Qwen3-8B Tunisian Insurance Assistant
Two-stage fine-tuned model for Tunisian insurance domain with dialect support.
Architecture
- Dialect Adapter (Stage 1): Trained on Tunisian dialect corpus
- Task Adapter (Stage 2): Fine-tuned on insurance FAQ data
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load base model
model = AutoModelForCausalLM.from_pretrained(
"unsloth/Qwen3-8B-unsloth-bnb-4bit",
load_in_4bit=True,
device_map="auto"
)
# Load tokenizer with custom tokens
tokenizer = AutoTokenizer.from_pretrained("youssefrekik/qwen3-8b-tunisian-dialect-adapter")
model.resize_token_embeddings(len(tokenizer))
# Load dialect adapter
model = PeftModel.from_pretrained(model, "youssefrekik/qwen3-8b-tunisian-dialect-adapter")
# Load task adapter
model.load_adapter("youssefrekik/qwen3-8b-tunisian-insurance-task-adapter", adapter_name="task")
model.set_adapter(["default", "task"])
# Generate
prompt = "<tunisian>Chnowa el fara9 bin RC w tous risques?</tunisian>"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Details
- Base Model: Qwen3-8B-4bit
- Stage 1: Dialect adaptation (r=8, 2000 steps)
- Stage 2: Task fine-tuning (r=8, 200 steps)
- Languages: Tunisian Arabic (Arabizi), Modern Standard Arabic, French, English
- Domain: Tunisian insurance
Custom Tokens
Added domain-specific tokens including:
- Language markers:
<tunisian>,<arabizi>,<ar>,<fr> - Insurance terms:
<assurance>,<sinistre>,<prime>, etc. - Tunisian expressions:
<khouya>,<chnowa>,<kifach>, etc.
License
Apache 2.0
- Downloads last month
- 83
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support