apps_ready() File "/home/presto/.virtualenvs/presto/lib/python3.8/site-packages/django/apps/registry.py", line 136, in check_apps_ready raise AppRegistryNotReady("Apps aren't loaded yet.") django.core.exceptions.AppRegistryNotReady: Apps aren't loaded yet. </pre> </details> The project is straighforward. We created the following Warning and Model: ``` python from django.db import models # Create your models here. class CarrotWarning(RuntimeWarning): pass class Bunny(models.Model): pass ``` And use the following `setup.cfg`: ``` [tool:pytest] filterwarnings = ignore::bunny.models.CarrotWarning ``` The bug was introduced by `pytest==6.1.0`, it worked fine with `pytest==6.0.2`. We get that it seems to be introduced by pytest itself, but as its django-related, we assume that the fix will be in `pytest-django`. We would guess from the changelog that it's linked to this issue : https://github.com/pytest-dev/pytest/issues/6681
2hard
Title: Dataset and Pre-trained Model Files Not Accessible Body: Dataset and the pre-trained model files are not accessible. Getting 403 Forbidden from the server `$ sh get_data.sh mkdir: cannot create directory ‘../data’: File exists --2022-03-18 12:14:57-- http://sketch-code.s3.amazonaws.com/data/all_data.zip Resolving sketch-code.s3.amazonaws.com (sketch-code.s3.amazonaws.com)... 52.217.16.188 Connecting to sketch-code.s3.amazonaws.com (sketch-code.s3.amazonaws.com)|52.217.16.188|:80... connected. HTTP request sent, awaiting response... 403 Forbidden 2022-03-18 12:14:57 ERROR 403: Forbidden. `
1medium
Title: Error using augmentation Body: Hi everyone, I use augmentation as follows: ``` > ``seq = iaa.Sometimes(0.833, iaa.Sequential([ iaa.Fliplr(0.5), # horizontal flips iaa.Crop(percent=(0, 0.1)), # random crops # Small gaussian blur with random sigma between 0 and 0.5. # But we only blur about 50% of all images. iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 0.5)) ), # Strengthen or weaken the contrast in each image. iaa.ContrastNormalization((0.75, 1.5)), # Add gaussian noise. # For 50% of all images, we sample the noise once per pixel. # For the other 50% of all images, we sample the noise per pixel AND # channel. This can change the color (not only brightness) of the # pixels. iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # Make some images brighter and some darker. # In 20% of all cases, we sample the multiplier once per channel, # which can end up changing the color of the images. iaa.Multiply((0.8, 1.2), per_channel=0.2), # Apply affine transformations to each image. # Scale/zoom them, translate/move them, rotate them and shear them. iaa.Affine( scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, rotate=(-25, 25), shear=(-8, 8) ) ], random_order=True)) # apply augmenters in random order`` ``` and the errors happen with the input array, mask: ``` ERROR:root:Error processing image {'id': '1281', 'source': 'dataset', 'path': '/content/drive/My Drive/mask rcnn/train_image/1281.jpg', 'annotation': '/content/drive/My Drive/mask rcnn/train_annotation/1281.xml'} Traceback (most recent call last): File "/content/drive/My Drive/mask rcnn/mrcnn/model.py", line 1709, in data_generator use_mini_mask=config.USE_MINI_MASK) File "/content/drive/My Drive/mask rcnn/mrcnn/model.py", line 1254, in load_image_gt hooks=imgaug.HooksImages(activator=hook)) File "/usr/local/lib/python3.6/dist-packages/imgaug/augmenters/meta.py", line 470, in augment_image return self.augment_images([image], hooks=hooks)[0] File "/usr/local/lib/python3.6/dist-packages/imgaug/augmenters/meta.py", line 603, in augment_images hooks=hooks File "/usr/local/lib/python3.6/dist-packages/imgaug/augmenters/meta.py", line 3386, in _augment_images hooks=hooks File "/usr/local/lib/python3.6/dist-packages/imgaug/augmenters/meta.py", line 603, in augment_images hooks=hooks File "/usr/local/lib/python3.6/dist-packages/imgaug/augmenters/meta.py", line 2816, in _augment_images hooks=hooks File "/usr/local/lib/python3.6/dist-packages/imgaug/augmenters/meta.py", line 603, in augment_images hooks=hooks File "/usr/local/lib/python3.6/dist-packages/imgaug/augmenters/size.py", line 795, in _augment_images image_cr_pa = ia.imresize_single_image(image_cr_pa, (height, width)) File "/usr/local/lib/python3.6/dist-packages/imgaug/imgaug.py", line 1289, in imresize_single_image rs = imresize_many_images(image[np.newaxis, :, :, :], sizes, interpolation=interpolation) File "/usr/local/lib/python3.6/dist-packages/imgaug/imgaug.py", line 1253, in imresize_many_images result[i] = result_img ValueError: could not broadcast input array from shape (1024,1024,512) into shape (1024,1024,0) ``` ``` `Traceback (most recent call last): File "/content/drive/My Drive/mask rcnn/mrcnn/model.py", line 1709, in data_generator use_mini_mask=config.USE_MINI_MASK) File "/content/drive/My Drive/mask rcnn/mrcnn/model.py", line 1257, in load_image_gt assert mask.shape == mask_shape, "Augmentation shouldn't change mask size" AssertionError: Augmentation shouldn't change mask size` ``` Hope you guys can help me,
2hard
Title: Question about finite difference taps Body: Hi~Thanks for the great work and provided code! Is there any difference in the accuracy of finite difference when taps is equal to 6 and 4? Will taps=6 be more accurate? Because it is 6 in the paper, but it is 4 by default in the code.
3misc
Title: Code execute raise TypeError: 'PandasConnector' object is not subscriptable, looks PandasConnector not be well linked to a DataFrame. Body: ### System Info pandasai==2.0.21 pytho==3.9.19 os==ubuntu ### 🐛 Describe the bug The bug is PandasConnector isn't well-linked to a Pandas Dataframe, as error message below, running generated code to manipulate df raise error. The user asked the following question: QUERY 德州仪器中工作温度相同的芯片有哪些 You generated this python code: import pandas as pd Assuming the DataFrame provided is already given to us as df. df = dfs[0] Filter the DataFrame for Texas Instruments texas_instruments_df = df[df['制造商'] == 'Texas Instruments'] Ensure that we only consider rows where temperature values are not NaN texas_instruments_df = texas_instruments_df.dropna(subset=['最小工作温度', '最大工作温度']) Group by unique combinations of minimum and maximum working temperature grouped_by_temp_df = texas_instruments_df.groupby(['最小工作温度', '最大工作温度']) Extract groups with more than one entry (the same working temperature range) common_temp_chips = {} for (min_temp, max_temp), group in grouped_by_temp_df: if len(group) > 1: common_temp_chips[f"{min_temp}C to {max_temp}C"] = group['零件型号'].tolist() Convert dictionary to DataFrame for better readability common_temp_chips_df = pd.DataFrame([(k, v) for k, v in common_temp_chips.items()], columns=['Temperature Range', 'Chip Models']) Showing the result print(common_temp_chips_df) It fails with the following error: Traceback (most recent call last): File "/root/anaconda3/envs/chatdb/lib/python3.9/site-packages/pandasai/pipelines/chat/code_execution.py", line 64, in execute result = code_manager.execute_code(code_to_run, code_context) File "/root/anaconda3/envs/chatdb/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 182, in execute_code code_to_run = self._clean_code(code, context) File "/root/anaconda3/envs/chatdb/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 562, in _clean_code self._extract_fix_dataframe_redeclarations(node, clean_code_lines) File "/root/anaconda3/envs/chatdb/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 467, in _extract_fix_dataframe_redeclarations exec(code, env) File "<string>", line 3, in <module> TypeError: 'PandasConnector' object is not subscriptable
2hard
Title: Switch to Dark Mode MkDocs Body: Added the ability to change the appearance to "Dark Mode" and vice versa the document.
1medium
Title: Missing tags for latest v3.6.x releases Body: On PyPI, there are 3.6.4, 3.6.5 and 3.6.6 releases (https://pypi.org/project/pandas-profiling/#history), but no corresponding tags in this repo. Can you add them please?
0easy
Title: TFLearn Memory Leak Body: I'm running the following Flask application to train a DNN similar to AlexNet on some images. After each run I delete everything Python has available to me in memory. However, each run adds about 1GB of memory to the running Python process and produces an OOM exception sooner or later. Below is the entire application, each call to /build runs the model 30 times are random data. This is a proof of concept for a model which has far too much data to read into memory so I'm sampling the data over iterations like this. I know I can use the Image Preloader, but because I have so much data I'm actually loading pickle files in each iteration and not image files at the moment. Either way, some memory continues to be allocated over each iteration of this application which I cannot deallocate. ``` `import tflearn from flask import Flask, jsonify from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.normalization import local_response_normalization from tflearn.layers.estimator import regression import numpy as np app = Flask(__name__) keep_prob = .8 num_labels = 3 batch_size = 64 def reformat(dataset, labels, num_labels): if dataset is not None: dataset = dataset.reshape((-1, 227, 227, num_labels)).astype(np.float32) if labels is not None: labels = (np.arange(3) == labels[:, None]).astype(np.float32) return dataset, labels class AlexNet(): def __init__(self): @app.route('/build') def build(): # Building 'AlexNet' network = input_data(shape=[None, 227, 227, 3]) network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, keep_prob) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, keep_prob) network = fully_connected(network, num_labels, activation='softmax') network = regression(network, optimizer="adam", loss='categorical_crossentropy', learning_rate=0.001, batch_size=batch_size) model = tflearn.DNN(network, tensorboard_dir="./tflearn_logs/", checkpoint_path=None, tensorboard_verbose=0) for i in range(30): data = np.random.randn(10, 227, 227, 3) labels = np.random.choice([0, 2], size=(10,), p=[1. / 3, 2. / 3]) data, labels = reformat(data, labels, 3) model.fit(data, labels, n_epoch=1, shuffle=True, validation_set=None, show_metric=True, batch_size=batch_size, snapshot_step=None, snapshot_epoch=True, run_id=None) del data del labels del model del network return jsonify(status=200) if __name__ == "__main__": AlexNet() app.run(host='0.0.0.0', port=5000, threaded=True)` ```
2hard
Title: Adding multiple outputs results in one output appearing until page refresh (master branch) Body: Problem: Enter 2 in quantity field on output page, select any output, select Add. Only one output is added to the page. Refresh the page and two outputs are there. Fix: allow multiple outputs to be added via the new ajax form submission system.
1medium
Title: Tensorflow 2.0 parallel_model problem Body: I'm trying to use mrcnn today but i had this problem. do you have an idea for the solution ? ``` model = modellib.MaskRCNN(mode="training", config=config, model_dir=args.logs) File "/hdd-raid0/home_server/houssem/anaconda3/envs/hxf_env/lib/python3.7/site-packages/mask_rcnn-2.1-py3.7.egg/mrcnn/model.py", line 1835, in __init__ File "/hdd-raid0/home_server/houssem/anaconda3/envs/hxf_env/lib/python3.7/site-packages/mask_rcnn-2.1-py3.7.egg/mrcnn/model.py", line 2060, in build File "/hdd-raid0/home_server/houssem/anaconda3/envs/hxf_env/lib/python3.7/site-packages/mask_rcnn-2.1-py3.7.egg/mrcnn/parallel_model.py", line 37, in __init__ File "/hdd-raid0/home_server/houssem/anaconda3/envs/hxf_env/lib/python3.7/site-packages/mask_rcnn-2.1-py3.7.egg/mrcnn/parallel_model.py", line 79, in make_parallel File "/hdd-raid0/home_server/houssem/anaconda3/envs/hxf_env/lib/python3.7/site-packages/mask_rcnn-2.1-py3.7.egg/mrcnn/parallel_model.py", line 79, in <listcomp> File "/hdd-raid0/home_server/houssem/anaconda3/envs/hxf_env/lib/python3.7/site-packages/keras/engine/base_layer.py", line 443, in __call__ previous_mask = _collect_previous_mask(inputs) File "/hdd-raid0/home_server/houssem/anaconda3/envs/hxf_env/lib/python3.7/site-packages/keras/engine/base_layer.py", line 1311, in _collect_previous_mask mask = node.output_masks[tensor_index] AttributeError: 'Node' object has no attribute 'output_masks' ```
2hard
Title: 404 not found 项目链接已经失效! Body: 最新一期([第97期](https://github.com/521xueweihan/HelloGitHub/blob/master/content/HelloGitHub97.md#%E5%85%B6%E5%AE%83)) <img width="1029" alt="image" src="https://github.com/521xueweihan/HelloGitHub/assets/85916131/2b4b2e8c-ecf2-43db-bc14-46414cd90c33"> 点击进去链接都没了。。。 <img width="915" alt="image" src="https://github.com/521xueweihan/HelloGitHub/assets/85916131/bce741d1-0ce7-416e-9d22-5ed02c695a2d"> 建议28号提交的时候项目是否需要最后再审查下。
0easy
Title: Translate the Darts documentation into Chinese Body: **I want to translate Darts doc into Chinese , make this great repo more and more popular, anyone there work with me ?** -> into Chinese: 想把Darts的文档,翻译成中文,有没有人一起,让Darts更加有影响力。
1medium
Title: Project dependencies may have API risk issues Body: Hi, In **flasgger**, inappropriate dependency versioning constraints can cause risks. Below are the dependencies and version constraints that the project is using ``` Flask>=0.10 PyYAML>=3.0 jsonschema>=3.0.1 six>=1.10.0 mistune* werkzeug* ``` The version constraint **==** will introduce the risk of dependency conflicts because the scope of dependencies is too strict. The version constraint **No Upper Bound** and **\*** will introduce the risk of the missing API Error because the latest version of the dependencies may remove some APIs. After further analysis, in this project, The version constraint of dependency **Flask** can be changed to *>=0.10,<=0.12.5*. The above modification suggestions can reduce the dependency conflicts as much as possible, and introduce the latest version as much as possible without calling Error in the projects. The invocation of the current project includes all the following methods. <details> <summary>The calling methods from the Flask</summary> <pre> json.dumps json.loads json.dump </pre> </details> <details> <summary>The calling methods from the all methods</summary> <pre> value.split rule.methods.difference parameter.get content.values full_doc.replace wraps schema.get.lower schema.items is_python_file APISpecsView.as_view re.compile specs_data.get OneOf self.get_apispecs mapping.items read parsed_data.items app.run request.endpoint.lower self.endpoints.append operations.items self.load spec.get.get swag.keys get_specs Response k.startswith resolve_path verb.lower Api rule.endpoint.replace regex.search __file__.os.path.dirname.root_path.swag_path.replace.split deepcopy self._init_config reqparse.RequestParser Swagger user.password.encode jwt.jwt_encode_callback isinstance definitions.get abort Exception def_id.definitions.update click.command inspect.getfile location.parsers.add_argument definition.pop retrieved_schema.viewitems package_spec.origin.replace os.environ.get path_def.values paths.values APIDocsView.as_view parser.parse_args EmptyView.as_view apispec_swag.get swagger.app.app_context data.get filename.endswith PetSchema jsonschema.FormatChecker get_schema_specs set_from_filepath swag.init_app self.load_config os.getcwd definitions.update UserAPI.as_view stream.read node.extend cat.get swag_path.replace doc.get.get UserPostView.as_view spec.to_flasgger example_blueprint.add_url_rule function.__annotations__.items flasgger.utils.validate srule.startswith final_filepath.split key.srule.paths.update definitions.items authenticate grep PostAPIView.as_view is_valid_method_view self.init_app os.sep.swag_path.replace.replace full_doc.rfind swag.update str source.get swagger.config.get self.validation_error_handler received.items wrap_view ordered_dict_to_dict f.read FlaskPlugin ItemMethodView.as_view remove_suffix self.CachedLazyString.super.__init__ OAuthRedirect.as_view response.data.decode import_prop.start callbacks.values jwt_required fields.String source.items username_table.get name.definitions.update specs.update raw.startswith app.config.get mod.__name__.split new_d.items target.setdefault os.path.abspath find_packages location.parsers.parse_args BPUserPostView.as_view swag.get_schema jwt.request_handler parts.lower JWTError dict f import_prop.group examples_dir.replace self.APISpecsView.super.__init__ self.text_type self.register_views super app.add_url_rule utils.extract_schema specs_data.items Length rule.rule.startswith raw_definitions.get MarshmallowPlugin argparse.ArgumentParser Animals.as_view sub.index self.add_headers desc inspect.getdoc open process_doc d.items abort_if_todo_doesnt_exist fields.Str specs.append value.startswith parsers.keys sorted doc.get.get.items received.get request_body.get check_auth param.get param.get.get full_doc.find self.config.get Flask type getattr auth_header_prefix.lower re.findall file_content.rfind validation_function self.load_swagger_file json.dump ItemsView.as_view spec.get cat.items self.data.dump request.url_rule.str.split defi.lower request.json.get validation_error_handler item.get swag_annotation method.__dict__.get schema2jsonschema format render_template d.get.get actual_schema.items is_openapi3 rule_filter hasattr Blueprint pathify jsonschema.validate data self.vars.items click.option fname.fpath.open.read RuntimeError apispec.get redirect schema.__name__.replace swag.extract_schema.get example_blueprint.route swag.validate KeyError parse_definition_docstring is_path d_schema_id.lower iter click.echo os.path.splitext issubclass kwargs.pop schema_id.lower received.viewitems PaletteView.as_view partial os.sep.join client.put self.loader openapi.OpenAPIConverter callbacks.items validate self.DEFAULT_CONFIG.copy schema_id.split setattr verbs.append auth_header_value.split swag.setdefault self.validation_function inspect.isclass json.loads DispatcherMiddleware self.LazyJSONEncoder.super.default len app.register_blueprint os.path.join subitem.dump annotation.to_specs_dict get_examples url_for base_path.endswith defaultdict AttributeError rule.endpoint.startswith User request.form.get spec.path APISpec model_filter subprocess.check_call max fpath.endswith spec.components.schema vars __replace_ref responses.values Meow.as_view self.last_event.dump retrieved_schema.items client.get responses.items DEFAULT_FIELDS.items self.config.update TODOS.keys api.add_resource swag_from swag.get.get parser.add_argument filepath.startswith d.get subs.append fields.Nested self.is_openapi3 OrderedDict properties.values schema.get self.parse_request client.post extract_schema imported_doc.replace click.File examples.items blueprint.add_url_rule request.method.lower request.endpoint.lower.replace self.update_schemas_parsers item.update hack request.headers.get srule.replace decorator import_module alernative_schema.update annotation codecs.open self.get_url_mappings validate_annotation filename.startswith spec.get.self.get_def_models.items self.get_def_models defi.copy fields.Int parse_imports callable sys.path.append data.str.lower TODOS.keys.max.lstrip openapi_version.str.split join self.definition_models.append verb_swag.get userid_table.get JWT markdown SwaggerDefinition endpoint.__dict__.get full_doc.startswith load_from_file Markup set yaml_file.read extract_definitions variable.annotation.validate_annotation data.setdefault any self.set_schemas has_valid_dispatch_view_docs an.to_specs_dict request.args.get endpoint.replace detect_by_bom inspect.stack swag.get importlib.util.find_spec LazyString safe_str_cmp set_from_specs_dict all_colors.get function contents.strip data.update full_doc.replace.strip time.time current_app.swag.get_apispecs os.path.isfile list os.path.dirname _extract_array_defs app.route APIDocsView fields.List request.form.keys tuple loader paths.get OAuthRedirect get_path_from_doc func json.dumps self.SwaggerView.super.dispatch_request fpath setup specs_data.values cat.viewitems current_app.url_map.iter_rules yaml.safe_load actual_schema.viewitems text.replace jsonify get_root_path os.path.expanduser parse_docstring regex.sub Path get_vendor_extension_fields self.APIDocsView.super.__init__ int print TestView.as_view run_simple spec.to_dict schema2parameters SubItem doc.get value.get swag_path.split resp.headers.extend methods.items defs.append view_args.get convert_schemas merge_specs swag.definition password.encode flasgger.utils.apispec_to_template PetSchema.dump app.app_context new_v.append file.read os.listdir self._func copy.deepcopy </pre> </details> @vshih Could please help me check this issue? May I pull a request to fix it? Thank you very much.
2hard
Title: Model stored/encoded as a delimited string in the database? Body: ### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python ActualData(BaseModel): id: int KnownName: str NickName: str Mother: str Father: str SocialSecurity: int Pets: Optional[boolean] Vegan: Optional[boolean] ``` ``` Database Schema: id: int name: str # KnownName details: str # f"KnownName={KnownName};NickName={NickName};Mother={Mother};Father={Father};SocialSecurity={SocialSecurity};Pets={Pets};Vegan={Vegan}" ``` ``` ### Description I have a very strange constraint, I am using SQLModel as my orm. I have a database with two important fields, for example `name` and `details`. The important information I need for my model `ActualData` is built from the `details` column from the database. How do I use the `ActualData` model in my code, but when I submit/save/read from the database, it is encoded as a character delimited string structure? [pydantic/validators](https://pydantic-docs.helpmanual.io/usage/validators/) was very helpful but it fills one field. Is it possible to fill out the entire model with one validator? How does one encode the model back to a single string within the database? ### Operating System Windows ### Operating System Details - win11 pro, python from windows store, pipenv ### SQLModel Version 0.0.8 ### Python Version 3.10.8 ### Additional Context Think of [storing the string components of postgresql database connection string](https://www.connectionstrings.com/postgresql/), but storing it as a completed connection string `User ID=root;Password=myPassword;Host=localhost;Port=5432;Database=myDataBase;Pooling=true;Min Pool Size=0;Max Pool Size=100;Connection Lifetime=0;`
1medium
Title: mlfromscratch/supervised_learning/__init__.py has references to undefined python files. Body: Everything you need to know is in the title. ` mlfromscratch/supervised_learning/__init__.py` has references to undefined python files. To reproduce, run: "python demo.py", you get: ImportError: No module named linear_regression Because `supervisedLearning/__init__.py` has references to regression classes in files that don't exist. I was able to correct them in my fork and rebuild and all is well, just have to rename the "whatever_regression" to regression and do the setup again. Thinking it over, these may be intentional as an exercise for the user. Good job. :1st_place_medal:
0easy
Title: Processes stopped when passing large objects to function to be parallelized Body: Problem: Apply a NLP Deep Learning model for Text Geneartion over the rows of a Pandas Series. The function call is: `out = text_column.parallel_apply(lambda x: generate_text(args, model, tokenizer, x))` where `args`, `tokenizer` are light objects but `model` is a heavy object, storing a Pytorch model which weighs more than 6GB on secondary memory and takes up **~12GB RAM** when running it. I have been doing some tests and the problem arises only when I pass the heavy model to the function (even without effectively running it inside the function), so it seems that the problem is **passing an object as argument that takes up a lot of memory.** (Maybe related with the Sharing Memory strategy for parallel computing.) After running the `parallel_apply `the output I get is: ``` INFO: Pandarallel will run on 8 workers. INFO: Pandarallel will use standard multiprocessing data tranfer (pipe) to transfer data between the main process and workers. 0.00% | 0 / 552 | 0.00% | 0 / 552 | 0.00% | 0 / 551 | 0.00% | 0 / 551 | 0.00% | 0 / 551 | 0.00% | 0 / 551 | 0.00% | 0 / 551 | 0.00% | 0 / 551 | ``` And it gets stuck there forever. Indeed, there are two processed spawned and both are **stopped**: ``` ablanco+ 85448 0.0 4.9 17900532 12936684 pts/27 Sl 14:41 0:00 python3 text_generation.py --input_file input.csv --model_type gpt2 --output_file out.csv --no_cuda --n_cpu 8 ablanco+ 85229 21.4 21.6 61774336 57023740 pts/27 Sl 14:39 2:26 python3 text_generation.py --input_file input.csv --model_type gpt2 --output_file out.csv --no_cuda --n_cpu 8 ```
2hard
Title: Can't place multiple devices in rack with non-racked device (using API) Body: ### Deployment Type Self-hosted ### Triage priority This is preventing me from using NetBox ### NetBox Version v4.1.4 ### Python Version 3.12 ### Steps to Reproduce 1. Create site 2. Create rack in the site (for example with id = 1) 3. Create first non-racked device in rack 4. Create second device 5. Try placing the the device in the rack as non-racked device via API Important: I can only reproduce the problem using the REST API. #### API Calls ``` # Create first device, non-racked in the rack (remember the id, ensure there are no devices non-racked before) curl -X POST -H "authorization: Token TOKEN" -H 'Content-Type: application/json' -d '{"device_type":116,"role":25,"site":1,"rack":168}' https://netbox.example.org/api/dcim/devices/ | jq .id # Create second device, floating around in the site curl -X POST -H "authorization: Token TOKEN" -H 'Content-Type: application/json' -d '{"device_type":116,"role":25,"site":1}' https://netbox.example.org/api/dcim/devices/ | jq . | less # Try moving the device to the rack of the first device non-racked (fails) curl -X PATCH -H "authorization: Token TOKEN" -H 'Content-Type: application/json' -d '{"rack":168}' https://netbox.example.org/api/dcim/devices/$ID_FROM_THE_FIRST_COMMAND/ | jq . | less # Run first command again, creating another device, doesn't fail strangely curl -X POST -H "authorization: Token TOKEN" -H 'Content-Type: application/json' -d '{"device_type":116,"role":25,"site":1,"rack":168}' https://netbox.example.org/api/dcim/devices/ | jq .id ``` ### Expected Behavior Device should be placed in the rack as non-racked. ### Observed Behavior HTTP 400 Error Code ``` {"non_field_errors": ["The fields rack, position, face must make a unique set."]} ```
1medium
Title: SyntaxWarning: "is" with a literal. Did you mean "=="? Body: Hi all! If I install python>=3.8.1 and segmentation-models-pytorch==0.32.2, then an warning occurs on import `import segmentation_models_pytorch as smp`. The warning appears in library `pretrainedmodels`. ``` Python 3.9.15 (main, Mar 13 2023, 09:18:54) [GCC 7.5.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import segmentation_models_pytorch as smp /home/jovyan/.cache/pypoetry/virtualenvs/s-outer-seg-sem-facade-mvp280223smp-82NsP1dj-py3.9/lib/python3.9/site-packages/pretrainedmodels/models/dpn.py:255: SyntaxWarning: "is" with a literal. Did you mean "=="? if block_type is 'proj': /home/jovyan/.cache/pypoetry/virtualenvs/s-outer-seg-sem-facade-mvp280223smp-82NsP1dj-py3.9/lib/python3.9/site-packages/pretrainedmodels/models/dpn.py:258: SyntaxWarning: "is" with a literal. Did you mean "=="? elif block_type is 'down': /home/jovyan/.cache/pypoetry/virtualenvs/s-outer-seg-sem-facade-mvp280223smp-82NsP1dj-py3.9/lib/python3.9/site-packages/pretrainedmodels/models/dpn.py:262: SyntaxWarning: "is" with a literal. Did you mean "=="? assert block_type is 'normal' ``` The warning disappears when I install python 3.7.5. In segmentation version 0.3.1 updated `Codebase refactoring and style checks (black, flake8)`. I think the problem is in the flake8. And in python 3.7.5. maybe flake8 is being ignored. Is there a way to disable flake8? To turn off the warning python >= 3.8.
1medium
Title: Error in reading data into a dataframe on encountering an empty cell Body: I have the following data in an xl sheet, cell A7 onwards <html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:x="urn:schemas-microsoft-com:office:excel" xmlns="http://www.w3.org/TR/REC-html40"> <head> <meta name=ProgId content=Excel.Sheet> <meta name=Generator content="Microsoft Excel 15"> <link id=Main-File rel=Main-File href="file:///C:/Users/Bhaskar/AppData/Local/Temp/msohtmlclip1/01/clip.htm"> <link rel=File-List href="file:///C:/Users/Bhaskar/AppData/Local/Temp/msohtmlclip1/01/clip_filelist.xml"> <style> <!--table {mso-displayed-decimal-separator:"\."; mso-displayed-thousand-separator:"\,";} @page {margin:.75in .7in .75in .7in; mso-header-margin:.3in; mso-footer-margin:.3in;} tr {mso-height-source:auto;} col {mso-width-source:auto;} br {mso-data-placement:same-cell;} td {padding-top:1px; padding-right:1px; padding-left:1px; mso-ignore:padding; color:black; font-size:11.0pt; font-weight:400; font-style:normal; text-decoration:none; font-family:Calibri, sans-serif; mso-font-charset:0; mso-number-format:General; text-align:general; vertical-align:bottom; border:none; mso-background-source:auto; mso-pattern:auto; mso-protection:locked visible; white-space:nowrap; mso-rotate:0;} --> </style> </head> <body link="#0563C1" vlink="#954F72">   | FY-5 |   | FY-4 | FY-3 | FY-2 | FY-1 | FY0 -- | -- | -- | -- | -- | -- | -- | -- INE002A01018 | 64852 | NULL | 85490 | 89193 | 80298 | 120991 | 142908 INE467B01029 | 32532 | NULL | 39512 | 42110 | 46547 | 53048 | 59259 INE982J01020 | NULL | NULL | -4343.8 | -2634.2 | -1763.4 | -2332.4 | -1631.5 </body> </html> I am reading this into a pandas dataframe using the following: ``` df = sheet.range('A7').options(pd.DataFrame, header=1, index=False, empty = "NA", expand='table').value df ``` Output is: <html> <body> <!--StartFragment--> NA | FY-5 -- | -- INE002A01018 | 64852.0 INE467B01029 | 32532.0 INE982J01020 | NULL <!--EndFragment--> </body> </html> Basically, it stops reading the table on encountering an empty cell (C7). Setting the attribute "empty" to "NA" does not solve the problem. I cannot use the "used_range" attribute because this is just 1 table of many in the sheet. Any ideas on what I can do to read the whole table correctly? Thanks!
1medium
Title: Feature req: monthly report of approved and installed updates Body: monthly report of approved and installed updates per client/site Just a feature that customers may be willing to pay extra for. and paying means earning, and earning means budget for more sponsorship :)
1medium
Title: Tools-Alignment-Manual broken Body: Hi torzdf, I have problems with the Aligments -> Manual, when I call the command flashes the start image briefly and then the process is closed without error message Had previously had small problems with conda. I couldn't make any more proper updates. now everything works. had no problems to use manual before. Everything else works. do you have an idea? thank you already in Advance. Tobi ============ System Information ============ encoding: cp1252 git_branch: Not Found git_commits: Not Found gpu_cuda: 10.1 gpu_cudnn: 7.6.2 gpu_devices: GPU_0: GeForce GTX 1050 Ti, GPU_1: GeForce GTX 1050 Ti gpu_devices_active: GPU_0, GPU_1 gpu_driver: 425.25 gpu_vram: GPU_0: 4096MB, GPU_1: 4096MB os_machine: AMD64 os_platform: Windows-10-10.0.18362-SP0 os_release: 10 py_command: C:\faceswap\faceswap.py gui py_conda_version: N/A py_implementation: CPython py_version: 3.7.1 py_virtual_env: False sys_cores: 6 sys_processor: Intel64 Family 6 Model 158 Stepping 10, GenuineIntel sys_ram: Total: 16242MB, Available: 8182MB, Used: 8059MB, Free: 8182MB =============== Pip Packages =============== absl-py==0.7.1 alabaster==0.7.12 anaconda-client==1.7.2 anaconda-navigator==1.9.7 anaconda-project==0.8.2 asn1crypto==0.24.0 astor==0.8.0 astroid==2.1.0 astropy==3.1 atomicwrites==1.2.1 attrs==18.2.0 Babel==2.6.0 backcall==0.1.0 backports.os==0.1.1 backports.shutil-get-terminal-size==1.0.0 beautifulsoup4==4.6.3 bitarray==0.8.3 bkcharts==0.2 blaze==0.11.3 bleach==3.0.2 bokeh==1.0.2 boto==2.49.0 Bottleneck==1.2.1 certifi==2018.11.29 cffi==1.11.5 chardet==3.0.4 Click==7.0 cloudpickle==0.6.1 clyent==1.2.2 cmake==3.12.0 colorama==0.4.1 comtypes==1.1.7 conda==4.7.10 conda-build==3.17.6 conda-package-handling==1.3.11 conda-verify==3.1.1 contextlib2==0.5.5 cryptography==2.4.2 cycler==0.10.0 Cython==0.29.2 cytoolz==0.9.0.1 dask==1.0.0 datashape==0.5.4 decorator==4.3.0 defusedxml==0.5.0 distributed==1.25.1 dlib==19.16.0 docutils==0.14 entrypoints==0.2.3 et-xmlfile==1.0.1 face-recognition==1.2.3 face-recognition-models==0.3.0 fastcache==1.0.2 fastcluster==1.1.25 ffmpy==0.2.2 filelock==3.0.10 Flask==1.0.2 Flask-Cors==3.0.7 future==0.17.1 gast==0.2.2 gevent==1.3.7 glob2==0.6 google-pasta==0.1.7 greenlet==0.4.15 grpcio==1.22.0 h5py==2.9.0 heapdict==1.0.0 html5lib==1.0.1 idna==2.8 imageio==2.5.0 imageio-ffmpeg==0.3.0 imagesize==1.1.0 importlib-metadata==0.6 ipykernel==5.1.0 ipython==7.2.0 ipython-genutils==0.2.0 ipywidgets==7.4.2 isort==4.3.4 itsdangerous==1.1.0 jdcal==1.4 jedi==0.13.2 Jinja2==2.10 joblib==0.13.2 jsonschema==2.6.0 jupyter==1.0.0 jupyter-client==5.2.4 jupyter-console==6.0.0 jupyter-core==4.4.0 jupyterlab==0.35.3 jupyterlab-server==0.2.0 Keras==2.2.4 Keras-Applications==1.0.8 Keras-Preprocessing==1.1.0 keyring==17.0.0 kiwisolver==1.0.1 lazy-object-proxy==1.3.1 libarchive-c==2.8 llvmlite==0.26.0 locket==0.2.0 lxml==4.2.5 Markdown==3.1.1 MarkupSafe==1.1.0 matplotlib==2.2.2 mccabe==0.6.1 menuinst==1.4.14 mistune==0.8.4 mkl-fft==1.0.6 mkl-random==1.0.2 mock==3.0.5 more-itertools==4.3.0 mpmath==1.1.0 msgpack==0.5.6 multipledispatch==0.6.0 navigator-updater==0.2.1 nbconvert==5.4.0 nbformat==4.4.0 networkx==2.2 nltk==3.4 nose==1.3.7 notebook==5.7.4 numba==0.41.0 numexpr==2.6.8 numpy==1.16.2 numpydoc==0.8.0 nvidia-ml-py3==7.352.1 odo==0.5.1 olefile==0.46 opencv-python==4.1.0.25 openpyxl==2.5.12 packaging==18.0 pandas==0.23.4 pandocfilters==1.4.2 parso==0.3.1 partd==0.3.9 path.py==11.5.0 pathlib==1.0.1 pathlib2==2.3.3 patsy==0.5.1 pep8==1.7.1 pickleshare==0.7.5 Pillow==6.1.0 pkginfo==1.4.2 pluggy==0.8.0 ply==3.11 prometheus-client==0.5.0 prompt-toolkit==2.0.7 protobuf==3.9.0 psutil==5.6.3 py==1.7.0 pycodestyle==2.4.0 pycosat==0.6.3 pycparser==2.19 pycrypto==2.6.1 pycurl==7.43.0.2 pyflakes==2.0.0 Pygments==2.3.1 pylint==2.2.2 pyodbc==4.0.25 pyOpenSSL==18.0.0 pyparsing==2.3.0 PySocks==1.6.8 pytest==4.0.2 pytest-arraydiff==0.3 pytest-astropy==0.5.0 pytest-doctestplus==0.2.0 pytest-openfiles==0.3.1 pytest-remotedata==0.3.1 python-dateutil==2.7.5 pytz==2018.7 PyWavelets==1.0.1 pywin32==224 pywinpty==0.5.5 PyYAML==3.13 pyzmq==17.1.2 QtAwesome==0.5.3 qtconsole==4.4.3 QtPy==1.5.2 requests==2.21.0 rope==0.11.0 ruamel-yaml==0.15.46 scandir==1.7 scikit-image==0.15.0 scikit-learn==0.21.3 scipy==1.1.0 seaborn==0.9.0 Send2Trash==1.5.0 simplegeneric==0.8.1 singledispatch==3.4.0.3 six==1.12.0 snowballstemmer==1.2.1 sortedcollections==1.0.1 sortedcontainers==2.1.0 Sphinx==1.8.2 sphinxcontrib-websupport==1.1.0 spyder==3.3.2 spyder-kernels==0.3.0 SQLAlchemy==1.2.15 statsmodels==0.9.0 sympy==1.3 tables==3.4.4 tblib==1.3.2 tensorboard==1.13.1 tensorflow==1.13.1 tensorflow-estimator==1.13.0 tensorflow-gpu==1.13.1 termcolor==1.1.0 terminado==0.8.1 testpath==0.4.2 toolz==0.9.0 toposort==1.5 tornado==5.1.1 tqdm==4.33.0 traitlets==4.3.2 unicodecsv==0.14.1 urllib3==1.24.1 vboxapi==1.0 wcwidth==0.1.7 webencodings==0.5.1 Werkzeug==0.14.1 widgetsnbextension==3.4.2 win-inet-pton==1.0.1 win-unicode-console==0.5 wincertstore==0.2 wrapt==1.11.2 xlrd==1.2.0 XlsxWriter==1.1.2 xlwings==0.15.1 xlwt==1.3.0 zict==0.1.3
1medium
Title: OpenAI API Compatible Endpoints for each Agent (with optional additional arguements) Body: ### Feature/Improvement Description So much new dev now is using OpenAI API compatibility. Every time there's a new demo CoLab Notebook for a paper, it simply wants an OpenAI Key and can usually accept an OPEN_AI_BASE or openai.api_base endpoint. AGiXT's backend really shines as a "one-ring-to-rule-them-all" solution - there's already support for so many diverse providers and the ability to set each agent to use a different provider and with different prompts and settings. And it's already set up to be a FastAPI server. A way to point that Notebook/Langchain/Code at an endpoint for a particular agent in AGiXT (localhost:7437/api/agent/{agent_name}/v1 would be a game-changer. It would allow use of the same server or docker-image for a half-dozen LLMs, some proxied like revChatGPT (with different model settings, prompts etc), and some local specialized LLMs (ie Gorilla), all handled by one server, ideally with parallel workers for each agent. That way when the next camel, tree-of-thoughts, fun-new-langchain-experiment comes along, I can simply point it at different agents on a single AGiXT server, each with its own endpoint. Today's post from the FastChat folks summarizes the point here nicely: https://lmsys.org/blog/2023-06-09-api-server/ ### Proposed Solution Update [app.py](https://github.com/Josh-XT/AGiXT/blob/main/agixt/app.py) to include [OpenAI API Endpoints.](https://platform.openai.com/docs/models/model-endpoint-compatibility) Specifically /v1/chat/completions, /v1/completions, /v1/embeddings endpoints to each agent. For example, currently an agent can be reached at /api/agent/{agent_name}/chat Add /api/agent/{agent_name}/v1/chat/completions /api/agent/{agent_name}/v1/completions /api/agent/{agent_name}/v1/embeddings And check that the JSONs/payloads returned are in line with what's spec-ed out at https://platform.openai.com/docs/api-reference This has been done for individual engines and proxies, for example: https://github.com/lm-sys/FastChat/blob/main/docs/openai_api.md https://github.com/acheong08/ChatGPT-to-API https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai ### Acknowledgements - [X] I have searched the existing issues to make sure this feature has not been requested yet. - [X] I have provided enough information for everyone to understand why this feature request is needed in AGiXT.
1medium
Title: Require Python >= 3.9 Body: Python 3.8 is official EOL. [EOL Announcement](https://discuss.python.org/t/python-3-8-is-now-officially-eol/66983) | [Status of Python versions](https://devguide.python.org/versions/) The next txtai release will require Python 3.9. The build scripts, docker images and anything else with 3.8 support should be updated.
1medium
Title: strawberry.ext.mypy_plugin PydanticModelField.to_argument error Body: I think I'm having some issues with strawberry.ext.mypy_plugin when using a pydantic model to make my types When I enable I get this error (image). If I disable it runs. ## Describe the Bug When I enable I get this error. If I disable it runs. ![image](https://github.com/strawberry-graphql/strawberry/assets/63082743/0efdf05e-9316-438b-a8e8-64318cfcf500) ## System Information - Operating system: Linux Using version ^0.224.1 for strawberry-graphql Using version ^2.6.4 for pydantic Using version ^0.0.16 for sqlmodel Using version ^1.9.0 for mypy ## Additional Context this is the file showed in error: ```py from strawberry import auto, type from strawberry.experimental.pydantic import type as pydantic_type from database.models.brazil import Address, City, State @pydantic_type(name='State', model=State) class StateType: name: auto acronym: auto @pydantic_type(name='City', model=City) class CityType: ibge: auto name: auto ddd: auto @type(name='Coordinates') class CoordinatesType: latitude: float longitude: float altitude: float @pydantic_type(name='Address', model=Address) class AddressType: zipcode: auto city: CityType state: StateType neighborhood: auto complement: auto coordinates: CoordinatesType | None = None ```
1medium
Title: Enhancement request: async execution for a non-defined function Body: ## Context My use case is to be able to execute a function ("task") using the async execution in a different lambda. That lambda has a different code base than the calling lambda. In other words, the function ("task") to be executed is not defined in the calling lambda. The async execution lets you specify a remote lambda and remote region but the function (to be executed) has to be defined in the code. The request is to be able to simply provide a function name as a string in the form of <module_name>.<function_name>. This obviously does not work for the decorator. It works only using "zappa.async.run". ## Expected Behavior The below should work: ` from zappa.async import run run(func="my_module.my_function", remote_aws_lambda_function_name="my_remote_lambda", remote_aws_region='us-east-1', kwargs=kwargs) ` ## Actual Behavior The function/task path is retrieved via inspection (hence requires a function type) by "get_func_task_path" ## Possible Fix This is a bit hackish but is the least intrusive. I'll make a PR but I'm thinking of: ` def get_func_task_path(func): """ Format the modular task path for a function via inspection if param is a function. If the param is of type string, it will simply return it. """ if isinstance(func , (str, unicode)): return func module_path = inspect.getmodule(func).__name__ task_path = '{module_path}.{func_name}'.format( module_path=module_path, func_name=func.__name__ ) return task_path `
1medium
Title: attributes shall be resolveable on registered clients Body: **Is your feature request related to a problem? Please describe.** When I register a client like: ``` from authlib.integrations.starlette_client import OAuth, oauth = OAuth() oauth.register( name="example", client_id=client_id, client_secret=client_secret, server_metadata_url=well_known_url, client_kwargs={"scope": "openid profile email"}, code_challenge_method="S256", ) ``` and I access it via: `oauth.example.authorize_redirect(request, redirect_uri)` the attribute "authorize_redirect" is not resolvable via my editor (VSCode) and Pylance complains `"authorize_redirect" is not a known member of "None".` **Describe the solution you'd like** Registered clients shall be resolvable on the client object, so that I can easily browse references of authlib registered clients using my editor. There is kind some magic happening in the background e.g. which OAuth client is finally chosen. It would be great to get this visible on each registered client.
1medium
Title: Usage of built-in collection type aliases with starlette breaks wiring Body: ``` from typing import List from dependency_injector import containers from dependency_injector.wiring import inject # MyList = List[int] MyList = list[int] class Container(containers.DeclarativeContainer): pass @inject def main(): pass if __name__ == "__main__": container = Container() container.wire(modules=[__name__]) main() ``` The code above fails with the following error: ``` Traceback (most recent call last): File "C:\Users\user\di_experiment\main.py", line 21, in <module> container.wire(modules=[__name__]) File "src/dependency_injector/containers.pyx", line 317, in dependency_injector.containers.DynamicContainer.wire File "C:\Users\user\.env3.10\lib\site-packages\dependency_injector\wiring.py", line 347, in wire if _inspect_filter.is_excluded(member): File "C:\Users\user\.env3.10\lib\site-packages\dependency_injector\wiring.py", line 311, in is_excluded elif self._is_starlette_request_cls(instance): File "C:\Users\user\.env3.10\lib\site-packages\dependency_injector\wiring.py", line 324, in _is_starlette_request_cls and issubclass(instance, starlette.requests.Request) File "C:\Users\user\AppData\Local\Programs\Python\Python310\lib\abc.py", line 123, in __subclasscheck__ return _abc_subclasscheck(cls, subclass) TypeError: issubclass() arg 1 must be a class ``` Replacing list with typing.List solves the problem. Python version 3.10.11 dependency-injector==4.37.0 starlette==0.16.0
2hard
Title: Word2vec: total loss suspiciously drops with worker count, probably thread-unsafe tallying Body: <!-- **IMPORTANT**: - Use the [Gensim mailing list](https://groups.google.com/forum/#!forum/gensim) to ask general or usage questions. Github issues are only for bug reports. - Check [Recipes&FAQ](https://github.com/RaRe-Technologies/gensim/wiki/Recipes-&-FAQ) first for common answers. Github bug reports that do not include relevant information and context will be closed without an answer. Thanks! --> #### Problem description The word2vec implementation requires a workaround, as detailed in #2735, to correctly report the total loss per epoch. After doing that though, the next issue is that the total loss reported seems to vary depending on the number of workers. #### Steps/code/corpus to reproduce This is my code: class MyLossCalculatorII(CallbackAny2Vec): def __init__(self): self.epoch = 1 self.losses = [] self.cumu_loss = 0.0 self.previous_epoch_time = time.time() def on_epoch_end(self, model): loss = model.get_latest_training_loss() norms = [linalg.norm(v) for v in model.wv.vectors] now = time.time() epoch_seconds = now - self.previous_epoch_time self.previous_epoch_time = now self.cumu_loss += float(loss) print(f"Loss after epoch {self.epoch}: {loss} (cumulative loss so far: {self.cumu_loss}) "+\ f"-> epoch took {round(epoch_seconds, 2)} s - vector norms min/avg/max: "+\ f"{round(float(min(norms)), 2)}, {round(float(sum(norms)/len(norms)), 2)}, {round(float(max(norms)), 2)}") self.epoch += 1 self.losses.append(float(loss)) model.running_training_loss = 0.0 def train_and_check(my_sentences, my_epochs, my_workers=8, my_loss_calc_class=MyLossCalculatorII): print(f"Building vocab...") my_model: Word2Vec = Word2Vec(sg=1, compute_loss=True, workers=my_workers) my_model.build_vocab(my_sentences) print(f"Vocab done. Training model for {my_epochs} epochs, with {my_workers} workers...") loss_calc = my_loss_calc_class() trained_word_count, raw_word_count = my_model.train(my_sentences, total_examples=my_model.corpus_count, compute_loss=True, epochs=my_epochs, callbacks=[loss_calc]) loss = loss_calc.losses[-1] print(trained_word_count, raw_word_count, loss) loss_df = pd.DataFrame({"training loss": loss_calc.losses}) loss_df.plot(color="blue") # print(f"Calculating accuracy...") # acc, details = my_model.wv.evaluate_word_analogies(questions_file, case_insensitive=True) # print(acc) return loss_calc, my_model My data is an in-memory list of sentences of Finnish text, each sentence being a list of strings: [18]: sentences[0] [18]: ['hän', 'tietää', 'minkälainen', 'tilanne', 'tulla'] I'm running the following code: lc4, model4 = train_and_check(sentences, my_epochs=20, my_workers=4) lc8, model8 = train_and_check(sentences, my_epochs=20, my_workers=8) lc16, model16 = train_and_check(sentences, my_epochs=20, my_workers=16) lc32, model32 = train_and_check(sentences, my_epochs=20, my_workers=32) And the outputs are (last few lines + plot only): # lc4 Loss after epoch 20: 40341580.0 (cumulative loss so far: 830458060.0) -> epoch took 58.15 s - vector norms min/avg/max: 0.02, 3.79, 12.27 589841037 669998240 40341580.0 Wall time: 20min 14s ![lc4](https://user-images.githubusercontent.com/1218171/73614674-35ccaa00-45f9-11ea-9c43-7eee099dcad2.png) # lc8 Loss after epoch 20: 25501282.0 (cumulative loss so far: 521681620.0) -> epoch took 36.6 s - vector norms min/avg/max: 0.02, 3.79, 12.24 589845960 669998240 25501282.0 Wall time: 12min 46s ![lc8](https://user-images.githubusercontent.com/1218171/73614677-3cf3b800-45f9-11ea-8fe2-fbb06b43706d.png) # lc16 Loss after epoch 20: 14466763.0 (cumulative loss so far: 295212011.0) -> epoch took 26.25 s - vector norms min/avg/max: 0.02, 3.79, 12.55 589839763 669998240 14466763.0 Wall time: 9min 35s ![lc16](https://user-images.githubusercontent.com/1218171/73614681-43822f80-45f9-11ea-959a-a8af660a89ac.png) # lc32 Loss after epoch 20: 7991086.5 (cumulative loss so far: 161415654.5) -> epoch took 27.5 s - vector norms min/avg/max: 0.02, 3.79, 12.33 589843184 669998240 7991086.5 Wall time: 9min 37s ![lc32](https://user-images.githubusercontent.com/1218171/73614687-49781080-45f9-11ea-8339-7770f72f0fe7.png) What is going on here? The loss (whether total loss, final-epoch loss or average loss per epoch) varies, although the data is the same and the number of epochs is the same. I would imagine that "1 epoch" means "each data point is considered precisely once", in which case the number of workers should only affect how quickly the training is done and not the loss (the loss would still vary randomly a bit depending on which order the data points are considered etc, but that should be minor). Here though the loss seems to be roughly proportional to 1/n where n = number of workers. I'm guessing based on the similar shape of the loss progressions and the very similar vector magnitudes that the training is actually fine in all four cases, so hopefully this is just another display bug similar to #2735. #### Versions The output of ```python import platform; print(platform.platform()) import sys; print("Python", sys.version) import numpy; print("NumPy", numpy.__version__) import scipy; print("SciPy", scipy.__version__) import gensim; print("gensim", gensim.__version__) from gensim.models import word2vec;print("FAST_VERSION", word2vec.FAST_VERSION) ``` is Windows-10-10.0.18362-SP0 Python 3.7.3 | packaged by conda-forge | (default, Jul 1 2019, 22:01:29) [MSC v.1900 64 bit (AMD64)] NumPy 1.17.3 SciPy 1.3.1 gensim 3.8.1 FAST_VERSION 1
2hard
Title: Hard Limit Recursion Limit on `default_calls` Body: Is there a specific reason the value `5` was chosen here? `if self.default_calls > 5` https://github.com/ijl/orjson/blob/master/src/encode.rs#L227 If it's not a hard limit would it be possible to add it as an optional param to `dumps()` to enable the developer to choose what that limit would be? I am not a Rust developer but I was able to put together a working proof of concept here: https://github.com/brianjbuck/orjson/commit/eb9cfb8c7d84c6afd41693e1e310b64b5ea7c0a2 If you wanted to give feedback I can make edits and possibly a PR if you like.
1medium
Title: ENH: Task return values to parameters Body: **Describe the solution you'd like** The return values are passable via queue (if multiprocessing) or via direct modification (if thread or main). These values need to be processed in Scheduler. Probably requires a new Argument type. The argument type can be named as ``ReturnArg`` and can be put to Parameters using the name of the task as the key or so.
1medium
Title: [BUG] Removing available option for custom field (of type select) results in undesired data change for many existing documents. Body: ### Description It looks like the value of custom select field is stored by it's options index and not value. If we remove any option from the middle of the list, values for this custom field are altered for documents, that have current value of this field set to option with higher index that the removed one. ### Steps to reproduce 1. Create custom field of type select. 2. Add 3 options - "a", "b", and "c". 3. Add document, assign custom field, pick option "b". 4. Edit custom field and remove option "a". Now the document has value "c" instead of "b" for this custom field. ### Webserver logs ```bash N/A ``` ### Browser logs _No response_ ### Paperless-ngx version 2.13.5 ### Host OS Ubuntu 22.04.5 ### Installation method Bare metal ### System status _No response_ ### Browser _No response_ ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
2hard
Title: Reevaluating Experimental Functions for Streamlit Development Body: ### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Can someone please elaborate on the motivations behind the current approach to handle experimental functions in Streamlit? ### Why? By naming experimental functions as they would be called normally and marking them with warnings, it is still possible to maintain a clearer separation between stable and experimental features. This could streamline development, reduce documentation confusion, and minimize conceptual overlap. This holds additional weight moving into AI augmented coding which appears to be here to stay. I imagine many packages may be developed from the start with these paradigms in mind - such that they code semantically to promote consistency. Wouldn't naming experimental functions as they would be in their final form, but marking them with warnings indicating their experimental status (or a segregated import), help reduce confusion? This could make experimental functions easily identifiable and removable upon deprecation, preserving the core codebase's integrity while fostering innovation. Could this approach reduce cognitive load on developers, minimize documentation pollution, and improve overall development efficiency? While this may sound nitpicky, I see large efficiencies to be gained by tailoring this towards new information ingestion and auto coding technologies - and just from an update standpoint. ### How? N/A ### Additional Context _No response_
1medium
Title: dnspython3 packages, migration path? Body: The current dnspython3 package is still [1.12.0 on pypi](https://pypi.python.org/pypi/dnspython3/1.12.0). I'd like to see new releases there too: Dummy pypi packages which require the new dnspython. So users become aware of the obsolescence. (For packaging rpm and deb, this is no problem, as it's possible obsolete and provide other packages)
1medium
Title: Training on older graphics card with custom dataset. Body: Hey, I am using the Common-Voice dataset for German language and I am trying to train a synthesizer on my old GTX 660TI with 2G VRAM (Unfortunately :D). As Cuda Compute Capability 3.0 is not supported by Pytorch, I always built it from source. I've tried different versions of pytorch(1.4, 1.5, 1.7 and 1.10) and of cuda (10.1 and 10.2.) and cudnn(8.1 and 7.5). So finally I am able to train, even with a very low batch size of 6. I have a few questions: 1: Do you think I can achieve decent results with this low batch size? I've trained to around 100k steps with a loss now of around 0.63, and it feels like it is converging now. 2: How many utterances should I use from every speaker. In my dataset, there are some speakers with thousands of utterances, is it better to shrink the number? For example, is it better using e.g. 200 utterances of each speaker? 3: When training, after a few steps (completely random, sometimes after 10, sometimes after 1000) I get a NaN loss and the error: `.../cuda/Loss.cu:111: block: [7,0,0], thread: [33,0,0] Assertion `input_val >= zero && input_val <= one` failed. ` Do you think it is caused by my old graphics card? I've read that is maybe caused by non-normalized data, but I am not sure what I should normalize here. I didn't find any issues regarding that here. Thanks in advance :)
2hard
Title: [Question]: Why youtube stream does not start with writegear? Body: ### Issue guidelines - [X] I've read the [Issue Guidelines](https://abhitronix.github.io/vidgear/latest/contribution/issue/#submitting-an-issue-guidelines) and wholeheartedly agree. ### Issue Checklist - [X] I have read the [Documentation](https://abhitronix.github.io/vidgear/latest) and found nothing related to my problem. - [X] I have gone through the [Bonus Examples](https://abhitronix.github.io/vidgear/latest/help/get_help/#bonus-examples) and [FAQs](https://abhitronix.github.io/vidgear/latest/help/get_help/#frequently-asked-questions) and found nothing related or helpful. ### Describe your Question I have tried basically everything I found on the internet, but nothing works for me to start a youtube livestream using opencv pipeing into ffmpeg. I have an rtsp stream, which I would like to post process via opencv and other python libs, and then stream it to youtube. I stumbled upon write gears youtube streaming solution: ```python # import required libraries from vidgear.gears import CamGear from vidgear.gears import WriteGear import cv2 # define video source VIDEO_SOURCE = "/home/foo/foo.mp4" # Open stream stream = CamGear(source=VIDEO_SOURCE, logging=True).start() # define required FFmpeg optimizing parameters for your writer # [NOTE]: Added VIDEO_SOURCE as audio-source, since YouTube rejects audioless streams! output_params = { "-i": VIDEO_SOURCE, "-acodec": "aac", "-ar": 44100, "-b:a": 712000, "-vcodec": "libx264", "-preset": "medium", "-b:v": "4500k", "-bufsize": "512k", "-pix_fmt": "yuv420p", "-f": "flv", } # [WARNING] Change your YouTube-Live Stream Key here: YOUTUBE_STREAM_KEY = "xxxx-xxxx-xxxx-xxxx-xxxx" # Define writer with defined parameters and writer = WriteGear( output_filename="rtmp://a.rtmp.youtube.com/live2/{}".format(YOUTUBE_STREAM_KEY), logging=True, **output_params ) # loop over while True: # read frames from stream frame = stream.read() # check for frame if Nonetype if frame is None: break # {do something with the frame here} # write frame to writer writer.write(frame) # safely close video stream stream.stop() # safely close writer writer.close() ``` and it runs properly, but then my youtube live does not start. I inputed the correct stream api key (Ive tested it in other ways and it started livestream properly), I have a conda environment, all of my libs are up to date... please help:S ### VidGear Version newest ### Python version Python 3.9.12 ### Operating System version ubuntu 18.04 ### Any other Relevant Information? _No response_
1medium
Title: DecodeError use is inconsistent with api of AuthlibBaseError Body: **Describe the bug** It appears that everywhere that `authlib.jose.errors.DecodeError` is raised, it is raised as e.g. `raise DecodeError('message')`. Due to the API of `AuthlibBaseError` being `(error, description, uri)`, this overwrites the short-string error code of DecodeError. **Error Stacks** ```python Traceback (most recent call last): File "/usr/lib/python3.8/code.py", line 90, in runcode exec(code, self.locals) File "<input>", line 1, in <module> File "/usr/lib/python3.8/site-packages/authlib/jose/rfc7519/jwt.py", line 103, in decode raise DecodeError('Invalid input segments length') authlib.jose.errors.DecodeError: Invalid input segments length: ``` **To Reproduce** ``` from authlib.jose import jwt jwt.decode("hello", "this is my key") ``` **Expected behavior** The last line of the traceback to read `authlib.jose.errors.DecodeError: decode_error: Invalid input segments length`; or, if `JoseError` is caught as `exc`, `exc.error` to equal `'decode_error'`. **Environment:** - OS: Ubuntu 20.04 - Python Version: 3.8 - Authlib Version: 0.15.5 **Additional context** I looked to see if this was fixed in 1.0.1, but it does not seem to have been addressed: https://github.com/lepture/authlib/blob/10cec2518fe0cc275897f12ae3683d4823f82928/authlib/jose/rfc7519/jwt.py#L100
1medium
Title: Slow query with ARRAY in SELECT and in WHERE .. ANY Body: <!-- Thank you for reporting an issue/feature request. If this is a feature request, please disregard this template. If this is a bug report, please answer to the questions below. It will be much easier for us to fix the issue if a test case that reproduces the problem is provided, with clear instructions on how to run it. Thank you! --> * **asyncpg version**: 0.25.0 * **PostgreSQL version**: PostgreSQL 12.9 (Debian 12.9-1.pgdg110+1) on x86_64-pc-linux-gnu, compiled by gcc (Debian 10.2.1-6) 10.2.1 20210110, 64-bit * **Do you use a PostgreSQL SaaS? If so, which? Can you reproduce the issue with a local PostgreSQL install?**: PostgreSQL is local, I can reproduce the issue * **Python version**: 3.9 * **Platform**: Debian 10 * **Do you use pgbouncer?**: NO * **Did you install asyncpg with pip?**: YES * **If you built asyncpg locally, which version of Cython did you use?**: - * **Can the issue be reproduced under both asyncio and [uvloop](https://github.com/magicstack/uvloop)?**: YES <!-- Enter your issue details below this comment. --> Two essentially identical requests are executed at different times and it depends on: 1. The presence of the ARRAY-field in the SELECT section 2. The presence of the ANY expression in the WHERE section and the parameter of List type The code below reproduces the described problem by showing: ``` (venv) root@hq77-01-dev01:/opt/scapsule-back# python t.py Time 1 is 0:00:00.001613 Time 2 is 0:00:02.937298 ``` Thank you. ``` import asyncio from datetime import datetime import asyncpg from app.config import DB_URL import uvloop async def main(): conn = await asyncpg.connect(DB_URL) await conn.execute(''' CREATE TABLE IF NOT EXISTS public.records ( pk bigint NOT NULL, errors integer[] DEFAULT ARRAY[]::integer[], CONSTRAINT records_pkey PRIMARY KEY (pk) ) TABLESPACE pg_default; ''') await conn.execute(''' INSERT INTO records (pk, errors) VALUES (1, ARRAY[1,2]), (2, ARRAY[1,2]), (3, ARRAY[1,2]), (4, ARRAY[1,2]), (5, ARRAY[1,2]), (6, ARRAY[1,2]), (7, ARRAY[1,2]), (8, ARRAY[1,2]), (9, ARRAY[1,2]), (10, ARRAY[1,2]), (11, ARRAY[1,2]), (12, ARRAY[1,2]); ''') a = datetime.now() await conn.execute('SELECT pk, errors FROM records WHERE pk=ANY(ARRAY[1,2,3,4]);') b = datetime.now() print(f'Time 1 is {b - a}') await conn.execute('SELECT pk, errors FROM records WHERE pk=ANY($1);', [1,2,3,4]) c = datetime.now() print(f'Time 2 is {c - b}') await conn.execute('DROP TABLE records;') await conn.close() if __name__ == '__main__': uvloop.install() asyncio.run(main()) ```
1medium
Title: [Bug]: Uncaught exception | <class 'ValueError'>; Qwen2_5_VLModel has no vLLM implementation and the Transformers implementation is not compatible with vLLM Body: ### Your current environment I just know it's hosted on runpod serverless vLLM latest (today). ### 🐛 Describe the bug When trying to host my finetuned Qwen2.5 VL 7b 4bit dynamic quantization using unsloth, and after I have saved the trained model it as bf16, when I try to host the model, it gives me this error: ```python worker exited with exit code 1 j6zswihe185nfq[warning][rank0]:[W324 18:13:29.115599288 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator())\n j6zswihe185nfq[info]engine.py :116 2025-03-24 18:13:28,839 Error initializing vLLM engine: Qwen2_5_VLModel has no vLLM implementation and the Transformers implementation is not compatible with vLLM.\n j6zswihe185nfq[error]Uncaught exception | <class 'ValueError'>; Qwen2_5_VLModel has no vLLM implementation and the Transformers implementation is not compatible with vLLM.; <traceback object at 0x7f5beafb7900>; j6zswihe185nfq[info]INFO 03-24 18:13:28 model_runner.py:1110] Starting to load model itztheking/FMAX-testrun-1.0...\n j6zswihe185nfq[info]INFO 03-24 18:13:28 cuda.py:229] Using Flash Attention backend.\n j6zswihe185nfq[info] j6zswihe185nfq[info]INFO 03-24 18:13:27 config.py:549] This model supports multiple tasks: {'score', 'embed', 'classify', 'reward', 'generate'}. Defaulting to 'generate'.\n j6zswihe185nfq[info]tokenizer_name_or_path: itztheking/FMAX-testrun-1.0, tokenizer_revision: None, trust_remote_code: False\n j6zswihe185nfq[info]engine.py :27 2025-03-24 18:13:18,801 Engine args: AsyncEngineArgs(model='itztheking/FMAX-testrun-1.0', served_model_name=None, tokenizer='itztheking/FMAX-testrun-1.0', task='auto', skip_tokenizer_init=False, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path='', download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='bfloat16', kv_cache_dtype='auto', seed=0, max_model_len=10000, distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager='true', swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.95, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, revision=None, code_revision=None, rope_scaling=None, rope_theta=None, hf_overrides=None, tokenizer_revision=None, quantization=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, fully_sharded_loras=False, lora_extra_vocab_size=256, long_lora_scaling_factors=None, lora_dtype='auto', max_cpu_loras=None, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, ray_workers_use_nsight=False, num_gpu_blocks_override=None, num_lookahead_slots=0, model_loader_extra_config=None, ignore_patterns=None, preemption_mode=None, scheduler_delay_factor=0.0, enable_chunked_prefill=None, guided_decoding_backend='outlines', logits_processor_pattern=None, speculative_model=None, speculative_model_quantization=None, speculative_draft_tensor_parallel_size=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, qlora_adapter_name_or_path=None, disable_logprobs_during_spec_decoding=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, worker_cls='auto', kv_transfer_config=None, generation_config=None, override_generation_config=None, enable_sleep_mode=False, model_impl='auto', calculate_kv_scales=None, additional_config=None, disable_log_requests=False)\n j6zswihe185nfq[info]INFO 03-24 18:13:17 __init__.py:207] Automatically detected platform cuda.\n ``` ### Before submitting a new issue... - [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
2hard
Title: Prefect Workers crash when server returns 500s Body: ### Bug summary We run a pretty big self-hosted installation of Prefect 2.x (20k flow runs/day, 200k tasks) and noticed that when self-hosted API server becomes overloaded, it starts returning HTTP 500s. That's OK by itself, but this makes Workers (we use Kubernetes) exit unexpectedly, then get restarted by K8s (issue 1). Specifically we see the following problematic stack traces after which it exits: * _submit_run -> _check_flow_run -> read_deployment * cancel_run -> _get_configuration -> read_deployment Restarting also seems OK by itself, however we noticed that if a different flow was marked PENDING, but no K8s Job was scheduled yet when the worker exited, it'll be stuck in PENDING forever (issue 2). Here's the relevant code: https://github.com/PrefectHQ/prefect/blob/c4ac23189af1d27f8260452df302be8daee792b6/src/prefect/workers/base.py#L972-L977 Issue 2 seems relatively hard to fully resolve, as it's impossible to atomically mark flow as pending and submit a job to K8s. Maybe we can do something by storing the state locally, but that will not work if the pod is restarted on a different node. Issue 1 looks more straightforward though. There's already a try/except around these places, but it only catches some exceptions, not all of them. Hopefully it'd be easy to resolve. ### Version info ```Text Version: 2.20.14 API version: 0.8.4 Python version: 3.11.7 Git commit: fb919c67 Built: Mon, Nov 18, 2024 4:41 PM OS/Arch: linux/x86_64 Profile: default Server type: ephemeral Server: Database: sqlite SQLite version: 3.40.1 ``` ### Additional context _No response_
1medium
Title: __version__ in __all__ issue Body: See KeepSafe/aiohttp#978
0easy
Title: 研报查询无结果error Body: ![ED6B28AA4AA2B441857521DC32A6C8B3](https://user-images.githubusercontent.com/37896380/176870430-1e3a3607-cb9b-4f2d-80c8-8428ffea4e54.jpg) 已在群中确认,专门来拿积分的 383606
0easy
Title: What is the proper way to handle dependencies at module load time? Body: Hello all! Im having a fun time experimenting with this framework, but have found myself stumped on this design issue for a while. In short, if a dependency needs to be used at module load time (e.g. decorators), the init_resources/wiring breaks Example `containers.py` ``` class ApplicationContainer(containers.DeclarativeContainer): my_dependency = providers.Singleton(myClass) my_decorator = providers.Callable(my_dynamic_decorator_function, my_dependency) ``` `main.py` ``` application_container = dependency_containers.ApplicationContainer() application_container.init_resources() application_container.wire(modules=module_names, packages=packages) ``` `some_dangerous_file.py` ``` from . import containers @containers.ApplicationContainer.my_decorator() def my_function(): print("...") ``` `dependency_injector.errors.Error: Can not copy initialized resource` This is notably caused by the way/order python loads modules. All decorators are applied before the AppContainer or main can properly wire/initialize the dependencies. This basically means that if there is a dependency that is used outside a function, it will fail. Is there any design or trick to get around this, i'd love to hear it. I don't like the idea of putting any container initialization into the dunder init file. Here are some of my thoughts: If there was a dependency/provider type that wraps a dependency that doesn't need to be available immediately i.e. lazy initialization, the module load would work at bootup and would be properly injected when it needs to be (_after main executes_)
2hard
Title: Have you considered to have docker support? Body: It would be easier to deploy if using docker, especially in Linux.
3misc
Title: Failing to compute gradients, RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn Body: ### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question I'm resarching perturbations in neural networks. I have a video in which YOLOv11 correctly detects several objects. I'd like to add a gradient to each frame, so that it would fail detecting objects in the modified frames. My current approach is; ```def fgsm(gradients, tensor): perturbation = epsilon * gradients.sign() alt_img = tensor + perturbation alt_img = torch.clamp(alt_img, 0, 1) # clipping pixel values alt_img_np = alt_img.squeeze().permute(1, 2, 0).detach().numpy() alt_img_np = (alt_img_np * 255).astype(np.uint8) return alt_img_np def perturb(model, cap): out = cv2.VideoWriter('perturbed.mp4', 0x7634706d, 30.0, (640, 640)) print("CUDA Available: ", torch.cuda.is_available()) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) while cap.isOpened(): ret, img = cap.read() resized = cv2.resize(img, (640, 640)) rgb = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB) tensor = torch.from_numpy(rgb).float() tensor = tensor.to(device) tensor = tensor.permute(2, 0, 1).unsqueeze(0) #change tensor dimensions tensor /= 255.0 #normalize tensor.requires_grad = True output = model(tensor) target = output[0].boxes.cls.long() logits = output[0].boxes.data loss = -F.cross_entropy(logits, target) loss.backward() #Backpropagation gradients = tensor.grad if gradients is not None: alt_img = fgsm(gradients, tensor) cv2.imshow('Perturbed video', alt_img) out.write(alt_img) ``` Without loss.requires_grad = True I receive; ``` loss.backward() #Backpropagation ^^^^^^^^^^^^^^^ File "/var/data/python/lib/python3.11/site-packages/torch/_tensor.py", line 581, in backward torch.autograd.backward( File "/var/data/python/lib/python3.11/site-packages/torch/autograd/__init__.py", line 347, in backward _engine_run_backward( File "/var/data/python/lib/python3.11/site-packages/torch/autograd/graph.py", line 825, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn ``` If I enable loss.requires_grad = True, I am able to extract gradients from loss, but those dont look like they are correctly applied (and dont lead to a decrease in detection/classification performance. What am I missing? Thanks. ### Additional _No response_
2hard
Title: Docker marzban xray crashloop Body: Non stopped restarting: ``` marzban-1 | WARNING: Xray core 1.8.8 started marzban-1 | WARNING: Restarting Xray core... marzban-1 | WARNING: Xray core 1.8.8 started marzban-1 | WARNING: Restarting Xray core... ``` Steps to reproduce the behavior: 1. git clone the repo 2. `mv .env.example .env` 3. `docker compose up` 4. See error - OS: Debian 12 - Docker version: 27.0.2, build 912c1dd
1medium
Title: Feature: Default GraphQL Enums from Python Enums. Body: <!--- Provide a general summary of the changes you want in the title above. --> <!--- This template is entirely optional and can be removed, but is here to help both you and us. --> <!--- Anything on lines wrapped in comments like these will not show up in the final text. --> ## Feature Request Type - [ ] Core functionality - [ ] Alteration (enhancement/optimization) of existing feature(s) - [x] New behavior ## Description Currently to register a GraphQL Enum from an existing enums that resides elsewhere in your code base you need to do the following ~ ```python from somewhere import MyEnum MyEnumGQL = strawberry.enum(MyEnum) @strawberry.type class Foo: bar: MyEnumGQL ``` This results in a [pyright error ](https://discord.com/channels/689806334337482765/1252599999380983869/1253019059281199275) that can be fixed like this ```python from somewhere import MyEnum if TYPE_CHECKING: MyEnumGQL = MyEnum else: MyEnumGQL = strawberry.enum(MyEnum) @strawberry.type class Foo: bar: MyEnumGQL ``` It would be nice if we could just use a default GraphQL implementation of the enum on the fly so that the `strawberry.enum` call would not be needed. ```python from somewhere import MyEnum @strawberry.type class Foo: bar: MyEnum ```
1medium
Title: When rebasing gitstatus raises "_GSField.updator() takes 2 positional arguments but 3 were given" Body: ## xonfig <details> ``` +------------------+-----------------+ | xonsh | 0.13.3 | | Python | 3.10.7 | | PLY | 3.11 | | have readline | True | | prompt toolkit | 3.0.31 | | shell type | prompt_toolkit | | history backend | json | | pygments | None | | on posix | True | | on linux | True | | distro | unknown | | on wsl | False | | on darwin | False | | on windows | False | | on cygwin | False | | on msys2 | False | | is superuser | True | | default encoding | utf-8 | | xonsh encoding | utf-8 | | encoding errors | surrogateescape | | xontrib | [] | | RC file 1 | /root/.xonshrc | +------------------+-----------------+ ``` </details> ## Expected Behavior No error ## Current Behavior Xonsh prints the following error when generating the prompt: ``` prompt: error: on field 'gitstatus' xonsh: For full traceback set: $XONSH_SHOW_TRACEBACK = True TypeError: _GSField.updator() takes 2 positional arguments but 3 were given ``` Full traceback below. ### Traceback (if applicable) <details> ``` {ERROR:gitstatus} # prompt: error: on field 'gitstatus' xonsh: To log full traceback to a file set: $XONSH_TRACEBACK_LOGFILE = <filename> Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 133, in _get_field_value return self.fields.pick(field) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 381, in pick value.update(self) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/gitstatus.py", line 343, in update super().update(ctx) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 519, in update self.value = self.separator.join(self._collect(ctx)) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 514, in _collect yield format(ctx.pick(frag)) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 381, in pick value.update(self) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/gitstatus.py", line 126, in update self.updator(self, ctx) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/gitstatus.py", line 246, in get_gitstatus_info info = ctx.pick_val(porcelain) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 391, in pick_val val = self.pick(key) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 381, in pick value.update(self) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/gitstatus.py", line 126, in update self.updator(self, ctx) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/gitstatus.py", line 206, in porcelain branch = ctx.pick(tag_or_hash) or "" File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 381, in pick value.update(self) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/gitstatus.py", line 126, in update self.updator(self, ctx) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/gitstatus.py", line 146, in tag_or_hash fld.value = ctx.pick(tag) or ctx.pick(short_head) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/base.py", line 381, in pick value.update(self) File "/usr/local/lib/python3.10/site-packages/xonsh/prompt/gitstatus.py", line 126, in update self.updator(self, ctx) TypeError: _GSField.updator() takes 2 positional arguments but 3 were given ``` </details> ## Steps to Reproduce 1. Set `.xonshrc` to this: ``` $PROMPT = ( "{gitstatus} {prompt_end}{RESET} " ) # you might also want to turn on: # $XONSH_SHOW_TRACEBACK = True ``` 2. Create a git repo with a few commits 3. `git rebase --interactive <old-commit>` 4. Set some commits to `edit` to pause the rebase at that commit 5. cd a xonsh shell to that git directory ## For community ⬇️ **Please click the 👍 reaction instead of leaving a `+1` or 👍 comment**
2hard
Title: Task admin - autocomplete_fields Body: Dropdown select is not easy when you have many users. I'd like to recommend adding **"autocomplete_fields"** in **workflow/admins.py** ``` @admin.register(Task) class TaskAdmin(admin.ModelAdmin): """List all of viewflow tasks.""" icon = '<i class="material-icons">assignment_turned_in</i>' actions = None date_hierarchy = "created" autocomplete_fields = [ "owner" ] ... ```
0easy
Title: [Bug] Cannot login on VPS using Linux Terminal Body: **Describe the bug** After installing Openbb Terminal in a remote VPS running Linux, I cannot login. **To Reproduce** Installed a fresh copy of openbb and worked properly. Started the terminal and worked properly. Went to accounts/login and at this point I believe the terminal is attempting to open a browser window but that is not possible on the Linux terminal VPS. How am I to login using credentials or the personal access token I have previously generated? **Screenshots** https://i.imgur.com/zHYDGt8.png ![zHYDGt8 1](https://github.com/OpenBB-finance/OpenBBTerminal/assets/151373546/f445737e-dc6b-4f1c-a340-8b1d9db37baa) **Additional context** Please provide clear and easy to understand steps on how to login as I am new to both Linux and Openbb. **Later Edit:** After running /accounts/login multiple times, this error appeared three times in about 10 tries. I do not know if they are connected. ![some error](https://i.imgur.com/XMTAVX9.png)
1medium
Title: Document minimum tifffile requirements Body: ### Description: I'm looking to update the python-scikit-image package in Fedora and getting the following test failures: ``` _________________________________ test_shapes __________________________________ imgs = <skimage.io.collection.MultiImage object at 0x7fb1f0435790> def test_shapes(imgs): imgs = imgs[-1] assert imgs[0][0].shape == imgs[0][1].shape > assert imgs[0][0].shape == (10, 10, 3) E assert (25, 14, 3) == (10, 10, 3) E At index 0 diff: 25 != 10 E Full diff: E - (10, 10, 3) E + (25, 14, 3) skimage/io/tests/test_multi_image.py:31: AssertionError ---------------------------- Captured stderr setup ----------------------------- Downloading file 'data/multipage_rgb.tif' from 'https://github.com/scikit-image/scikit-image/raw/v0.21.0/skimage/data/multipage_rgb.tif' to '/home/orion/fedora/python-scikit-image/scikit-image-0.21.0/scikit-image/0.21.0'. _________________________________ test_slicing _________________________________ imgs = [<skimage.io.collection.MultiImage object at 0x7fb20002e190>, <skimage.io.collection.MultiImage object at 0x7fb1f045b8...kimage.io.collection.MultiImage object at 0x7fb1f034ba10>, <skimage.io.collection.MultiImage object at 0x7fb1f03f1c10>] def test_slicing(imgs): img = imgs[-1] assert type(img[:]) is MultiImage assert len(img[0][:]) + len(img[1][:]) == 26, len(img[:]) assert len(img[0][:1]) == 1 > assert len(img[1][1:]) == 23 E assert 1 == 23 E + where 1 = len(array([[[[6.11859237e-01, 6.13683830e-01, 2.61764427e-01],\n [8.64150092e-01, 1.86032699e-01, 7.67905107e-01],\n [4.47323589e-01, 8.81760559e-01, 7.71544235e-01],\n [3.01772365e-01, 2.93226077e-01, 1.62019224e-01],\n [6.60980691e-01, 9.67724343e-01, 3.53490597e-01],\n [4.16066406e-01, 3.12212669e-01, 5.95506126e-01],\n [1.78595715e-01, 1.74973403e-01, 8.04427253e-01],\n [4.51611405e-01, 3.13848890e-01, 5.25524362e-01],\n [3.05492419e-01, 1.11827285e-02, 9.39158752e-01],\n [2.02804065e-01, 6.23108406e-01, 9.59814407e-01]],\n\n [[4.54140258e-01, 5.17023922e-02, 1.72994131e-01],\n [2.45123764e-01, 5.86041911e-01, 1.44030170e-01],\n [9.49853360e-01, 1.65398332e-01, 9.20412825e-01],\n [9.71664246e-01, 9.13602646e-01, 4.60977608e-01],\n [6.75569279e-01, 7.94274742e-01, 1.72290952e-01],\n [9.94832905e-01, 4.38295464e-01, 6.12733696e-01],\n [1.29133003e-01, 1.69541113e-01, 1.40536150e-02],\n [8.20638267e-01, 4.79702746e-01, 8.87252462e-01],\n [9.30465060e-01, 9.43440274e-02, 1.45653304e-01],\n [4.00729428e-01, 7.57031255e-01, 9.87977575e-01]],\n\n [[4.88...304635e-01]],\n\n [[8.59327355e-01, 4.02425053e-01, 4.76087125e-01],\n [7.08815254e-01, 1.59897390e-01, 6.23051449e-01],\n [9.12360216e-02, 5.42339910e-01, 1.47251478e-01],\n [4.06343227e-01, 1.79473267e-01, 3.69216690e-02],\n [8.84683616e-01, 5.21541897e-01, 9.17095911e-01],\n [1.12484019e-01, 4.47171746e-01, 3.13240591e-01],\n [4.48454609e-01, 4.37365110e-01, 6.00244286e-01],\n [1.49488731e-01, 7.11540362e-01, 8.98939775e-01],\n [6.06455452e-01, 4.72772906e-01, 3.53782699e-01],\n [1.01016308e-01, 6.47838405e-01, 5.74062674e-01]],\n\n [[6.02083416e-01, 5.58439915e-01, 6.48526201e-01],\n [7.07022009e-01, 2.35024425e-01, 1.85182152e-02],\n [6.20179125e-01, 4.63161602e-01, 2.40833443e-01],\n [8.04487714e-03, 4.58802330e-01, 5.27037573e-02],\n [1.33684803e-01, 3.13904377e-01, 5.28891432e-02],\n [4.61955771e-01, 2.37523200e-01, 1.36905619e-01],\n [3.20624017e-02, 2.73770016e-01, 2.19316844e-01],\n [9.68227208e-01, 1.00798813e-01, 8.86375033e-01],\n [5.09561718e-01, 1.48944850e-01, 6.03461718e-01],\n [8.85811169e-02, 6.29287096e-01, 3.73361435e-01]]]])) skimage/io/tests/test_multi_image.py:43: AssertionError ``` ### Way to reproduce: ``` + xvfb-run pytest -v --deselect=skimage/data/tests/test_data.py::test_download_all_with_pooch --deselect=skimage/data/tests/test_data.py::test_eagle --deselect=skimage/data/tests/test_data.py::test_brain_3d --deselect=skimage/data/tests/test_data.py::test_cells_3d --deselect=skimage/data/tests/test_data.py::test_kidney_3d_multichannel --deselect=skimage/data/tests/test_data.py::test_lily_multichannel --deselect=skimage/data/tests/test_data.py::test_skin --deselect=skimage/data/tests/test_data.py::test_vortex --deselect=skimage/measure/tests/test_blur_effect.py::test_blur_effect_3d --deselect=skimage/registration/tests/test_masked_phase_cross_correlation.py::test_masked_registration_3d_contiguous_mask skimage ============================= test session starts ============================== platform linux -- Python 3.11.3, pytest-7.3.1, pluggy-1.0.0 -- /usr/bin/python3 hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/orion/BUILDROOT/python-scikit-image-0.21.0-1.fc39.x86_64/usr/lib64/python3.11/site-packages/.hypothesis/examples') rootdir: /home/orion/BUILDROOT/python-scikit-image-0.21.0-1.fc39.x86_64/usr/lib64/python3.11/site-packages plugins: xprocess-0.22.2, remotedata-0.3.3, asyncio-0.21.0, libtmux-0.21.0, forked-1.6.0, mock-3.10.0, cov-4.0.0, flake8-1.1.1, timeout-2.1.0, rerunfailures-11.0, pyfakefs-5.2.2, xdist-3.3.1, doctestplus-0.12.0, openfiles-0.5.0, anyio-3.5.0, mpi-0.6, hypothesis-6.62.1, localserver-0.7.0, arraydiff-0.5.0 asyncio: mode=Mode.STRICT collecting ... collected 8215 items / 9 deselected / 2 skipped / 8206 selected ``` ### Version information: ```Shell 3.11.3 (main, May 24 2023, 00:00:00) [GCC 13.1.1 20230511 (Red Hat 13.1.1-2)] Linux-6.4.0-0.rc2.23.fc39.x86_64-x86_64-with-glibc2.37.9000 numpy version: 1.24.3 ``` ```
1medium
Title: execution options param in ORM session hardcoded to immutable dict Body: ### Discussed in https://github.com/sqlalchemy/sqlalchemy/discussions/10181 ```py from sqlalchemy.orm import Session session: Session session.connection( execution_options={"isolation_level": "REPEATABLE READ"} ) ``` ``` $ mypy test3.py test3.py:6: error: Argument "execution_options" to "connection" of "Session" has incompatible type "dict[str, str]"; expected "immutabledict[str, Any] | None" [arg-type] Found 1 error in 1 file (checked 1 source file) ```
1medium
Title: Attribute type change in Mapped[] not detected Body: **Describe the bug** <!-- A clear and concise description of what the bug is. --> If I change the type of an attribute in my model, only defined by the `Mapped` annotation, then I do not get any changes in the resulting upgrade script: ```python class File(Base): # change type from str to int # size: Mapped[Optional[str]] size: Mapped[Optional[int]] ``` ```bash alembic revision -m "Change not detected" --autogenerate ``` Not expected: ```python def upgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### ``` **Expected behavior** <!-- A clear and concise description of what you expected to happen. --> I expect an alter_column statement a la: ```python def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('file', 'size', existing_type=sa.NUMERIC(), nullable=True) # ### end Alembic commands ### ``` **To Reproduce** I am very aware that this may be a problem on my side, and I think it is difficult to provide a complete example setup. **Versions.** - OS: Windows 11 - Python: 3.10.11 - Alembic: 1.11.1 - SQLAlchemy: 2.0.15 - Database: postgis/postgis:11-2.5-alpine - DBAPI: psycopg2-binary 2.9.6 **Additional context** <!-- Add any other context about the problem here. --> Doing other changes to my model class, for instance, removing the `Optional` keyword or adding/removing/renaming, results in an expected change (except still no type change). **Have a nice day!**
1medium
Title: AttributeError: 'Order' object has no attribute 'algoParamsCount' Body: Hello, I get AttributeError: 'Order' object has no attribute 'algoParamsCount', after I submit an adaptive algo order, which is contructed (following the instructions at https://interactivebrokers.github.io/tws-api/ibalgos.html#gsc.tab=0) as: ``` def MarketOrder(**kwargs): order = Order(orderType='MKT', **kwargs) return order def AdaptiveMarketOrder(priority='Normal', **kwargs): priority = priority.capitalize() valid_priorities = ['Critical', 'Urgent', 'Normal', 'Patient'] assert priority in valid_priorities, "Invalid priority. Should be in %s." % (valid_priorities) order = MarketOrder(**kwargs) order.algoStrategy = "Adaptive" order.algoParams = [] adaptivePriority = ib_insync.objects.TagValue('adaptivePriority', priority) order.algoParams.append(adaptivePriority) return order class Data: ... def order(self, contract: ib_insync.Contract, amount: int, style: ib_insync.order.Order, transmit=False): order = style order.account = self.data.account order.action = ('BUY' if amount >= 0 else 'SELL') order.totalQuantity = abs(int(amount)) order.transmit = transmit trade = self.broker.placeOrder(contract, order) return trade.order ... data.order(gld, 100, style=AdaptiveMarketOrder(priority='Normal'), transmit=True) ``` The full traceback: ``` 2017-11-15 02:38:41,724 ib_insync.client ERROR Decode failed Traceback (most recent call last): File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/client.py", line 223, in _onSocketHasData self._decode(fields) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/client.py", line 378, in _decode self.decoder.interpret(fields) File "/home/dias/anaconda3/lib/python3.6/site-packages/ibapi-9.73.2-py3.6.egg/ibapi/decoder.py", line 1154, in interpret handleInfo.processMeth(self, iter(fields)) File "/home/dias/anaconda3/lib/python3.6/site-packages/ibapi-9.73.2-py3.6.egg/ibapi/decoder.py", line 413, in processOpenOrder self.wrapper.openOrder(order.orderId, contract, order, orderState) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/wrapper.py", line 192, in openOrder order = Order(**order.__dict__) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/objects.py", line 53, in __init__ setattr(self, k, v) AttributeError: 'Order' object has no attribute 'algoParamsCount' 2017-11-15 02:38:41,725 ib_insync.wrapper INFO orderStatus: Trade(contract=Contract(conId=51529211, symbol='GLD', secType='STK', exchange='SMART', primaryExchange='ARCA', currency='USD', localSymbol='GLD', tradingClass='GLD'), order=Order(orderId=149, action='SELL', totalQuantity=100, orderType='MKT', account='U1744631', algoStrategy='Adaptive', algoParams=[TagValue(tag='adaptivePriority', value='Normal')]), orderStatus=OrderStatus(status='Submitted', remaining=100.0, permId=1483409048, clientId=34), fills=[], log=[TradeLogEntry(time=datetime.datetime(2017, 11, 14, 20, 38, 41, 392626, tzinfo=datetime.timezone.utc), status='PendingSubmit', message=''), TradeLogEntry(time=datetime.datetime(2017, 11, 14, 20, 38, 41, 723600, tzinfo=datetime.timezone.utc), status='Submitted', message='')]) 2017-11-15 02:38:57,046 ib_insync.wrapper INFO position: Position(account='U1744631', contract=Contract(conId=51529211, symbol='GLD', secType='STK', exchange='ARCA', currency='USD', localSymbol='GLD', tradingClass='GLD'), position=524.0, avgCost=121.82631555) 2017-11-15 02:38:57,047 ib_insync.wrapper INFO execDetails: Fill(contract=Contract(conId=51529211, symbol='GLD', secType='STK', exchange='SMART', primaryExchange='ARCA', currency='USD', localSymbol='GLD', tradingClass='GLD'), execution=Execution(execId='00013911.5a0ad7f2.01.01', time='20171115 02:38:56', acctNumber='U1744631', exchange='ISLAND', side='SLD', shares=100.0, price=121.71, permId=1483409048, clientId=34, orderId=149, cumQty=100.0, avgPrice=121.71), commissionReport=CommissionReport(), time=datetime.datetime(2017, 11, 14, 20, 38, 57, 47655, tzinfo=datetime.timezone.utc)) 2017-11-15 02:38:57,048 ib_insync.client ERROR Decode failed Traceback (most recent call last): File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/client.py", line 223, in _onSocketHasData self._decode(fields) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/client.py", line 378, in _decode self.decoder.interpret(fields) File "/home/dias/anaconda3/lib/python3.6/site-packages/ibapi-9.73.2-py3.6.egg/ibapi/decoder.py", line 1154, in interpret handleInfo.processMeth(self, iter(fields)) File "/home/dias/anaconda3/lib/python3.6/site-packages/ibapi-9.73.2-py3.6.egg/ibapi/decoder.py", line 413, in processOpenOrder self.wrapper.openOrder(order.orderId, contract, order, orderState) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/wrapper.py", line 192, in openOrder order = Order(**order.__dict__) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/objects.py", line 53, in __init__ setattr(self, k, v) AttributeError: 'Order' object has no attribute 'algoParamsCount' 2017-11-15 02:38:57,049 ib_insync.wrapper INFO orderStatus: Trade(contract=Contract(conId=51529211, symbol='GLD', secType='STK', exchange='SMART', primaryExchange='ARCA', currency='USD', localSymbol='GLD', tradingClass='GLD'), order=Order(orderId=149, action='SELL', totalQuantity=100, orderType='MKT', account='U1744631', algoStrategy='Adaptive', algoParams=[TagValue(tag='adaptivePriority', value='Normal')]), orderStatus=OrderStatus(status='Filled', filled=100.0, avgFillPrice=121.71, permId=1483409048, lastFillPrice=121.71, clientId=34), fills=[Fill(contract=Contract(conId=51529211, symbol='GLD', secType='STK', exchange='SMART', primaryExchange='ARCA', currency='USD', localSymbol='GLD', tradingClass='GLD'), execution=Execution(execId='00013911.5a0ad7f2.01.01', time='20171115 02:38:56', acctNumber='U1744631', exchange='ISLAND', side='SLD', shares=100.0, price=121.71, permId=1483409048, clientId=34, orderId=149, cumQty=100.0, avgPrice=121.71), commissionReport=CommissionReport(), time=datetime.datetime(2017, 11, 14, 20, 38, 57, 47655, tzinfo=datetime.timezone.utc))], log=[TradeLogEntry(time=datetime.datetime(2017, 11, 14, 20, 38, 41, 392626, tzinfo=datetime.timezone.utc), status='PendingSubmit', message=''), TradeLogEntry(time=datetime.datetime(2017, 11, 14, 20, 38, 41, 723600, tzinfo=datetime.timezone.utc), status='Submitted', message=''), TradeLogEntry(time=datetime.datetime(2017, 11, 14, 20, 38, 57, 47655, tzinfo=datetime.timezone.utc), status='Submitted', message='Fill 100.0@121.71'), TradeLogEntry(time=datetime.datetime(2017, 11, 14, 20, 38, 57, 47655, tzinfo=datetime.timezone.utc), status='Filled', message='')]) 2017-11-15 02:38:57,051 ib_insync.client ERROR Decode failed Traceback (most recent call last): File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/client.py", line 223, in _onSocketHasData self._decode(fields) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/client.py", line 378, in _decode self.decoder.interpret(fields) File "/home/dias/anaconda3/lib/python3.6/site-packages/ibapi-9.73.2-py3.6.egg/ibapi/decoder.py", line 1154, in interpret handleInfo.processMeth(self, iter(fields)) File "/home/dias/anaconda3/lib/python3.6/site-packages/ibapi-9.73.2-py3.6.egg/ibapi/decoder.py", line 413, in processOpenOrder self.wrapper.openOrder(order.orderId, contract, order, orderState) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/wrapper.py", line 192, in openOrder order = Order(**order.__dict__) File "/home/dias/anaconda3/lib/python3.6/site-packages/ib_insync/objects.py", line 53, in __init__ setattr(self, k, v) AttributeError: 'Order' object has no attribute 'algoParamsCount' ``` The order actually gets filled, but this error is disturbing. Could you help?
1medium
Title: [Tech Debt] Simplify kernel size logic Body: RIght now all blurs will throw an error if input kernel range has even sides. We can simplify it by sampling from any interval, and if picking one that close to samped, larger and valid
1medium
Title: UserWarning: NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation Body: ### Checklist - [x] The issue exists after disabling all extensions - [x] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [x] The issue exists in the current version of the webui - [x] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? Upgraded to a 5090, And got this error, following the link and downloading using the pip command didn't solve the issue it still uses the older cuda and gives this errore ### Steps to reproduce the problem Run webui.bat ### What should have happened? load with no errors and allow me to generate images. ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo [sysinfo-2025-02-02-17-05.json](https://github.com/user-attachments/files/18633156/sysinfo-2025-02-02-17-05.json) ### Console logs ```Shell Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)] Version: v1.10.1 Commit hash: 82a973c04367123ae98bd9abdf80d9eda9b910e2 Launching Web UI with arguments: C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\timm\models\layers\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\cuda\__init__.py:215: UserWarning: NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90. If you want to use the NVIDIA GeForce RTX 5090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/ warnings.warn( Loading weights [39590fcd2d] from C:\Users\andy9\Downloads\sd.webui\webui\models\Stable-diffusion\symPonyWorld_v10.safetensors Running on local URL: http://127.0.0.1:7861 Creating model from config: C:\Users\andy9\Downloads\sd.webui\webui\repositories\generative-models\configs\inference\sd_xl_base.yaml To create a public link, set `share=True` in `launch()`. Startup time: 8.4s (prepare environment: 2.1s, import torch: 3.1s, import gradio: 0.8s, setup paths: 0.6s, initialize shared: 0.2s, other imports: 0.4s, load scripts: 0.4s, create ui: 0.3s, gradio launch: 0.5s). C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\huggingface_hub\file_download.py:795: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`. warnings.warn( loading stable diffusion model: RuntimeError Traceback (most recent call last): File "threading.py", line 973, in _bootstrap File "threading.py", line 1016, in _bootstrap_inner File "threading.py", line 953, in run File "C:\Users\andy9\Downloads\sd.webui\webui\modules\initialize.py", line 149, in load_model shared.sd_model # noqa: B018 File "C:\Users\andy9\Downloads\sd.webui\webui\modules\shared_items.py", line 175, in sd_model return modules.sd_models.model_data.get_sd_model() File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 693, in get_sd_model load_model() File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 845, in load_model load_model_weights(sd_model, checkpoint_info, state_dict, timer) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 440, in load_model_weights model.load_state_dict(state_dict, strict=False) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 223, in <lambda> module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs)) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 221, in load_state_dict original(module, state_dict, strict=strict) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2138, in load_state_dict load(self, state_dict) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) [Previous line repeated 1 more time] File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2120, in load module._load_from_state_dict( File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 225, in <lambda> linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs)) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 191, in load_from_state_dict module._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\_meta_registrations.py", line 4516, in zeros_like res.fill_(0) RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. Stable diffusion model failed to load Applying attention optimization: Doggettx... done. Loading weights [39590fcd2d] from C:\Users\andy9\Downloads\sd.webui\webui\models\Stable-diffusion\symPonyWorld_v10.safetensors Exception in thread Thread-18 (load_model): Traceback (most recent call last): File "threading.py", line 1016, in _bootstrap_inner File "threading.py", line 953, in run File "C:\Users\andy9\Downloads\sd.webui\webui\modules\initialize.py", line 154, in load_model devices.first_time_calculation() File "C:\Users\andy9\Downloads\sd.webui\webui\modules\devices.py", line 281, in first_time_calculation conv2d(x) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\andy9\Downloads\sd.webui\webui\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward return originals.Conv2d_forward(self, input) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward Creating model from config: C:\Users\andy9\Downloads\sd.webui\webui\repositories\generative-models\configs\inference\sd_xl_base.yaml return self._conv_forward(input, self.weight, self.bias) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. loading stable diffusion model: RuntimeError Traceback (most recent call last): File "threading.py", line 973, in _bootstrap File "threading.py", line 1016, in _bootstrap_inner File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run result = context.run(func, *args) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\gradio\utils.py", line 707, in wrapper response = f(*args, **kwargs) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\ui.py", line 1165, in <lambda> update_image_cfg_scale_visibility = lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit") File "C:\Users\andy9\Downloads\sd.webui\webui\modules\shared_items.py", line 175, in sd_model return modules.sd_models.model_data.get_sd_model() File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 693, in get_sd_model load_model() File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 845, in load_model load_model_weights(sd_model, checkpoint_info, state_dict, timer) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 440, in load_model_weights model.load_state_dict(state_dict, strict=False) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 223, in <lambda> module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs)) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 221, in load_state_dict original(module, state_dict, strict=strict) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2138, in load_state_dict load(self, state_dict) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) [Previous line repeated 1 more time] File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2120, in load module._load_from_state_dict( File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 225, in <lambda> linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs)) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 191, in load_from_state_dict module._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\_meta_registrations.py", line 4516, in zeros_like res.fill_(0) RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. Stable diffusion model failed to load Loading weights [39590fcd2d] from C:\Users\andy9\Downloads\sd.webui\webui\models\Stable-diffusion\symPonyWorld_v10.safetensors Creating model from config: C:\Users\andy9\Downloads\sd.webui\webui\repositories\generative-models\configs\inference\sd_xl_base.yaml loading stable diffusion model: RuntimeError Traceback (most recent call last): File "threading.py", line 973, in _bootstrap File "threading.py", line 1016, in _bootstrap_inner File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run result = context.run(func, *args) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\gradio\utils.py", line 707, in wrapper response = f(*args, **kwargs) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\ui.py", line 1165, in <lambda> update_image_cfg_scale_visibility = lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit") File "C:\Users\andy9\Downloads\sd.webui\webui\modules\shared_items.py", line 175, in sd_model return modules.sd_models.model_data.get_sd_model() File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 693, in get_sd_model load_model() File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 845, in load_model load_model_weights(sd_model, checkpoint_info, state_dict, timer) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_models.py", line 440, in load_model_weights model.load_state_dict(state_dict, strict=False) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 223, in <lambda> module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs)) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 221, in load_state_dict original(module, state_dict, strict=strict) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2138, in load_state_dict load(self, state_dict) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2126, in load load(child, child_state_dict, child_prefix) [Previous line repeated 1 more time] File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 2120, in load module._load_from_state_dict( File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 225, in <lambda> linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs)) File "C:\Users\andy9\Downloads\sd.webui\webui\modules\sd_disable_initialization.py", line 191, in load_from_state_dict module._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad) File "C:\Users\andy9\Downloads\sd.webui\system\python\lib\site-packages\torch\_meta_registrations.py", line 4516, in zeros_like res.fill_(0) RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. Stable diffusion model failed to load ``` ### Additional information _No response_
2hard
Title: BUG: failed to install doc requirements on Apple M1 Body: ### Describe the bug The doc requirements include `lightgbm>=3.0.0`. But installing lightgbm on Apple M1 could result in an error. ### To Reproduce To help us to reproduce this bug, please provide information below: 1. Your Python version 2. The version of Xorbits you use 3. Versions of crucial packages, such as numpy, scipy and pandas 4. Full stack of the error. ```python Traceback (most recent call last): File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 95, in silent_call subprocess.check_call(cmd, stderr=log, stdout=log) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/subprocess.py", line 373, in check_call raise CalledProcessError(retcode, cmd) subprocess.CalledProcessError: Command '['make', '_lightgbm', '-I/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/build_cpp', '-j4']' returned non-zero exit status 2. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 334, in <module> setup(name='lightgbm', File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/__init__.py", line 87, in setup return distutils.core.setup(**attrs) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 185, in setup return run_commands(dist) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 201, in run_commands dist.run_commands() File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 969, in run_commands self.run_command(cmd) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/dist.py", line 1208, in run_command super().run_command(command) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 988, in run_command cmd_obj.run() File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/wheel/bdist_wheel.py", line 360, in run self.run_command("install") File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/cmd.py", line 318, in run_command self.distribution.run_command(command) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/dist.py", line 1208, in run_command super().run_command(command) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 988, in run_command cmd_obj.run() File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 248, in run compile_cpp(use_mingw=self.mingw, use_gpu=self.gpu, use_cuda=self.cuda, use_mpi=self.mpi, File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 199, in compile_cpp silent_call(["make", "_lightgbm", f"-I{build_dir}", "-j4"], raise_error=True, File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 99, in silent_call raise Exception("\n".join((error_msg, LOG_NOTICE))) Exception: An error has occurred while building lightgbm library file The full version of error log was saved into /Users/jon/LightGBM_compilation.log [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for lightgbm error: subprocess-exited-with-error × Running setup.py install for lightgbm did not run successfully. │ exit code: 1 ╰─> [39 lines of output] INFO:root:running install /Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. warnings.warn( INFO:LightGBM:Starting to compile the library. INFO:LightGBM:Starting to compile with CMake. Traceback (most recent call last): File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 95, in silent_call subprocess.check_call(cmd, stderr=log, stdout=log) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/subprocess.py", line 373, in check_call raise CalledProcessError(retcode, cmd) subprocess.CalledProcessError: Command '['make', '_lightgbm', '-I/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/build_cpp', '-j4']' returned non-zero exit status 2. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 334, in <module> setup(name='lightgbm', File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/__init__.py", line 87, in setup return distutils.core.setup(**attrs) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 185, in setup return run_commands(dist) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 201, in run_commands dist.run_commands() File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 969, in run_commands self.run_command(cmd) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/dist.py", line 1208, in run_command super().run_command(command) File "/Users/jon/Documents/miniconda3/envs/dev/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 988, in run_command cmd_obj.run() File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 248, in run compile_cpp(use_mingw=self.mingw, use_gpu=self.gpu, use_cuda=self.cuda, use_mpi=self.mpi, File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 199, in compile_cpp silent_call(["make", "_lightgbm", f"-I{build_dir}", "-j4"], raise_error=True, File "/private/var/folders/2p/lb2j30s116zgq01tny9srvbw0000gn/T/pip-install-6kmldwi9/lightgbm_ea8fe0e250774541b5bfaba97a9cc4c3/setup.py", line 99, in silent_call raise Exception("\n".join((error_msg, LOG_NOTICE))) Exception: An error has occurred while building lightgbm library file The full version of error log was saved into /Users/jon/LightGBM_compilation.log [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: legacy-install-failure × Encountered error while trying to install package. ╰─> lightgbm note: This is an issue with the package mentioned above, not pip. hint: See above for output from the failure. ``` 5. Minimized code to reproduce the error. ```bash pip install lightgbm>\=3.0.0 ``` ### Expected behavior ### Additional context [LightGBM_compilation.log](https://github.com/xprobe-inc/xorbits/files/11541385/LightGBM_compilation.log)
2hard
Title: Our tests fail to test workflows Body: ...except the Qt6 tests. #6181 had a compatibility issue which we almost did not catch because only Qt6 tests were having problems. The cause for this is that `tox.ini` for `testenv` includes: ``` # Skip loading of example workflows as that inflates coverage SKIP_EXAMPLE_WORKFLOWS=True ``` These worfklows should be skipped only for the run that is actually used for coverage. So we should do the opposite, run example workflows everywhere except on a one specific (coverage) run.
1medium
Title: [FEATURE] Add tests in SAR for remove seen feature Body: ### Description <!--- Describe your expected feature in detail --> ### Expected behavior with the suggested feature <!--- For example: --> <!--- *Adding algorithm xxx will help people understand more about xxx use case scenarios. --> ### Other Comments
1medium