import transformers import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader import numpy as np import matplotlib.pyplot as plt import json from tqdm.auto import tqdm import random from scipy.signal import savgol_filter import wandb from transformers import AutoModelForCausalLM, AutoTokenizer import os from itertools import product import pandas as pd import multiprocessing as mp from functools import partial import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) class Config: def __init__(self): self.model_name = "Qwen/Qwen2-0.5B" self.data_dir = "dataset_chunks" self.max_length = 1024 self.batch_size = 32 self.num_seeds = 10000 self.num_lr_steps = 10000 self.min_lr = 1e-8 self.max_lr = 10 self.hidden_dim_ratio = 0.5 self.dropout = 0.1 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.num_workers = mp.cpu_count() class ImprovedAutoencoder(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, dropout): super().__init__() self.encoder = nn.ModuleList([ nn.Linear(input_dim if i == 0 else hidden_dim, hidden_dim, dtype=torch.bfloat16) for i in range(num_layers) ]) self.decoder = nn.ModuleList([ nn.Linear(hidden_dim, hidden_dim if i < num_layers - 1 else input_dim, dtype=torch.bfloat16) for i in range(num_layers) ]) self.layer_norms = nn.ModuleList([ nn.LayerNorm(hidden_dim, dtype=torch.bfloat16) for _ in range(num_layers * 2 - 1) ]) self.dropout = nn.Dropout(dropout) def forward(self, x): for enc, norm in zip(self.encoder, self.layer_norms[:len(self.encoder)]): x = F.relu(norm(enc(x))) x = self.dropout(x) for dec, norm in zip(self.decoder[:-1], self.layer_norms[len(self.encoder):]): x = F.relu(norm(dec(x))) x = self.dropout(x) x = self.decoder[-1](x) return x class TokenizedDataset(torch.utils.data.Dataset): def __init__(self, file_paths): self.data = [] for file_path in tqdm(file_paths, desc="Loading data chunks"): chunk_data = torch.load(file_path) logger.info(f"Loaded data from {file_path}") logger.info(f"Type of loaded data: {type(chunk_data)}") if isinstance(chunk_data, dict): # Handle dictionary format (if present) logger.info(f"Keys in the dictionary: {chunk_data.keys()}") logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}") self.data.append(chunk_data) elif isinstance(chunk_data, transformers.tokenization_utils_base.BatchEncoding): logger.info(f"Keys in the BatchEncoding: {chunk_data.keys()}") logger.info(f"Shape of input_ids: {chunk_data['input_ids'].shape}") self.data.append(chunk_data) # Handle BatchEncoding format else: logger.warning(f"Unexpected data type: {type(chunk_data)}") logger.info(f"Loaded {len(self.data)} chunks of data") def __len__(self): return sum(len(chunk['input_ids']) for chunk in self.data) def __getitem__(self, idx): for chunk in self.data: if idx < len(chunk['input_ids']): return {k: v[idx] for k, v in chunk.items()} idx -= len(chunk['input_ids']) raise IndexError("Index out of range") def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def load_data(config): logger.info(f"Looking for data in directory: {config.data_dir}") chunk_files = [f for f in os.listdir(config.data_dir) if f.endswith('_tokenized.pt')] logger.info(f"Found {len(chunk_files)} chunk files: {chunk_files}") if not chunk_files: raise ValueError(f"No tokenized data files found in {config.data_dir}") chunk_files.sort(key=lambda x: int(x.split('_')[1])) chunk_files = [os.path.join(config.data_dir, f) for f in chunk_files] dataset = TokenizedDataset(chunk_files[:1]) # Load only the first chunk for now logger.info(f"Created dataset with {len(dataset)} samples") return DataLoader(dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers) def extract_hidden_states(batch, model): with torch.no_grad(): outputs = model(**batch, output_hidden_states=True) return outputs.hidden_states[0], outputs.hidden_states[-1] class KLDivergenceLoss(nn.Module): def forward(self, pred, target): pred = F.log_softmax(pred, dim=-1) target = F.softmax(target, dim=-1) return F.kl_div(pred, target, reduction='batchmean', log_target=False) def lr_finder(model, autoencoder, loss_fn, optimizer, train_loader, config): model.eval() autoencoder.train() log_lrs, losses = [], [] best_loss, best_lr = float('inf'), None pbar = tqdm(total=config.num_lr_steps, desc="LR Finder") for batch_idx, batch in enumerate(train_loader): if batch_idx >= config.num_lr_steps: break lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1)) optimizer.param_groups[0]['lr'] = lr batch = {k: v.to(config.device) for k, v in batch.items()} first_states, last_states = extract_hidden_states(batch, model) optimizer.zero_grad() reconstructed = autoencoder(first_states) loss = loss_fn(reconstructed, last_states) loss.backward() optimizer.step() if loss < best_loss: best_loss = loss.item() best_lr = lr log_lrs.append(lr) losses.append(loss.item()) pbar.update(1) pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"}) pbar.close() return log_lrs, losses, best_lr, best_loss def run_experiment(config, model, train_loader, num_layers, seed): set_seed(seed) input_dim = model.config.hidden_size hidden_dim = int(input_dim * config.hidden_dim_ratio) autoencoder = ImprovedAutoencoder(input_dim, hidden_dim, num_layers, config.dropout).to(config.device) loss_fn = KLDivergenceLoss() optimizer = optim.AdamW(autoencoder.parameters(), lr=config.min_lr) log_lrs, losses = [], [] best_loss, best_lr = float('inf'), None pbar = tqdm(total=config.num_lr_steps, desc=f"LR Finder (Layers: {num_layers}, Seed: {seed})") for batch_idx, batch in enumerate(train_loader): if batch_idx >= config.num_lr_steps: break lr = config.min_lr * (config.max_lr / config.min_lr) ** (batch_idx / (config.num_lr_steps - 1)) optimizer.param_groups[0]['lr'] = lr batch = {k: v.to(config.device) for k, v in batch.items()} first_states, last_states = extract_hidden_states(batch, model) optimizer.zero_grad() reconstructed = autoencoder(first_states) loss = loss_fn(reconstructed, last_states) loss.backward() optimizer.step() if loss < best_loss: best_loss = loss.item() best_lr = lr log_lrs.append(lr) losses.append(loss.item()) # Log to wandb at every step wandb.log({ "loss": loss.item(), "lr": lr, "batch_idx": batch_idx, "num_layers": num_layers, "seed": seed, "best_loss": best_loss, "best_lr": best_lr }) pbar.update(1) pbar.set_postfix({"Loss": f"{loss.item():.4f}", "LR": f"{lr:.2e}"}) pbar.close() result = { 'seed': seed, 'num_layers': num_layers, 'hidden_dim_ratio': config.hidden_dim_ratio, 'dropout': config.dropout, 'final_loss': losses[-1], 'final_lr': log_lrs[-1], 'best_lr': best_lr, 'best_loss': best_loss } logger.info(f"Experiment completed: {result}") return result def main(): config = Config() wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__) logger.info("Loading Qwen model and tokenizer...") model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device) tokenizer = AutoTokenizer.from_pretrained(config.model_name) logger.info("Loading data...") train_loader = load_data(config) logger.info("Starting experiments...") results = [] for num_layers in range(4, 9): for seed in range(1, config.num_seeds + 1): # Start a new wandb run for each experiment with wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__, group=f"layers_{num_layers}", name=f"seed_{seed}", job_type="experiment", reinit=True): result = run_experiment(config, model, train_loader, num_layers, seed) results.append(result) # Save results after each experiment with open('lr_finder_results.jsonl', 'a') as f: json.dump(result, f) f.write('\n') # Log final results to wandb wandb.log(result) logger.info("Creating visualizations...") plot_results(results) create_heatmap(results) create_parallel_coordinates_plot(results) create_3d_scatter(results) logger.info("Experiment completed. Check WandB for detailed results and visualizations.") if __name__ == "__main__": main() def run_experiments_sequential(config, model, train_loader): results = [] for num_layers in tqdm(range(4, 9), desc="Number of Layers"): for seed in tqdm(range(1, config.num_seeds + 1), desc="Seeds", leave=False): result = run_experiment(config, model, train_loader, num_layers, seed) results.append(result) return results def plot_results(results): fig, axs = plt.subplots(3, 2, figsize=(20, 30)) fig.suptitle('Learning Rate Finder Results') for i, num_layers in enumerate(range(4, 9)): layer_results = [r for r in results if r['num_layers'] == num_layers] best_lrs = [r['Best'] for r in layer_results] best_losses = [r['best_loss'] for r in layer_results] axs[i // 2, i % 2].scatter(best_lrs, best_losses, alpha=0.5) axs[i // 2, i % 2].set_xlabel('Best Learning Rate') axs[i // 2, i % 2].set_ylabel('Best Loss') axs[i // 2, i % 2].set_title(f'{num_layers} Layers') axs[i // 2, i % 2].set_xscale('log') axs[i // 2, i % 2].set_yscale('log') plt.tight_layout() wandb.log({"lr_loss_relationships": wandb.Image(plt)}) plt.close() def create_heatmap(results): layer_counts = len(set(r['num_layers'] for r in results)) seed_counts = len(set(r['seed'] for r in results)) heatmap_data = np.zeros((layer_counts, seed_counts)) for r in results: layer_idx = r['num_layers'] - 4 seed_idx = r['seed'] - 1 heatmap_data[layer_idx, seed_idx] = r['best_loss'] plt.figure(figsize=(20, 10)) plt.imshow(heatmap_data, aspect='auto', cmap='viridis') plt.colorbar(label='Best Loss') plt.xlabel('Seed') plt.ylabel('Number of Layers') plt.title('Heatmap of Best Loss across Layers and Seeds') plt.tight_layout() wandb.log({"loss_heatmap": wandb.Image(plt)}) plt.close() def create_parallel_coordinates_plot(results): df = pd.DataFrame(results) plt.figure(figsize=(20, 10)) pd.plotting.parallel_coordinates(df, 'num_layers', colormap='viridis') plt.title('Parallel Coordinates Plot of Hyperparameters') plt.tight_layout() wandb.log({"parallel_coordinates": wandb.Image(plt)}) plt.close() def create_3d_scatter(results): fig = plt.figure(figsize=(15, 15)) ax = fig.add_subplot(111, projection='3d') for num_layers in range(4, 9): layer_results = [r for r in results if r['num_layers'] == num_layers] x = [r['Best'] for r in layer_results] y = [r['best_loss'] for r in layer_results] z = [r['seed'] for r in layer_results] ax.scatter(x, y, z, label=f'{num_layers} Layers') ax.set_xlabel('Best Learning Rate') ax.set_ylabel('Best Loss') ax.set_zlabel('Seed') ax.set_xscale('log') ax.set_yscale('log') ax.legend() plt.title('3D Scatter Plot of Best LR, Loss, and Seed') plt.tight_layout() wandb.log({"3d_scatter": wandb.Image(plt)}) plt.close() def main(): mp.set_start_method('spawn') config = Config() wandb.init(project="qwen-autoencoder-lr-finder", config=config.__dict__) logger.info("Loading Qwen model and tokenizer...") model = AutoModelForCausalLM.from_pretrained(config.model_name, torch_dtype=torch.bfloat16).to(config.device) tokenizer = AutoTokenizer.from_pretrained(config.model_name) logger.info("Loading data...") train_loader = load_data(config) logger.info("Starting experiments...") results = run_experiments_sequential(config, model, train_loader) logger.info("Saving results...") with open('lr_finder_results.jsonl', 'w') as f: for result in results: json.dump(result, f) f.write('\n') logger.info("Creating visualizations...") plot_results(results) create_heatmap(results) create_parallel_coordinates_plot(results) create_3d_scatter(results) logger.info("Experiment completed. Check WandB for detailed results and visualizations.") wandb.finish() if __name__ == "__main__": main()