MatAnyone / inference_matanyone_api.py
PeiqingYang's picture
upload inference script
182a46c verified
import os
import cv2
import tqdm
import random
import imageio
import numpy as np
from PIL import Image
import torch
import torchvision
import torch.nn.functional as F
from matanyone.model.matanyone import MatAnyone
from matanyone.inference.inference_core import InferenceCore
import warnings
warnings.filterwarnings("ignore")
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.JPG', '.JPEG', '.PNG')
VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi', '.MP4', '.MOV', '.AVI')
def read_frame_from_videos(frame_root):
if frame_root.endswith(VIDEO_EXTENSIONS): # Video file path
video_name = os.path.basename(frame_root)[:-4]
frames, _, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', output_format='TCHW') # RGB
fps = info['video_fps']
else:
video_name = os.path.basename(frame_root)
frames = []
fr_lst = sorted(os.listdir(frame_root))
for fr in fr_lst:
frame = cv2.imread(os.path.join(frame_root, fr))[...,[2,1,0]] # RGB, HWC
frames.append(frame)
fps = 24 # default
frames = torch.Tensor(np.array(frames)).permute(0, 3, 1, 2).contiguous() # TCHW
length = frames.shape[0]
return frames, fps, length, video_name
def gen_dilate(alpha, min_kernel_size, max_kernel_size):
kernel_size = random.randint(min_kernel_size, max_kernel_size)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
fg_and_unknown = np.array(np.not_equal(alpha, 0).astype(np.float32))
dilate = cv2.dilate(fg_and_unknown, kernel, iterations=1)*255
return dilate.astype(np.float32)
def gen_erosion(alpha, min_kernel_size, max_kernel_size):
kernel_size = random.randint(min_kernel_size, max_kernel_size)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
fg = np.array(np.equal(alpha, 255).astype(np.float32))
erode = cv2.erode(fg, kernel, iterations=1)*255
return erode.astype(np.float32)
@torch.inference_mode()
@torch.cuda.amp.autocast()
def main(input_path, mask_path, output_path, ckpt_path, n_warmup=10, r_erode=10, r_dilate=10, suffix="", save_image=False, max_size=-1):
matanyone = MatAnyone.from_pretrained("PeiqingYang/MatAnyone").cuda().eval()
processor = InferenceCore(matanyone, cfg=matanyone.cfg)
# inference parameters
r_erode = int(r_erode)
r_dilate = int(r_dilate)
n_warmup = int(n_warmup)
max_size = int(max_size)
# load input frames
vframes, fps, length, video_name = read_frame_from_videos(input_path)
repeated_frames = vframes[0].unsqueeze(0).repeat(n_warmup, 1, 1, 1) # repeat the first frame for warmup
vframes = torch.cat([repeated_frames, vframes], dim=0).float()
length += n_warmup # update length
# resize if needed
if max_size > 0:
h, w = vframes.shape[-2:]
min_side = min(h, w)
if min_side > max_size:
new_h = int(h / min_side * max_size)
new_w = int(w / min_side * max_size)
vframes = F.interpolate(vframes, size=(new_h, new_w), mode="area")
# set output paths
os.makedirs(output_path, exist_ok=True)
if suffix != "":
video_name = f'{video_name}_{suffix}'
if save_image:
os.makedirs(f'{output_path}/{video_name}', exist_ok=True)
os.makedirs(f'{output_path}/{video_name}/pha', exist_ok=True)
os.makedirs(f'{output_path}/{video_name}/fgr', exist_ok=True)
# load the first-frame mask
mask = Image.open(mask_path).convert('L')
mask = np.array(mask)
bgr = (np.array([120, 255, 155], dtype=np.float32)/255).reshape((1, 1, 3)) # green screen to paste fgr
objects = [1]
# [optional] erode & dilate
if r_dilate > 0:
mask = gen_dilate(mask, r_dilate, r_dilate)
if r_erode > 0:
mask = gen_erosion(mask, r_erode, r_erode)
mask = torch.from_numpy(mask).cuda()
if max_size > 0: # resize needed
mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(new_h, new_w), mode="nearest")
mask = mask[0,0]
# inference start
phas = []
fgrs = []
for ti in tqdm.tqdm(range(length)):
# load the image as RGB; normalization is done within the model
image = vframes[ti]
image_np = np.array(image.permute(1,2,0)) # for output visualize
image = (image / 255.).cuda().float() # for network input
if ti == 0:
output_prob = processor.step(image, mask, objects=objects) # encode given mask
output_prob = processor.step(image, first_frame_pred=True) # first frame for prediction
else:
if ti <= n_warmup:
output_prob = processor.step(image, first_frame_pred=True) # reinit as the first frame for prediction
else:
output_prob = processor.step(image)
# convert output probabilities to alpha matte
mask = processor.output_prob_to_mask(output_prob)
# visualize prediction
pha = mask.unsqueeze(2).cpu().numpy()
com_np = image_np / 255. * pha + bgr * (1 - pha)
# DONOT save the warmup frame
if ti > (n_warmup-1):
com_np = (com_np*255).astype(np.uint8)
pha = (pha*255).astype(np.uint8)
fgrs.append(com_np)
phas.append(pha)
if save_image:
cv2.imwrite(f'{output_path}/{video_name}/pha/{str(ti-n_warmup).zfill(5)}.png', pha)
cv2.imwrite(f'{output_path}/{video_name}/fgr/{str(ti-n_warmup).zfill(5)}.png', com_np[...,[2,1,0]])
phas = np.array(phas)
fgrs = np.array(fgrs)
imageio.mimwrite(f'{output_path}/{video_name}_fgr.mp4', fgrs, fps=fps, quality=7)
imageio.mimwrite(f'{output_path}/{video_name}_pha.mp4', phas, fps=fps, quality=7)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path', type=str, default="inputs/video/test-sample1.mp4", help='Path of the input video or frame folder.')
parser.add_argument('-m', '--mask_path', type=str, default="inputs/mask/test-sample1.png", help='Path of the first-frame segmentation mask.')
parser.add_argument('-o', '--output_path', type=str, default="results/", help='Output folder. Default: results')
parser.add_argument('-c', '--ckpt_path', type=str, default="pretrained_models/matanyone.pth", help='Path of the MatAnyone model.')
parser.add_argument('-w', '--warmup', type=str, default="10", help='Number of warmup iterations for the first frame alpha prediction.')
parser.add_argument('-e', '--erode_kernel', type=str, default="10", help='Erosion kernel on the input mask.')
parser.add_argument('-d', '--dilate_kernel', type=str, default="10", help='Dilation kernel on the input mask.')
parser.add_argument('--suffix', type=str, default="", help='Suffix to specify different target when saving, e.g., target1.')
parser.add_argument('--save_image', action='store_true', default=False, help='Save output frames. Default: False')
parser.add_argument('--max_size', type=str, default="-1", help='When positive, the video will be downsampled if min(w, h) exceeds. Default: -1 (means no limit)')
args = parser.parse_args()
main(input_path=args.input_path, \
mask_path=args.mask_path, \
output_path=args.output_path, \
ckpt_path=args.ckpt_path, \
n_warmup=args.warmup, \
r_erode=args.erode_kernel, \
r_dilate=args.dilate_kernel, \
suffix=args.suffix, \
save_image=args.save_image, \
max_size=args.max_size)