File size: 14,047 Bytes
1251d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import transformers
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
import json
from tqdm.auto import tqdm
import random
from scipy.signal import savgol_filter
import wandb
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
from itertools import product
import pandas as pd
import multiprocessing as mp
from functools import partial
import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class Config:
    def __init__(self):
        self.model_name = "Qwen/Qwen2-0.5B"
        self.data_dir = "dataset_chunks"
        self.max_length = 1024
        self.batch_size = 32
        self.num_seeds = 10000
        self.num_lr_steps = 10000
        self.min_lr = 1e-8
        self.max_lr = 10
        self.hidden_dim_ratio = 0.5
        self.dropout = 0.1
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.num_workers = mp.cpu_count()

class ImprovedAutoencoder(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, dropout):
        super().__init__()
        self.encoder = nn.ModuleList([
            nn.Linear(input_dim if i == 0 else hidden_dim, hidden_dim, dtype=torch.bfloat16)
            for i in range(num_layers)
        ])
        self.decoder = nn.ModuleList([
            nn.Linear(hidden_dim, hidden_dim if i < num_layers - 1 else input_dim, dtype=torch.bfloat16)
            for i in range(num_layers)
        ])
        self.layer_norms = nn.ModuleList([
            nn.LayerNorm(hidden_dim, dtype=torch.bfloat16)
            for _ in range(num_layers * 2 - 1)
        ])
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        for enc, norm in zip(self.encoder, self.layer_norms[:len(self.encoder)]):
            x = F.relu(norm(enc(x)))
            x = self.dropout(x)
        for dec, norm in zip(self.decoder[:-1], self.layer_norms[len(self.encoder):]):
            x = F.relu(norm(dec(x)))
            x = self.dropout(x)
        x = self.decoder[-1](x)
        return x

class TokenizedDataset(torch.utils.data.Dataset):
    def __init__(self, file_paths):
        self.data = []
        for file_path in tqdm(file_paths, desc="Loading data chunks"):
            chunk_data = torch.load(file_path)
            logger.info(f"Loaded data from {file_path}")
            logger.info(f"Type of loaded data: {type(chunk_data)}")

            if isinstance(chunk_data, dict):  # Handle dictionary format (if present)
                logger.info(f"Keys in the dictionary: {chunk_data.keys()}")
                logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}")
                self.data.append(chunk_data)
            elif isinstance(chunk_data, transformers.tokenization_utils_base.BatchEncoding): 
                logger.info(f"Keys in the BatchEncoding: {chunk_data.keys()}")
                logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}")
                self.data.append(chunk_data) # Handle BatchEncoding format
            else:
                logger.warning(f"Unexpected data type: {type(chunk_data)}")

        logger.info(f"Loaded {len(self.data)} chunks of data")

    def __len__(self):
        return sum(len(chunk['input_ids']) for chunk in self.data)

    def __getitem__(self, idx):
        for chunk in self.data:
            if idx < len(chunk['input_ids']):
                return {k: v[idx] for k, v in chunk.items()}
            idx -= len(chunk['input_ids'])
        raise IndexError("Index out of range")

def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

def load_data(config):
    logger.info(f"Looking for data in directory: {config.data_dir}")
    chunk_files = [f for f in os.listdir(config.data_dir) if f.endswith('_tokenized.pt')]
    logger.info(f"Found {len(chunk_files)} chunk files: {chunk_files}")
    
    if not chunk_files:
        raise ValueError(f"No tokenized data files found in {config.data_dir}")
    
    chunk_files.sort(key=lambda x: int(x.split('_')[1]))
    chunk_files = [os.path.join(config.data_dir, f) for f in chunk_files]
    
    dataset = TokenizedDataset(chunk_files[:1])  # Load only the first chunk for now
    logger.info(f"Created dataset with {len(dataset)} samples")
    
    return DataLoader(dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers)

def extract_hidden_states(batch, model):
    with torch.no_grad():
        outputs = model(**batch, output_hidden_states=True)
    return outputs.hidden_states[0], outputs.hidden_states[-1]

class KLDivergenceLoss(nn.Module):
    def forward(self, pred, target):
        pred = F.log_softmax(pred, dim=-1)
        target = F.softmax(target, dim=-1)
        return F.kl_div(pred, target, reduction='batchmean', log_target=False)

def lr_finder(model, autoencoder, loss_fn, optimizer, train_loader, config):
    model.eval()
    autoencoder.train()
    log_lrs, losses = [], []
    best_loss, best_lr = float('inf'), None

    pbar = tqdm(total=config.num_lr_steps, desc="LR Finder")
    for batch_idx, batch in enumerate(train_loader):
        if batch_idx >= config.num_lr_steps:
            break

        lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1))
        optimizer.param_groups[0]['lr'] = lr

        batch = {k: v.to(config.device) for k, v in batch.items()}
        first_states, last_states = extract_hidden_states(batch, model)

        optimizer.zero_grad()
        reconstructed = autoencoder(first_states)
        loss = loss_fn(reconstructed, last_states)
        loss.backward()
        optimizer.step()

        if loss < best_loss:
            best_loss = loss.item()
            best_lr = lr

        log_lrs.append(lr)
        losses.append(loss.item())

        pbar.update(1)
        pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"})

    pbar.close()
    return log_lrs, losses, best_lr, best_loss

def run_experiment(config, model, train_loader, num_layers, seed):
    set_seed(seed)
    input_dim = model.config.hidden_size
    hidden_dim = int(input_dim * config.hidden_dim_ratio)
    autoencoder = ImprovedAutoencoder(input_dim, hidden_dim, num_layers, config.dropout).to(config.device)

    loss_fn = KLDivergenceLoss()
    optimizer = optim.AdamW(autoencoder.parameters(), lr=config.min_lr)

    log_lrs, losses = [], []
    best_loss, best_lr = float('inf'), None

    pbar = tqdm(total=config.num_lr_steps, desc=f"LR Finder (Layers: {num_layers}, Seed: {seed})")
    for batch_idx, batch in enumerate(train_loader):
        if batch_idx >= config.num_lr_steps:
            break

        lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1))
        optimizer.param_groups[0]['lr'] = lr

        batch = {k: v.to(config.device) for k, v in batch.items()}
        first_states, last_states = extract_hidden_states(batch, model)

        optimizer.zero_grad()
        reconstructed = autoencoder(first_states)
        loss = loss_fn(reconstructed, last_states)
        loss.backward()
        optimizer.step()

        if loss < best_loss:
            best_loss = loss.item()
            best_lr = lr

        log_lrs.append(lr)
        losses.append(loss.item())

        # Log to wandb at every step
        wandb.log({
            "loss": loss.item(),
            "lr": lr,
            "batch_idx": batch_idx,
            "num_layers": num_layers,
            "seed": seed,
            "best_loss": best_loss,
            "best_lr": best_lr
        })

        pbar.update(1)
        pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"})

    pbar.close()

    result = {
        'seed': seed,
        'num_layers': num_layers,
        'hidden_dim_ratio': config.hidden_dim_ratio,
        'dropout': config.dropout,
        'final_loss': losses[-1],
        'final_lr': log_lrs[-1],
        'best_lr': best_lr,
        'best_loss': best_loss
    }

    logger.info(f"Experiment completed: {result}")
    return result

def main():
    config = Config()
    wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__)

    logger.info("Loading Qwen model and tokenizer...")
    model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device)
    tokenizer = AutoTokenizer.from_pretrained(config.model_name)

    logger.info("Loading data...")
    train_loader = load_data(config)

    logger.info("Starting experiments...")
    results = []
    for num_layers in range(4, 9):
        for seed in range(1, config.num_seeds + 1):
            # Start a new wandb run for each experiment
            with wandb.init(project="qwen-autoencoder-lr-finder", 
                            config=config.__dict__, 
                            group=f"layers_{num_layers}",
                            name=f"seed_{seed}",
                            job_type="experiment",
                            reinit=True):
                
                result = run_experiment(config, model, train_loader, num_layers, seed)
                results.append(result)
                
                # Save results after each experiment
                with open('lr_finder_results.jsonl', 'a') as f:
                    json.dump(result, f)
                    f.write('\n')
                
                # Log final results to wandb
                wandb.log(result)

    logger.info("Creating visualizations...")
    plot_results(results)
    create_heatmap(results)
    create_parallel_coordinates_plot(results)
    create_3d_scatter(results)

    logger.info("Experiment completed. Check WandB for detailed results and visualizations.")

if __name__ == "__main__":
    main()
def run_experiments_sequential(config, model, train_loader):
    results = []
    for num_layers in tqdm(range(4, 9), desc="Number of Layers"):
        for seed in tqdm(range(1, config.num_seeds + 1), desc="Seeds", leave=False):
            result = run_experiment(config, model, train_loader, num_layers, seed)
            results.append(result)
    return results

def plot_results(results):
    fig, axs = plt.subplots(3, 2, figsize=(20, 30))
    fig.suptitle('Learning Rate Finder Results')

    for i, num_layers in enumerate(range(4, 9)):
        layer_results = [r for r in results if r['num_layers'] == num_layers]
        best_lrs = [r['Best'] for r in layer_results]
        best_losses = [r['best_loss'] for r in layer_results]

        axs[i // 2, i % 2].scatter(best_lrs, best_losses, alpha=0.5)
        axs[i // 2, i % 2].set_xlabel('Best Learning Rate')
        axs[i // 2, i % 2].set_ylabel('Best Loss')
        axs[i // 2, i % 2].set_title(f'{num_layers} Layers')
        axs[i // 2, i % 2].set_xscale('log')
        axs[i // 2, i % 2].set_yscale('log')

    plt.tight_layout()
    wandb.log({"lr_loss_relationships": wandb.Image(plt)})
    plt.close()

def create_heatmap(results):
    layer_counts = len(set(r['num_layers'] for r in results))
    seed_counts = len(set(r['seed'] for r in results))
    
    heatmap_data = np.zeros((layer_counts, seed_counts))
    for r in results:
        layer_idx = r['num_layers'] - 4
        seed_idx = r['seed'] - 1
        heatmap_data[layer_idx, seed_idx] = r['best_loss']
    
    plt.figure(figsize=(20, 10))
    plt.imshow(heatmap_data, aspect='auto', cmap='viridis')
    plt.colorbar(label='Best Loss')
    plt.xlabel('Seed')
    plt.ylabel('Number of Layers')
    plt.title('Heatmap of Best Loss across Layers and Seeds')
    plt.tight_layout()
    wandb.log({"loss_heatmap": wandb.Image(plt)})
    plt.close()

def create_parallel_coordinates_plot(results):
    df = pd.DataFrame(results)
    
    plt.figure(figsize=(20, 10))
    pd.plotting.parallel_coordinates(df, 'num_layers', colormap='viridis')
    plt.title('Parallel Coordinates Plot of Hyperparameters')
    plt.tight_layout()
    wandb.log({"parallel_coordinates": wandb.Image(plt)})
    plt.close()

def create_3d_scatter(results):
    fig = plt.figure(figsize=(15, 15))
    ax = fig.add_subplot(111, projection='3d')
    
    for num_layers in range(4, 9):
        layer_results = [r for r in results if r['num_layers'] == num_layers]
        x = [r['Best'] for r in layer_results]
        y = [r['best_loss'] for r in layer_results]
        z = [r['seed'] for r in layer_results]
        ax.scatter(x, y, z, label=f'{num_layers} Layers')
    
    ax.set_xlabel('Best Learning Rate')
    ax.set_ylabel('Best Loss')
    ax.set_zlabel('Seed')
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.legend()
    plt.title('3D Scatter Plot of Best LR, Loss, and Seed')
    plt.tight_layout()
    wandb.log({"3d_scatter": wandb.Image(plt)})
    plt.close()

def main():
    mp.set_start_method('spawn')
    config = Config()
    wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__)

    logger.info("Loading Qwen model and tokenizer...")
    model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device)
    tokenizer = AutoTokenizer.from_pretrained(config.model_name)

    logger.info("Loading data...")
    train_loader = load_data(config)

    logger.info("Starting experiments...")
    results = run_experiments_sequential(config, model, train_loader)

    logger.info("Saving results...")
    with open('lr_finder_results.jsonl', 'w') as f:
        for result in results:
            json.dump(result, f)
            f.write('\n')

    logger.info("Creating visualizations...")
    plot_results(results)
    create_heatmap(results)
    create_parallel_coordinates_plot(results)
    create_3d_scatter(results)

    logger.info("Experiment completed. Check WandB for detailed results and visualizations.")
    wandb.finish()

if __name__ == "__main__":
    main()