File size: 7,646 Bytes
182a46c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import cv2
import tqdm
import random
import imageio
import numpy as np
from PIL import Image
import torch
import torchvision
import torch.nn.functional as F
from matanyone.model.matanyone import MatAnyone
from matanyone.inference.inference_core import InferenceCore
import warnings
warnings.filterwarnings("ignore")
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.JPG', '.JPEG', '.PNG')
VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi', '.MP4', '.MOV', '.AVI')
def read_frame_from_videos(frame_root):
if frame_root.endswith(VIDEO_EXTENSIONS): # Video file path
video_name = os.path.basename(frame_root)[:-4]
frames, _, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', output_format='TCHW') # RGB
fps = info['video_fps']
else:
video_name = os.path.basename(frame_root)
frames = []
fr_lst = sorted(os.listdir(frame_root))
for fr in fr_lst:
frame = cv2.imread(os.path.join(frame_root, fr))[...,[2,1,0]] # RGB, HWC
frames.append(frame)
fps = 24 # default
frames = torch.Tensor(np.array(frames)).permute(0, 3, 1, 2).contiguous() # TCHW
length = frames.shape[0]
return frames, fps, length, video_name
def gen_dilate(alpha, min_kernel_size, max_kernel_size):
kernel_size = random.randint(min_kernel_size, max_kernel_size)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
fg_and_unknown = np.array(np.not_equal(alpha, 0).astype(np.float32))
dilate = cv2.dilate(fg_and_unknown, kernel, iterations=1)*255
return dilate.astype(np.float32)
def gen_erosion(alpha, min_kernel_size, max_kernel_size):
kernel_size = random.randint(min_kernel_size, max_kernel_size)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
fg = np.array(np.equal(alpha, 255).astype(np.float32))
erode = cv2.erode(fg, kernel, iterations=1)*255
return erode.astype(np.float32)
@torch.inference_mode()
@torch.cuda.amp.autocast()
def main(input_path, mask_path, output_path, ckpt_path, n_warmup=10, r_erode=10, r_dilate=10, suffix="", save_image=False, max_size=-1):
matanyone = MatAnyone.from_pretrained("PeiqingYang/MatAnyone").cuda().eval()
processor = InferenceCore(matanyone, cfg=matanyone.cfg)
# inference parameters
r_erode = int(r_erode)
r_dilate = int(r_dilate)
n_warmup = int(n_warmup)
max_size = int(max_size)
# load input frames
vframes, fps, length, video_name = read_frame_from_videos(input_path)
repeated_frames = vframes[0].unsqueeze(0).repeat(n_warmup, 1, 1, 1) # repeat the first frame for warmup
vframes = torch.cat([repeated_frames, vframes], dim=0).float()
length += n_warmup # update length
# resize if needed
if max_size > 0:
h, w = vframes.shape[-2:]
min_side = min(h, w)
if min_side > max_size:
new_h = int(h / min_side * max_size)
new_w = int(w / min_side * max_size)
vframes = F.interpolate(vframes, size=(new_h, new_w), mode="area")
# set output paths
os.makedirs(output_path, exist_ok=True)
if suffix != "":
video_name = f'{video_name}_{suffix}'
if save_image:
os.makedirs(f'{output_path}/{video_name}', exist_ok=True)
os.makedirs(f'{output_path}/{video_name}/pha', exist_ok=True)
os.makedirs(f'{output_path}/{video_name}/fgr', exist_ok=True)
# load the first-frame mask
mask = Image.open(mask_path).convert('L')
mask = np.array(mask)
bgr = (np.array([120, 255, 155], dtype=np.float32)/255).reshape((1, 1, 3)) # green screen to paste fgr
objects = [1]
# [optional] erode & dilate
if r_dilate > 0:
mask = gen_dilate(mask, r_dilate, r_dilate)
if r_erode > 0:
mask = gen_erosion(mask, r_erode, r_erode)
mask = torch.from_numpy(mask).cuda()
if max_size > 0: # resize needed
mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(new_h, new_w), mode="nearest")
mask = mask[0,0]
# inference start
phas = []
fgrs = []
for ti in tqdm.tqdm(range(length)):
# load the image as RGB; normalization is done within the model
image = vframes[ti]
image_np = np.array(image.permute(1,2,0)) # for output visualize
image = (image / 255.).cuda().float() # for network input
if ti == 0:
output_prob = processor.step(image, mask, objects=objects) # encode given mask
output_prob = processor.step(image, first_frame_pred=True) # first frame for prediction
else:
if ti <= n_warmup:
output_prob = processor.step(image, first_frame_pred=True) # reinit as the first frame for prediction
else:
output_prob = processor.step(image)
# convert output probabilities to alpha matte
mask = processor.output_prob_to_mask(output_prob)
# visualize prediction
pha = mask.unsqueeze(2).cpu().numpy()
com_np = image_np / 255. * pha + bgr * (1 - pha)
# DONOT save the warmup frame
if ti > (n_warmup-1):
com_np = (com_np*255).astype(np.uint8)
pha = (pha*255).astype(np.uint8)
fgrs.append(com_np)
phas.append(pha)
if save_image:
cv2.imwrite(f'{output_path}/{video_name}/pha/{str(ti-n_warmup).zfill(5)}.png', pha)
cv2.imwrite(f'{output_path}/{video_name}/fgr/{str(ti-n_warmup).zfill(5)}.png', com_np[...,[2,1,0]])
phas = np.array(phas)
fgrs = np.array(fgrs)
imageio.mimwrite(f'{output_path}/{video_name}_fgr.mp4', fgrs, fps=fps, quality=7)
imageio.mimwrite(f'{output_path}/{video_name}_pha.mp4', phas, fps=fps, quality=7)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path', type=str, default="inputs/video/test-sample1.mp4", help='Path of the input video or frame folder.')
parser.add_argument('-m', '--mask_path', type=str, default="inputs/mask/test-sample1.png", help='Path of the first-frame segmentation mask.')
parser.add_argument('-o', '--output_path', type=str, default="results/", help='Output folder. Default: results')
parser.add_argument('-c', '--ckpt_path', type=str, default="pretrained_models/matanyone.pth", help='Path of the MatAnyone model.')
parser.add_argument('-w', '--warmup', type=str, default="10", help='Number of warmup iterations for the first frame alpha prediction.')
parser.add_argument('-e', '--erode_kernel', type=str, default="10", help='Erosion kernel on the input mask.')
parser.add_argument('-d', '--dilate_kernel', type=str, default="10", help='Dilation kernel on the input mask.')
parser.add_argument('--suffix', type=str, default="", help='Suffix to specify different target when saving, e.g., target1.')
parser.add_argument('--save_image', action='store_true', default=False, help='Save output frames. Default: False')
parser.add_argument('--max_size', type=str, default="-1", help='When positive, the video will be downsampled if min(w, h) exceeds. Default: -1 (means no limit)')
args = parser.parse_args()
main(input_path=args.input_path, \
mask_path=args.mask_path, \
output_path=args.output_path, \
ckpt_path=args.ckpt_path, \
n_warmup=args.warmup, \
r_erode=args.erode_kernel, \
r_dilate=args.dilate_kernel, \
suffix=args.suffix, \
save_image=args.save_image, \
max_size=args.max_size)
|