File size: 14,047 Bytes
1251d29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import transformers
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
import json
from tqdm.auto import tqdm
import random
from scipy.signal import savgol_filter
import wandb
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
from itertools import product
import pandas as pd
import multiprocessing as mp
from functools import partial
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class Config:
def __init__(self):
self.model_name = "Qwen/Qwen2-0.5B"
self.data_dir = "dataset_chunks"
self.max_length = 1024
self.batch_size = 32
self.num_seeds = 10000
self.num_lr_steps = 10000
self.min_lr = 1e-8
self.max_lr = 10
self.hidden_dim_ratio = 0.5
self.dropout = 0.1
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.num_workers = mp.cpu_count()
class ImprovedAutoencoder(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, dropout):
super().__init__()
self.encoder = nn.ModuleList([
nn.Linear(input_dim if i == 0 else hidden_dim, hidden_dim, dtype=torch.bfloat16)
for i in range(num_layers)
])
self.decoder = nn.ModuleList([
nn.Linear(hidden_dim, hidden_dim if i < num_layers - 1 else input_dim, dtype=torch.bfloat16)
for i in range(num_layers)
])
self.layer_norms = nn.ModuleList([
nn.LayerNorm(hidden_dim, dtype=torch.bfloat16)
for _ in range(num_layers * 2 - 1)
])
self.dropout = nn.Dropout(dropout)
def forward(self, x):
for enc, norm in zip(self.encoder, self.layer_norms[:len(self.encoder)]):
x = F.relu(norm(enc(x)))
x = self.dropout(x)
for dec, norm in zip(self.decoder[:-1], self.layer_norms[len(self.encoder):]):
x = F.relu(norm(dec(x)))
x = self.dropout(x)
x = self.decoder[-1](x)
return x
class TokenizedDataset(torch.utils.data.Dataset):
def __init__(self, file_paths):
self.data = []
for file_path in tqdm(file_paths, desc="Loading data chunks"):
chunk_data = torch.load(file_path)
logger.info(f"Loaded data from {file_path}")
logger.info(f"Type of loaded data: {type(chunk_data)}")
if isinstance(chunk_data, dict): # Handle dictionary format (if present)
logger.info(f"Keys in the dictionary: {chunk_data.keys()}")
logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}")
self.data.append(chunk_data)
elif isinstance(chunk_data, transformers.tokenization_utils_base.BatchEncoding):
logger.info(f"Keys in the BatchEncoding: {chunk_data.keys()}")
logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}")
self.data.append(chunk_data) # Handle BatchEncoding format
else:
logger.warning(f"Unexpected data type: {type(chunk_data)}")
logger.info(f"Loaded {len(self.data)} chunks of data")
def __len__(self):
return sum(len(chunk['input_ids']) for chunk in self.data)
def __getitem__(self, idx):
for chunk in self.data:
if idx < len(chunk['input_ids']):
return {k: v[idx] for k, v in chunk.items()}
idx -= len(chunk['input_ids'])
raise IndexError("Index out of range")
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def load_data(config):
logger.info(f"Looking for data in directory: {config.data_dir}")
chunk_files = [f for f in os.listdir(config.data_dir) if f.endswith('_tokenized.pt')]
logger.info(f"Found {len(chunk_files)} chunk files: {chunk_files}")
if not chunk_files:
raise ValueError(f"No tokenized data files found in {config.data_dir}")
chunk_files.sort(key=lambda x: int(x.split('_')[1]))
chunk_files = [os.path.join(config.data_dir, f) for f in chunk_files]
dataset = TokenizedDataset(chunk_files[:1]) # Load only the first chunk for now
logger.info(f"Created dataset with {len(dataset)} samples")
return DataLoader(dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers)
def extract_hidden_states(batch, model):
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True)
return outputs.hidden_states[0], outputs.hidden_states[-1]
class KLDivergenceLoss(nn.Module):
def forward(self, pred, target):
pred = F.log_softmax(pred, dim=-1)
target = F.softmax(target, dim=-1)
return F.kl_div(pred, target, reduction='batchmean', log_target=False)
def lr_finder(model, autoencoder, loss_fn, optimizer, train_loader, config):
model.eval()
autoencoder.train()
log_lrs, losses = [], []
best_loss, best_lr = float('inf'), None
pbar = tqdm(total=config.num_lr_steps, desc="LR Finder")
for batch_idx, batch in enumerate(train_loader):
if batch_idx >= config.num_lr_steps:
break
lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1))
optimizer.param_groups[0]['lr'] = lr
batch = {k: v.to(config.device) for k, v in batch.items()}
first_states, last_states = extract_hidden_states(batch, model)
optimizer.zero_grad()
reconstructed = autoencoder(first_states)
loss = loss_fn(reconstructed, last_states)
loss.backward()
optimizer.step()
if loss < best_loss:
best_loss = loss.item()
best_lr = lr
log_lrs.append(lr)
losses.append(loss.item())
pbar.update(1)
pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"})
pbar.close()
return log_lrs, losses, best_lr, best_loss
def run_experiment(config, model, train_loader, num_layers, seed):
set_seed(seed)
input_dim = model.config.hidden_size
hidden_dim = int(input_dim * config.hidden_dim_ratio)
autoencoder = ImprovedAutoencoder(input_dim, hidden_dim, num_layers, config.dropout).to(config.device)
loss_fn = KLDivergenceLoss()
optimizer = optim.AdamW(autoencoder.parameters(), lr=config.min_lr)
log_lrs, losses = [], []
best_loss, best_lr = float('inf'), None
pbar = tqdm(total=config.num_lr_steps, desc=f"LR Finder (Layers: {num_layers}, Seed: {seed})")
for batch_idx, batch in enumerate(train_loader):
if batch_idx >= config.num_lr_steps:
break
lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1))
optimizer.param_groups[0]['lr'] = lr
batch = {k: v.to(config.device) for k, v in batch.items()}
first_states, last_states = extract_hidden_states(batch, model)
optimizer.zero_grad()
reconstructed = autoencoder(first_states)
loss = loss_fn(reconstructed, last_states)
loss.backward()
optimizer.step()
if loss < best_loss:
best_loss = loss.item()
best_lr = lr
log_lrs.append(lr)
losses.append(loss.item())
# Log to wandb at every step
wandb.log({
"loss": loss.item(),
"lr": lr,
"batch_idx": batch_idx,
"num_layers": num_layers,
"seed": seed,
"best_loss": best_loss,
"best_lr": best_lr
})
pbar.update(1)
pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"})
pbar.close()
result = {
'seed': seed,
'num_layers': num_layers,
'hidden_dim_ratio': config.hidden_dim_ratio,
'dropout': config.dropout,
'final_loss': losses[-1],
'final_lr': log_lrs[-1],
'best_lr': best_lr,
'best_loss': best_loss
}
logger.info(f"Experiment completed: {result}")
return result
def main():
config = Config()
wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__)
logger.info("Loading Qwen model and tokenizer...")
model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device)
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
logger.info("Loading data...")
train_loader = load_data(config)
logger.info("Starting experiments...")
results = []
for num_layers in range(4, 9):
for seed in range(1, config.num_seeds + 1):
# Start a new wandb run for each experiment
with wandb.init(project="qwen-autoencoder-lr-finder",
config=config.__dict__,
group=f"layers_{num_layers}",
name=f"seed_{seed}",
job_type="experiment",
reinit=True):
result = run_experiment(config, model, train_loader, num_layers, seed)
results.append(result)
# Save results after each experiment
with open('lr_finder_results.jsonl', 'a') as f:
json.dump(result, f)
f.write('\n')
# Log final results to wandb
wandb.log(result)
logger.info("Creating visualizations...")
plot_results(results)
create_heatmap(results)
create_parallel_coordinates_plot(results)
create_3d_scatter(results)
logger.info("Experiment completed. Check WandB for detailed results and visualizations.")
if __name__ == "__main__":
main()
def run_experiments_sequential(config, model, train_loader):
results = []
for num_layers in tqdm(range(4, 9), desc="Number of Layers"):
for seed in tqdm(range(1, config.num_seeds + 1), desc="Seeds", leave=False):
result = run_experiment(config, model, train_loader, num_layers, seed)
results.append(result)
return results
def plot_results(results):
fig, axs = plt.subplots(3, 2, figsize=(20, 30))
fig.suptitle('Learning Rate Finder Results')
for i, num_layers in enumerate(range(4, 9)):
layer_results = [r for r in results if r['num_layers'] == num_layers]
best_lrs = [r['Best'] for r in layer_results]
best_losses = [r['best_loss'] for r in layer_results]
axs[i // 2, i % 2].scatter(best_lrs, best_losses, alpha=0.5)
axs[i // 2, i % 2].set_xlabel('Best Learning Rate')
axs[i // 2, i % 2].set_ylabel('Best Loss')
axs[i // 2, i % 2].set_title(f'{num_layers} Layers')
axs[i // 2, i % 2].set_xscale('log')
axs[i // 2, i % 2].set_yscale('log')
plt.tight_layout()
wandb.log({"lr_loss_relationships": wandb.Image(plt)})
plt.close()
def create_heatmap(results):
layer_counts = len(set(r['num_layers'] for r in results))
seed_counts = len(set(r['seed'] for r in results))
heatmap_data = np.zeros((layer_counts, seed_counts))
for r in results:
layer_idx = r['num_layers'] - 4
seed_idx = r['seed'] - 1
heatmap_data[layer_idx, seed_idx] = r['best_loss']
plt.figure(figsize=(20, 10))
plt.imshow(heatmap_data, aspect='auto', cmap='viridis')
plt.colorbar(label='Best Loss')
plt.xlabel('Seed')
plt.ylabel('Number of Layers')
plt.title('Heatmap of Best Loss across Layers and Seeds')
plt.tight_layout()
wandb.log({"loss_heatmap": wandb.Image(plt)})
plt.close()
def create_parallel_coordinates_plot(results):
df = pd.DataFrame(results)
plt.figure(figsize=(20, 10))
pd.plotting.parallel_coordinates(df, 'num_layers', colormap='viridis')
plt.title('Parallel Coordinates Plot of Hyperparameters')
plt.tight_layout()
wandb.log({"parallel_coordinates": wandb.Image(plt)})
plt.close()
def create_3d_scatter(results):
fig = plt.figure(figsize=(15, 15))
ax = fig.add_subplot(111, projection='3d')
for num_layers in range(4, 9):
layer_results = [r for r in results if r['num_layers'] == num_layers]
x = [r['Best'] for r in layer_results]
y = [r['best_loss'] for r in layer_results]
z = [r['seed'] for r in layer_results]
ax.scatter(x, y, z, label=f'{num_layers} Layers')
ax.set_xlabel('Best Learning Rate')
ax.set_ylabel('Best Loss')
ax.set_zlabel('Seed')
ax.set_xscale('log')
ax.set_yscale('log')
ax.legend()
plt.title('3D Scatter Plot of Best LR, Loss, and Seed')
plt.tight_layout()
wandb.log({"3d_scatter": wandb.Image(plt)})
plt.close()
def main():
mp.set_start_method('spawn')
config = Config()
wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__)
logger.info("Loading Qwen model and tokenizer...")
model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device)
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
logger.info("Loading data...")
train_loader = load_data(config)
logger.info("Starting experiments...")
results = run_experiments_sequential(config, model, train_loader)
logger.info("Saving results...")
with open('lr_finder_results.jsonl', 'w') as f:
for result in results:
json.dump(result, f)
f.write('\n')
logger.info("Creating visualizations...")
plot_results(results)
create_heatmap(results)
create_parallel_coordinates_plot(results)
create_3d_scatter(results)
logger.info("Experiment completed. Check WandB for detailed results and visualizations.")
wandb.finish()
if __name__ == "__main__":
main()
|