PeiqingYang commited on
Commit
182a46c
·
verified ·
1 Parent(s): 0541cde

upload inference script

Browse files
Files changed (1) hide show
  1. inference_matanyone_api.py +180 -0
inference_matanyone_api.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import tqdm
4
+ import random
5
+ import imageio
6
+ import numpy as np
7
+ from PIL import Image
8
+
9
+ import torch
10
+ import torchvision
11
+ import torch.nn.functional as F
12
+
13
+ from matanyone.model.matanyone import MatAnyone
14
+ from matanyone.inference.inference_core import InferenceCore
15
+
16
+ import warnings
17
+ warnings.filterwarnings("ignore")
18
+
19
+ IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.JPG', '.JPEG', '.PNG')
20
+ VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi', '.MP4', '.MOV', '.AVI')
21
+
22
+ def read_frame_from_videos(frame_root):
23
+ if frame_root.endswith(VIDEO_EXTENSIONS): # Video file path
24
+ video_name = os.path.basename(frame_root)[:-4]
25
+ frames, _, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', output_format='TCHW') # RGB
26
+ fps = info['video_fps']
27
+ else:
28
+ video_name = os.path.basename(frame_root)
29
+ frames = []
30
+ fr_lst = sorted(os.listdir(frame_root))
31
+ for fr in fr_lst:
32
+ frame = cv2.imread(os.path.join(frame_root, fr))[...,[2,1,0]] # RGB, HWC
33
+ frames.append(frame)
34
+ fps = 24 # default
35
+ frames = torch.Tensor(np.array(frames)).permute(0, 3, 1, 2).contiguous() # TCHW
36
+
37
+ length = frames.shape[0]
38
+
39
+ return frames, fps, length, video_name
40
+
41
+ def gen_dilate(alpha, min_kernel_size, max_kernel_size):
42
+ kernel_size = random.randint(min_kernel_size, max_kernel_size)
43
+ kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
44
+ fg_and_unknown = np.array(np.not_equal(alpha, 0).astype(np.float32))
45
+ dilate = cv2.dilate(fg_and_unknown, kernel, iterations=1)*255
46
+ return dilate.astype(np.float32)
47
+
48
+ def gen_erosion(alpha, min_kernel_size, max_kernel_size):
49
+ kernel_size = random.randint(min_kernel_size, max_kernel_size)
50
+ kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
51
+ fg = np.array(np.equal(alpha, 255).astype(np.float32))
52
+ erode = cv2.erode(fg, kernel, iterations=1)*255
53
+ return erode.astype(np.float32)
54
+
55
+ @torch.inference_mode()
56
+ @torch.cuda.amp.autocast()
57
+ def main(input_path, mask_path, output_path, ckpt_path, n_warmup=10, r_erode=10, r_dilate=10, suffix="", save_image=False, max_size=-1):
58
+
59
+ matanyone = MatAnyone.from_pretrained("PeiqingYang/MatAnyone").cuda().eval()
60
+ processor = InferenceCore(matanyone, cfg=matanyone.cfg)
61
+
62
+ # inference parameters
63
+ r_erode = int(r_erode)
64
+ r_dilate = int(r_dilate)
65
+ n_warmup = int(n_warmup)
66
+ max_size = int(max_size)
67
+
68
+ # load input frames
69
+ vframes, fps, length, video_name = read_frame_from_videos(input_path)
70
+ repeated_frames = vframes[0].unsqueeze(0).repeat(n_warmup, 1, 1, 1) # repeat the first frame for warmup
71
+ vframes = torch.cat([repeated_frames, vframes], dim=0).float()
72
+ length += n_warmup # update length
73
+
74
+ # resize if needed
75
+ if max_size > 0:
76
+ h, w = vframes.shape[-2:]
77
+ min_side = min(h, w)
78
+ if min_side > max_size:
79
+ new_h = int(h / min_side * max_size)
80
+ new_w = int(w / min_side * max_size)
81
+
82
+ vframes = F.interpolate(vframes, size=(new_h, new_w), mode="area")
83
+
84
+ # set output paths
85
+ os.makedirs(output_path, exist_ok=True)
86
+ if suffix != "":
87
+ video_name = f'{video_name}_{suffix}'
88
+ if save_image:
89
+ os.makedirs(f'{output_path}/{video_name}', exist_ok=True)
90
+ os.makedirs(f'{output_path}/{video_name}/pha', exist_ok=True)
91
+ os.makedirs(f'{output_path}/{video_name}/fgr', exist_ok=True)
92
+
93
+ # load the first-frame mask
94
+ mask = Image.open(mask_path).convert('L')
95
+ mask = np.array(mask)
96
+
97
+ bgr = (np.array([120, 255, 155], dtype=np.float32)/255).reshape((1, 1, 3)) # green screen to paste fgr
98
+ objects = [1]
99
+
100
+ # [optional] erode & dilate
101
+ if r_dilate > 0:
102
+ mask = gen_dilate(mask, r_dilate, r_dilate)
103
+ if r_erode > 0:
104
+ mask = gen_erosion(mask, r_erode, r_erode)
105
+
106
+ mask = torch.from_numpy(mask).cuda()
107
+
108
+ if max_size > 0: # resize needed
109
+ mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(new_h, new_w), mode="nearest")
110
+ mask = mask[0,0]
111
+
112
+ # inference start
113
+ phas = []
114
+ fgrs = []
115
+ for ti in tqdm.tqdm(range(length)):
116
+ # load the image as RGB; normalization is done within the model
117
+ image = vframes[ti]
118
+
119
+ image_np = np.array(image.permute(1,2,0)) # for output visualize
120
+ image = (image / 255.).cuda().float() # for network input
121
+
122
+ if ti == 0:
123
+ output_prob = processor.step(image, mask, objects=objects) # encode given mask
124
+ output_prob = processor.step(image, first_frame_pred=True) # first frame for prediction
125
+ else:
126
+ if ti <= n_warmup:
127
+ output_prob = processor.step(image, first_frame_pred=True) # reinit as the first frame for prediction
128
+ else:
129
+ output_prob = processor.step(image)
130
+
131
+ # convert output probabilities to alpha matte
132
+ mask = processor.output_prob_to_mask(output_prob)
133
+
134
+ # visualize prediction
135
+ pha = mask.unsqueeze(2).cpu().numpy()
136
+ com_np = image_np / 255. * pha + bgr * (1 - pha)
137
+
138
+ # DONOT save the warmup frame
139
+ if ti > (n_warmup-1):
140
+ com_np = (com_np*255).astype(np.uint8)
141
+ pha = (pha*255).astype(np.uint8)
142
+ fgrs.append(com_np)
143
+ phas.append(pha)
144
+ if save_image:
145
+ cv2.imwrite(f'{output_path}/{video_name}/pha/{str(ti-n_warmup).zfill(5)}.png', pha)
146
+ cv2.imwrite(f'{output_path}/{video_name}/fgr/{str(ti-n_warmup).zfill(5)}.png', com_np[...,[2,1,0]])
147
+
148
+ phas = np.array(phas)
149
+ fgrs = np.array(fgrs)
150
+
151
+ imageio.mimwrite(f'{output_path}/{video_name}_fgr.mp4', fgrs, fps=fps, quality=7)
152
+ imageio.mimwrite(f'{output_path}/{video_name}_pha.mp4', phas, fps=fps, quality=7)
153
+
154
+ if __name__ == '__main__':
155
+ import argparse
156
+ parser = argparse.ArgumentParser()
157
+ parser.add_argument('-i', '--input_path', type=str, default="inputs/video/test-sample1.mp4", help='Path of the input video or frame folder.')
158
+ parser.add_argument('-m', '--mask_path', type=str, default="inputs/mask/test-sample1.png", help='Path of the first-frame segmentation mask.')
159
+ parser.add_argument('-o', '--output_path', type=str, default="results/", help='Output folder. Default: results')
160
+ parser.add_argument('-c', '--ckpt_path', type=str, default="pretrained_models/matanyone.pth", help='Path of the MatAnyone model.')
161
+ parser.add_argument('-w', '--warmup', type=str, default="10", help='Number of warmup iterations for the first frame alpha prediction.')
162
+ parser.add_argument('-e', '--erode_kernel', type=str, default="10", help='Erosion kernel on the input mask.')
163
+ parser.add_argument('-d', '--dilate_kernel', type=str, default="10", help='Dilation kernel on the input mask.')
164
+ parser.add_argument('--suffix', type=str, default="", help='Suffix to specify different target when saving, e.g., target1.')
165
+ parser.add_argument('--save_image', action='store_true', default=False, help='Save output frames. Default: False')
166
+ parser.add_argument('--max_size', type=str, default="-1", help='When positive, the video will be downsampled if min(w, h) exceeds. Default: -1 (means no limit)')
167
+
168
+
169
+ args = parser.parse_args()
170
+
171
+ main(input_path=args.input_path, \
172
+ mask_path=args.mask_path, \
173
+ output_path=args.output_path, \
174
+ ckpt_path=args.ckpt_path, \
175
+ n_warmup=args.warmup, \
176
+ r_erode=args.erode_kernel, \
177
+ r_dilate=args.dilate_kernel, \
178
+ suffix=args.suffix, \
179
+ save_image=args.save_image, \
180
+ max_size=args.max_size)