CosAE Convolutional Harmonic Autoencoder

This is a pretrained Convolutional Harmonic Autoencoder (CosAE) model. It encodes images into amplitude/phase harmonics and reconstructs RGB images.

Usage

from transformers import AutoModel

# Load the model with remote code trust
model = AutoModel.from_pretrained(
    "vedant-jumle/cosae",
    trust_remote_code=True,
)
model.eval()

# Example input: tensor of shape [B, 9, H, W] (RGB + FFT) or [B,3,H,W]
import torch
x = torch.randn(1, 9, 256, 256)
with torch.no_grad():
    recon = model(x)

Model Details

  • Architecture: Convolutional encoder (ResBlocks + optional attention), Harmonic Construction Module, upsampling decoder
  • Input channels: 9 (3 RGB + 6 FFT) or 3
  • Image size: 256ร—256 (configurable)

References

License

This model is released under the MIT License. See the repository LICENSE for details.

Downloads last month
62
Safetensors
Model size
18.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support