zuazo's picture
Model save
e6d5602 verified
metadata
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - common_voice_22_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v3-turbo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_22_0
          type: common_voice_22_0
          config: eu
          split: test
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 8.235850970315775

openai/whisper-large-v3-turbo

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the common_voice_22_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4219
  • Wer: 8.2359

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0243 10.8234 5000 0.2572 11.3209
0.012 21.6457 10000 0.2926 11.1214
0.007 32.4680 15000 0.3036 11.0386
0.0042 43.2904 20000 0.3139 10.8341
0.004 54.1127 25000 0.3344 11.1519
0.0043 64.9361 30000 0.3439 11.2584
0.0031 75.7584 35000 0.3333 10.4943
0.0023 86.5807 40000 0.3454 10.5746
0.0018 97.4030 45000 0.3443 9.9508
0.0012 108.2254 50000 0.3494 10.5188
0.0008 119.0477 55000 0.3521 10.1148
0.0005 129.8711 60000 0.3651 9.8663
0.0013 140.6934 65000 0.3651 10.3743
0.0002 151.5157 70000 0.3531 9.6043
0.0 162.3380 75000 0.3638 9.3287
0.0 173.1603 80000 0.3724 9.0532
0.0 183.9837 85000 0.3875 8.6906
0.0 194.8061 90000 0.4055 8.4083
0.0 205.6284 95000 0.4180 8.2730
0.0 216.4507 100000 0.4219 8.2359

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1