|
import transformers |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
from torch.utils.data import DataLoader |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import json |
|
from tqdm.auto import tqdm |
|
import random |
|
from scipy.signal import savgol_filter |
|
import wandb |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import os |
|
from itertools import product |
|
import pandas as pd |
|
import multiprocessing as mp |
|
from functools import partial |
|
import logging |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
class Config: |
|
def __init__(self): |
|
self.model_name = "Qwen/Qwen2-0.5B" |
|
self.data_dir = "dataset_chunks" |
|
self.max_length = 1024 |
|
self.batch_size = 32 |
|
self.num_seeds = 10000 |
|
self.num_lr_steps = 10000 |
|
self.min_lr = 1e-8 |
|
self.max_lr = 10 |
|
self.hidden_dim_ratio = 0.5 |
|
self.dropout = 0.1 |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.num_workers = mp.cpu_count() |
|
|
|
class ImprovedAutoencoder(nn.Module): |
|
def __init__(self, input_dim, hidden_dim, num_layers, dropout): |
|
super().__init__() |
|
self.encoder = nn.ModuleList([ |
|
nn.Linear(input_dim if i == 0 else hidden_dim, hidden_dim, dtype=torch.bfloat16) |
|
for i in range(num_layers) |
|
]) |
|
self.decoder = nn.ModuleList([ |
|
nn.Linear(hidden_dim, hidden_dim if i < num_layers - 1 else input_dim, dtype=torch.bfloat16) |
|
for i in range(num_layers) |
|
]) |
|
self.layer_norms = nn.ModuleList([ |
|
nn.LayerNorm(hidden_dim, dtype=torch.bfloat16) |
|
for _ in range(num_layers * 2 - 1) |
|
]) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
for enc, norm in zip(self.encoder, self.layer_norms[:len(self.encoder)]): |
|
x = F.relu(norm(enc(x))) |
|
x = self.dropout(x) |
|
for dec, norm in zip(self.decoder[:-1], self.layer_norms[len(self.encoder):]): |
|
x = F.relu(norm(dec(x))) |
|
x = self.dropout(x) |
|
x = self.decoder[-1](x) |
|
return x |
|
|
|
class TokenizedDataset(torch.utils.data.Dataset): |
|
def __init__(self, file_paths): |
|
self.data = [] |
|
for file_path in tqdm(file_paths, desc="Loading data chunks"): |
|
chunk_data = torch.load(file_path) |
|
logger.info(f"Loaded data from {file_path}") |
|
logger.info(f"Type of loaded data: {type(chunk_data)}") |
|
|
|
if isinstance(chunk_data, dict): |
|
logger.info(f"Keys in the dictionary: {chunk_data.keys()}") |
|
logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}") |
|
self.data.append(chunk_data) |
|
elif isinstance(chunk_data, transformers.tokenization_utils_base.BatchEncoding): |
|
logger.info(f"Keys in the BatchEncoding: {chunk_data.keys()}") |
|
logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}") |
|
self.data.append(chunk_data) |
|
else: |
|
logger.warning(f"Unexpected data type: {type(chunk_data)}") |
|
|
|
logger.info(f"Loaded {len(self.data)} chunks of data") |
|
|
|
def __len__(self): |
|
return sum(len(chunk['input_ids']) for chunk in self.data) |
|
|
|
def __getitem__(self, idx): |
|
for chunk in self.data: |
|
if idx < len(chunk['input_ids']): |
|
return {k: v[idx] for k, v in chunk.items()} |
|
idx -= len(chunk['input_ids']) |
|
raise IndexError("Index out of range") |
|
|
|
def set_seed(seed): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
def load_data(config): |
|
logger.info(f"Looking for data in directory: {config.data_dir}") |
|
chunk_files = [f for f in os.listdir(config.data_dir) if f.endswith('_tokenized.pt')] |
|
logger.info(f"Found {len(chunk_files)} chunk files: {chunk_files}") |
|
|
|
if not chunk_files: |
|
raise ValueError(f"No tokenized data files found in {config.data_dir}") |
|
|
|
chunk_files.sort(key=lambda x: int(x.split('_')[1])) |
|
chunk_files = [os.path.join(config.data_dir, f) for f in chunk_files] |
|
|
|
dataset = TokenizedDataset(chunk_files[:1]) |
|
logger.info(f"Created dataset with {len(dataset)} samples") |
|
|
|
return DataLoader(dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers) |
|
|
|
def extract_hidden_states(batch, model): |
|
with torch.no_grad(): |
|
outputs = model(**batch, output_hidden_states=True) |
|
return outputs.hidden_states[0], outputs.hidden_states[-1] |
|
|
|
class KLDivergenceLoss(nn.Module): |
|
def forward(self, pred, target): |
|
pred = F.log_softmax(pred, dim=-1) |
|
target = F.softmax(target, dim=-1) |
|
return F.kl_div(pred, target, reduction='batchmean', log_target=False) |
|
|
|
def lr_finder(model, autoencoder, loss_fn, optimizer, train_loader, config): |
|
model.eval() |
|
autoencoder.train() |
|
log_lrs, losses = [], [] |
|
best_loss, best_lr = float('inf'), None |
|
|
|
pbar = tqdm(total=config.num_lr_steps, desc="LR Finder") |
|
for batch_idx, batch in enumerate(train_loader): |
|
if batch_idx >= config.num_lr_steps: |
|
break |
|
|
|
lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1)) |
|
optimizer.param_groups[0]['lr'] = lr |
|
|
|
batch = {k: v.to(config.device) for k, v in batch.items()} |
|
first_states, last_states = extract_hidden_states(batch, model) |
|
|
|
optimizer.zero_grad() |
|
reconstructed = autoencoder(first_states) |
|
loss = loss_fn(reconstructed, last_states) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if loss < best_loss: |
|
best_loss = loss.item() |
|
best_lr = lr |
|
|
|
log_lrs.append(lr) |
|
losses.append(loss.item()) |
|
|
|
pbar.update(1) |
|
pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"}) |
|
|
|
pbar.close() |
|
return log_lrs, losses, best_lr, best_loss |
|
|
|
def run_experiment(config, model, train_loader, num_layers, seed): |
|
set_seed(seed) |
|
input_dim = model.config.hidden_size |
|
hidden_dim = int(input_dim * config.hidden_dim_ratio) |
|
autoencoder = ImprovedAutoencoder(input_dim, hidden_dim, num_layers, config.dropout).to(config.device) |
|
|
|
loss_fn = KLDivergenceLoss() |
|
optimizer = optim.AdamW(autoencoder.parameters(), lr=config.min_lr) |
|
|
|
log_lrs, losses = [], [] |
|
best_loss, best_lr = float('inf'), None |
|
|
|
pbar = tqdm(total=config.num_lr_steps, desc=f"LR Finder (Layers: {num_layers}, Seed: {seed})") |
|
for batch_idx, batch in enumerate(train_loader): |
|
if batch_idx >= config.num_lr_steps: |
|
break |
|
|
|
lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1)) |
|
optimizer.param_groups[0]['lr'] = lr |
|
|
|
batch = {k: v.to(config.device) for k, v in batch.items()} |
|
first_states, last_states = extract_hidden_states(batch, model) |
|
|
|
optimizer.zero_grad() |
|
reconstructed = autoencoder(first_states) |
|
loss = loss_fn(reconstructed, last_states) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if loss < best_loss: |
|
best_loss = loss.item() |
|
best_lr = lr |
|
|
|
log_lrs.append(lr) |
|
losses.append(loss.item()) |
|
|
|
|
|
wandb.log({ |
|
"loss": loss.item(), |
|
"lr": lr, |
|
"batch_idx": batch_idx, |
|
"num_layers": num_layers, |
|
"seed": seed, |
|
"best_loss": best_loss, |
|
"best_lr": best_lr |
|
}) |
|
|
|
pbar.update(1) |
|
pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"}) |
|
|
|
pbar.close() |
|
|
|
result = { |
|
'seed': seed, |
|
'num_layers': num_layers, |
|
'hidden_dim_ratio': config.hidden_dim_ratio, |
|
'dropout': config.dropout, |
|
'final_loss': losses[-1], |
|
'final_lr': log_lrs[-1], |
|
'best_lr': best_lr, |
|
'best_loss': best_loss |
|
} |
|
|
|
logger.info(f"Experiment completed: {result}") |
|
return result |
|
|
|
def main(): |
|
config = Config() |
|
wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__) |
|
|
|
logger.info("Loading Qwen model and tokenizer...") |
|
model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device) |
|
tokenizer = AutoTokenizer.from_pretrained(config.model_name) |
|
|
|
logger.info("Loading data...") |
|
train_loader = load_data(config) |
|
|
|
logger.info("Starting experiments...") |
|
results = [] |
|
for num_layers in range(4, 9): |
|
for seed in range(1, config.num_seeds + 1): |
|
|
|
with wandb.init(project="qwen-autoencoder-lr-finder", |
|
config=config.__dict__, |
|
group=f"layers_{num_layers}", |
|
name=f"seed_{seed}", |
|
job_type="experiment", |
|
reinit=True): |
|
|
|
result = run_experiment(config, model, train_loader, num_layers, seed) |
|
results.append(result) |
|
|
|
|
|
with open('lr_finder_results.jsonl', 'a') as f: |
|
json.dump(result, f) |
|
f.write('\n') |
|
|
|
|
|
wandb.log(result) |
|
|
|
logger.info("Creating visualizations...") |
|
plot_results(results) |
|
create_heatmap(results) |
|
create_parallel_coordinates_plot(results) |
|
create_3d_scatter(results) |
|
|
|
logger.info("Experiment completed. Check WandB for detailed results and visualizations.") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
def run_experiments_sequential(config, model, train_loader): |
|
results = [] |
|
for num_layers in tqdm(range(4, 9), desc="Number of Layers"): |
|
for seed in tqdm(range(1, config.num_seeds + 1), desc="Seeds", leave=False): |
|
result = run_experiment(config, model, train_loader, num_layers, seed) |
|
results.append(result) |
|
return results |
|
|
|
def plot_results(results): |
|
fig, axs = plt.subplots(3, 2, figsize=(20, 30)) |
|
fig.suptitle('Learning Rate Finder Results') |
|
|
|
for i, num_layers in enumerate(range(4, 9)): |
|
layer_results = [r for r in results if r['num_layers'] == num_layers] |
|
best_lrs = [r['Best'] for r in layer_results] |
|
best_losses = [r['best_loss'] for r in layer_results] |
|
|
|
axs[i // 2, i % 2].scatter(best_lrs, best_losses, alpha=0.5) |
|
axs[i // 2, i % 2].set_xlabel('Best Learning Rate') |
|
axs[i // 2, i % 2].set_ylabel('Best Loss') |
|
axs[i // 2, i % 2].set_title(f'{num_layers} Layers') |
|
axs[i // 2, i % 2].set_xscale('log') |
|
axs[i // 2, i % 2].set_yscale('log') |
|
|
|
plt.tight_layout() |
|
wandb.log({"lr_loss_relationships": wandb.Image(plt)}) |
|
plt.close() |
|
|
|
def create_heatmap(results): |
|
layer_counts = len(set(r['num_layers'] for r in results)) |
|
seed_counts = len(set(r['seed'] for r in results)) |
|
|
|
heatmap_data = np.zeros((layer_counts, seed_counts)) |
|
for r in results: |
|
layer_idx = r['num_layers'] - 4 |
|
seed_idx = r['seed'] - 1 |
|
heatmap_data[layer_idx, seed_idx] = r['best_loss'] |
|
|
|
plt.figure(figsize=(20, 10)) |
|
plt.imshow(heatmap_data, aspect='auto', cmap='viridis') |
|
plt.colorbar(label='Best Loss') |
|
plt.xlabel('Seed') |
|
plt.ylabel('Number of Layers') |
|
plt.title('Heatmap of Best Loss across Layers and Seeds') |
|
plt.tight_layout() |
|
wandb.log({"loss_heatmap": wandb.Image(plt)}) |
|
plt.close() |
|
|
|
def create_parallel_coordinates_plot(results): |
|
df = pd.DataFrame(results) |
|
|
|
plt.figure(figsize=(20, 10)) |
|
pd.plotting.parallel_coordinates(df, 'num_layers', colormap='viridis') |
|
plt.title('Parallel Coordinates Plot of Hyperparameters') |
|
plt.tight_layout() |
|
wandb.log({"parallel_coordinates": wandb.Image(plt)}) |
|
plt.close() |
|
|
|
def create_3d_scatter(results): |
|
fig = plt.figure(figsize=(15, 15)) |
|
ax = fig.add_subplot(111, projection='3d') |
|
|
|
for num_layers in range(4, 9): |
|
layer_results = [r for r in results if r['num_layers'] == num_layers] |
|
x = [r['Best'] for r in layer_results] |
|
y = [r['best_loss'] for r in layer_results] |
|
z = [r['seed'] for r in layer_results] |
|
ax.scatter(x, y, z, label=f'{num_layers} Layers') |
|
|
|
ax.set_xlabel('Best Learning Rate') |
|
ax.set_ylabel('Best Loss') |
|
ax.set_zlabel('Seed') |
|
ax.set_xscale('log') |
|
ax.set_yscale('log') |
|
ax.legend() |
|
plt.title('3D Scatter Plot of Best LR, Loss, and Seed') |
|
plt.tight_layout() |
|
wandb.log({"3d_scatter": wandb.Image(plt)}) |
|
plt.close() |
|
|
|
def main(): |
|
mp.set_start_method('spawn') |
|
config = Config() |
|
wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__) |
|
|
|
logger.info("Loading Qwen model and tokenizer...") |
|
model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device) |
|
tokenizer = AutoTokenizer.from_pretrained(config.model_name) |
|
|
|
logger.info("Loading data...") |
|
train_loader = load_data(config) |
|
|
|
logger.info("Starting experiments...") |
|
results = run_experiments_sequential(config, model, train_loader) |
|
|
|
logger.info("Saving results...") |
|
with open('lr_finder_results.jsonl', 'w') as f: |
|
for result in results: |
|
json.dump(result, f) |
|
f.write('\n') |
|
|
|
logger.info("Creating visualizations...") |
|
plot_results(results) |
|
create_heatmap(results) |
|
create_parallel_coordinates_plot(results) |
|
create_3d_scatter(results) |
|
|
|
logger.info("Experiment completed. Check WandB for detailed results and visualizations.") |
|
wandb.finish() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|