Sweepscript / sweep9.py
Alignment-Lab-AI's picture
Upload sweep9.py with huggingface_hub
1251d29 verified
import transformers
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
import json
from tqdm.auto import tqdm
import random
from scipy.signal import savgol_filter
import wandb
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
from itertools import product
import pandas as pd
import multiprocessing as mp
from functools import partial
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class Config:
def __init__(self):
self.model_name = "Qwen/Qwen2-0.5B"
self.data_dir = "dataset_chunks"
self.max_length = 1024
self.batch_size = 32
self.num_seeds = 10000
self.num_lr_steps = 10000
self.min_lr = 1e-8
self.max_lr = 10
self.hidden_dim_ratio = 0.5
self.dropout = 0.1
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.num_workers = mp.cpu_count()
class ImprovedAutoencoder(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, dropout):
super().__init__()
self.encoder = nn.ModuleList([
nn.Linear(input_dim if i == 0 else hidden_dim, hidden_dim, dtype=torch.bfloat16)
for i in range(num_layers)
])
self.decoder = nn.ModuleList([
nn.Linear(hidden_dim, hidden_dim if i < num_layers - 1 else input_dim, dtype=torch.bfloat16)
for i in range(num_layers)
])
self.layer_norms = nn.ModuleList([
nn.LayerNorm(hidden_dim, dtype=torch.bfloat16)
for _ in range(num_layers * 2 - 1)
])
self.dropout = nn.Dropout(dropout)
def forward(self, x):
for enc, norm in zip(self.encoder, self.layer_norms[:len(self.encoder)]):
x = F.relu(norm(enc(x)))
x = self.dropout(x)
for dec, norm in zip(self.decoder[:-1], self.layer_norms[len(self.encoder):]):
x = F.relu(norm(dec(x)))
x = self.dropout(x)
x = self.decoder[-1](x)
return x
class TokenizedDataset(torch.utils.data.Dataset):
def __init__(self, file_paths):
self.data = []
for file_path in tqdm(file_paths, desc="Loading data chunks"):
chunk_data = torch.load(file_path)
logger.info(f"Loaded data from {file_path}")
logger.info(f"Type of loaded data: {type(chunk_data)}")
if isinstance(chunk_data, dict): # Handle dictionary format (if present)
logger.info(f"Keys in the dictionary: {chunk_data.keys()}")
logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}")
self.data.append(chunk_data)
elif isinstance(chunk_data, transformers.tokenization_utils_base.BatchEncoding):
logger.info(f"Keys in the BatchEncoding: {chunk_data.keys()}")
logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}")
self.data.append(chunk_data) # Handle BatchEncoding format
else:
logger.warning(f"Unexpected data type: {type(chunk_data)}")
logger.info(f"Loaded {len(self.data)} chunks of data")
def __len__(self):
return sum(len(chunk['input_ids']) for chunk in self.data)
def __getitem__(self, idx):
for chunk in self.data:
if idx < len(chunk['input_ids']):
return {k: v[idx] for k, v in chunk.items()}
idx -= len(chunk['input_ids'])
raise IndexError("Index out of range")
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def load_data(config):
logger.info(f"Looking for data in directory: {config.data_dir}")
chunk_files = [f for f in os.listdir(config.data_dir) if f.endswith('_tokenized.pt')]
logger.info(f"Found {len(chunk_files)} chunk files: {chunk_files}")
if not chunk_files:
raise ValueError(f"No tokenized data files found in {config.data_dir}")
chunk_files.sort(key=lambda x: int(x.split('_')[1]))
chunk_files = [os.path.join(config.data_dir, f) for f in chunk_files]
dataset = TokenizedDataset(chunk_files[:1]) # Load only the first chunk for now
logger.info(f"Created dataset with {len(dataset)} samples")
return DataLoader(dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers)
def extract_hidden_states(batch, model):
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True)
return outputs.hidden_states[0], outputs.hidden_states[-1]
class KLDivergenceLoss(nn.Module):
def forward(self, pred, target):
pred = F.log_softmax(pred, dim=-1)
target = F.softmax(target, dim=-1)
return F.kl_div(pred, target, reduction='batchmean', log_target=False)
def lr_finder(model, autoencoder, loss_fn, optimizer, train_loader, config):
model.eval()
autoencoder.train()
log_lrs, losses = [], []
best_loss, best_lr = float('inf'), None
pbar = tqdm(total=config.num_lr_steps, desc="LR Finder")
for batch_idx, batch in enumerate(train_loader):
if batch_idx >= config.num_lr_steps:
break
lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1))
optimizer.param_groups[0]['lr'] = lr
batch = {k: v.to(config.device) for k, v in batch.items()}
first_states, last_states = extract_hidden_states(batch, model)
optimizer.zero_grad()
reconstructed = autoencoder(first_states)
loss = loss_fn(reconstructed, last_states)
loss.backward()
optimizer.step()
if loss < best_loss:
best_loss = loss.item()
best_lr = lr
log_lrs.append(lr)
losses.append(loss.item())
pbar.update(1)
pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"})
pbar.close()
return log_lrs, losses, best_lr, best_loss
def run_experiment(config, model, train_loader, num_layers, seed):
set_seed(seed)
input_dim = model.config.hidden_size
hidden_dim = int(input_dim * config.hidden_dim_ratio)
autoencoder = ImprovedAutoencoder(input_dim, hidden_dim, num_layers, config.dropout).to(config.device)
loss_fn = KLDivergenceLoss()
optimizer = optim.AdamW(autoencoder.parameters(), lr=config.min_lr)
log_lrs, losses = [], []
best_loss, best_lr = float('inf'), None
pbar = tqdm(total=config.num_lr_steps, desc=f"LR Finder (Layers: {num_layers}, Seed: {seed})")
for batch_idx, batch in enumerate(train_loader):
if batch_idx >= config.num_lr_steps:
break
lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1))
optimizer.param_groups[0]['lr'] = lr
batch = {k: v.to(config.device) for k, v in batch.items()}
first_states, last_states = extract_hidden_states(batch, model)
optimizer.zero_grad()
reconstructed = autoencoder(first_states)
loss = loss_fn(reconstructed, last_states)
loss.backward()
optimizer.step()
if loss < best_loss:
best_loss = loss.item()
best_lr = lr
log_lrs.append(lr)
losses.append(loss.item())
# Log to wandb at every step
wandb.log({
"loss": loss.item(),
"lr": lr,
"batch_idx": batch_idx,
"num_layers": num_layers,
"seed": seed,
"best_loss": best_loss,
"best_lr": best_lr
})
pbar.update(1)
pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"})
pbar.close()
result = {
'seed': seed,
'num_layers': num_layers,
'hidden_dim_ratio': config.hidden_dim_ratio,
'dropout': config.dropout,
'final_loss': losses[-1],
'final_lr': log_lrs[-1],
'best_lr': best_lr,
'best_loss': best_loss
}
logger.info(f"Experiment completed: {result}")
return result
def main():
config = Config()
wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__)
logger.info("Loading Qwen model and tokenizer...")
model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device)
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
logger.info("Loading data...")
train_loader = load_data(config)
logger.info("Starting experiments...")
results = []
for num_layers in range(4, 9):
for seed in range(1, config.num_seeds + 1):
# Start a new wandb run for each experiment
with wandb.init(project="qwen-autoencoder-lr-finder",
config=config.__dict__,
group=f"layers_{num_layers}",
name=f"seed_{seed}",
job_type="experiment",
reinit=True):
result = run_experiment(config, model, train_loader, num_layers, seed)
results.append(result)
# Save results after each experiment
with open('lr_finder_results.jsonl', 'a') as f:
json.dump(result, f)
f.write('\n')
# Log final results to wandb
wandb.log(result)
logger.info("Creating visualizations...")
plot_results(results)
create_heatmap(results)
create_parallel_coordinates_plot(results)
create_3d_scatter(results)
logger.info("Experiment completed. Check WandB for detailed results and visualizations.")
if __name__ == "__main__":
main()
def run_experiments_sequential(config, model, train_loader):
results = []
for num_layers in tqdm(range(4, 9), desc="Number of Layers"):
for seed in tqdm(range(1, config.num_seeds + 1), desc="Seeds", leave=False):
result = run_experiment(config, model, train_loader, num_layers, seed)
results.append(result)
return results
def plot_results(results):
fig, axs = plt.subplots(3, 2, figsize=(20, 30))
fig.suptitle('Learning Rate Finder Results')
for i, num_layers in enumerate(range(4, 9)):
layer_results = [r for r in results if r['num_layers'] == num_layers]
best_lrs = [r['Best'] for r in layer_results]
best_losses = [r['best_loss'] for r in layer_results]
axs[i // 2, i % 2].scatter(best_lrs, best_losses, alpha=0.5)
axs[i // 2, i % 2].set_xlabel('Best Learning Rate')
axs[i // 2, i % 2].set_ylabel('Best Loss')
axs[i // 2, i % 2].set_title(f'{num_layers} Layers')
axs[i // 2, i % 2].set_xscale('log')
axs[i // 2, i % 2].set_yscale('log')
plt.tight_layout()
wandb.log({"lr_loss_relationships": wandb.Image(plt)})
plt.close()
def create_heatmap(results):
layer_counts = len(set(r['num_layers'] for r in results))
seed_counts = len(set(r['seed'] for r in results))
heatmap_data = np.zeros((layer_counts, seed_counts))
for r in results:
layer_idx = r['num_layers'] - 4
seed_idx = r['seed'] - 1
heatmap_data[layer_idx, seed_idx] = r['best_loss']
plt.figure(figsize=(20, 10))
plt.imshow(heatmap_data, aspect='auto', cmap='viridis')
plt.colorbar(label='Best Loss')
plt.xlabel('Seed')
plt.ylabel('Number of Layers')
plt.title('Heatmap of Best Loss across Layers and Seeds')
plt.tight_layout()
wandb.log({"loss_heatmap": wandb.Image(plt)})
plt.close()
def create_parallel_coordinates_plot(results):
df = pd.DataFrame(results)
plt.figure(figsize=(20, 10))
pd.plotting.parallel_coordinates(df, 'num_layers', colormap='viridis')
plt.title('Parallel Coordinates Plot of Hyperparameters')
plt.tight_layout()
wandb.log({"parallel_coordinates": wandb.Image(plt)})
plt.close()
def create_3d_scatter(results):
fig = plt.figure(figsize=(15, 15))
ax = fig.add_subplot(111, projection='3d')
for num_layers in range(4, 9):
layer_results = [r for r in results if r['num_layers'] == num_layers]
x = [r['Best'] for r in layer_results]
y = [r['best_loss'] for r in layer_results]
z = [r['seed'] for r in layer_results]
ax.scatter(x, y, z, label=f'{num_layers} Layers')
ax.set_xlabel('Best Learning Rate')
ax.set_ylabel('Best Loss')
ax.set_zlabel('Seed')
ax.set_xscale('log')
ax.set_yscale('log')
ax.legend()
plt.title('3D Scatter Plot of Best LR, Loss, and Seed')
plt.tight_layout()
wandb.log({"3d_scatter": wandb.Image(plt)})
plt.close()
def main():
mp.set_start_method('spawn')
config = Config()
wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__)
logger.info("Loading Qwen model and tokenizer...")
model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device)
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
logger.info("Loading data...")
train_loader = load_data(config)
logger.info("Starting experiments...")
results = run_experiments_sequential(config, model, train_loader)
logger.info("Saving results...")
with open('lr_finder_results.jsonl', 'w') as f:
for result in results:
json.dump(result, f)
f.write('\n')
logger.info("Creating visualizations...")
plot_results(results)
create_heatmap(results)
create_parallel_coordinates_plot(results)
create_3d_scatter(results)
logger.info("Experiment completed. Check WandB for detailed results and visualizations.")
wandb.finish()
if __name__ == "__main__":
main()