Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions tuples

This is a Asymmetric Inference-free SPLADE Sparse Encoder model trained on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: Asymmetric Inference-free SPLADE Sparse Encoder
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Router(
    (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: DistilBertTokenizerFast)
    (document_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
    (document_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/inference-free-splade-distilbert-base-uncased-nq-3e-4-lc")
# Run inference
queries = [
    "is send in the clowns from a musical",
]
documents = [
    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
    'Money in the Bank ladder match The first match was contested in 2005 at WrestleMania 21, after being invented (in kayfabe) by Chris Jericho.[1] At the time, it was exclusive to wrestlers of the Raw brand, and Edge won the inaugural match.[1] From then until 2010, the Money in the Bank ladder match, now open to all WWE brands, became a WrestleMania mainstay. 2010 saw a second and third Money in the Bank ladder match when the Money in the Bank pay-per-view debuted in July. Unlike the matches at WrestleMania, this new event featured two such ladder matches – one each for a contract for the WWE Championship and World Heavyweight Championship, respectively.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[11.2000,  0.0000,  0.6561]])

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.26 0.4 0.4
dot_accuracy@3 0.54 0.52 0.62
dot_accuracy@5 0.6 0.54 0.74
dot_accuracy@10 0.84 0.64 0.8
dot_precision@1 0.26 0.4 0.4
dot_precision@3 0.18 0.38 0.2133
dot_precision@5 0.12 0.32 0.152
dot_precision@10 0.084 0.272 0.084
dot_recall@1 0.26 0.0225 0.38
dot_recall@3 0.54 0.0774 0.58
dot_recall@5 0.6 0.0924 0.69
dot_recall@10 0.84 0.1237 0.76
dot_ndcg@10 0.5301 0.3246 0.5795
dot_mrr@10 0.4347 0.4722 0.5381
dot_map@100 0.4418 0.1354 0.5206
query_active_dims 7.22 5.66 10.32
query_sparsity_ratio 0.9998 0.9998 0.9997
corpus_active_dims 108.2734 131.0975 91.8959
corpus_sparsity_ratio 0.9965 0.9957 0.997

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3533
dot_accuracy@3 0.56
dot_accuracy@5 0.6267
dot_accuracy@10 0.76
dot_precision@1 0.3533
dot_precision@3 0.2578
dot_precision@5 0.1973
dot_precision@10 0.1467
dot_recall@1 0.2208
dot_recall@3 0.3991
dot_recall@5 0.4608
dot_recall@10 0.5746
dot_ndcg@10 0.4781
dot_mrr@10 0.4816
dot_map@100 0.3659
query_active_dims 7.7333
query_sparsity_ratio 0.9997
corpus_active_dims 107.1176
corpus_sparsity_ratio 0.9965

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 0.0003,
        "lambda_query": 0
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 0.0003,
        "lambda_query": 0
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates
  • router_mapping: {'query': 'query', 'answer': 'document'}
  • learning_rate_mapping: {'IDF\.weight': 0.001}

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {'query': 'query', 'answer': 'document'}
  • learning_rate_mapping: {'IDF\.weight': 0.001}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.0323 200 0.3026 - - - - -
0.0646 400 0.1058 - - - - -
0.0970 600 0.0605 - - - - -
0.1293 800 0.0443 - - - - -
0.1616 1000 0.0385 0.0598 0.6070 0.3234 0.5837 0.5047
0.1939 1200 0.0391 - - - - -
0.2262 1400 0.0432 - - - - -
0.2586 1600 0.0448 - - - - -
0.2909 1800 0.0363 - - - - -
0.3232 2000 0.0348 0.0578 0.5471 0.3245 0.5586 0.4768
0.3555 2200 0.0383 - - - - -
0.3878 2400 0.0378 - - - - -
0.4202 2600 0.0354 - - - - -
0.4525 2800 0.0348 - - - - -
0.4848 3000 0.0276 0.0474 0.5432 0.3288 0.5474 0.4731
0.5171 3200 0.0341 - - - - -
0.5495 3400 0.0352 - - - - -
0.5818 3600 0.0312 - - - - -
0.6141 3800 0.036 - - - - -
0.6464 4000 0.0295 0.0543 0.5880 0.3372 0.5392 0.4881
0.6787 4200 0.032 - - - - -
0.7111 4400 0.0321 - - - - -
0.7434 4600 0.0322 - - - - -
0.7757 4800 0.0303 - - - - -
0.8080 5000 0.0328 0.0476 0.5662 0.3225 0.5796 0.4894
0.8403 5200 0.0322 - - - - -
0.8727 5400 0.03 - - - - -
0.9050 5600 0.0306 - - - - -
0.9373 5800 0.0273 - - - - -
0.9696 6000 0.0327 0.0474 0.5383 0.3334 0.5084 0.4600
1.0019 6200 0.0342 - - - - -
1.0343 6400 0.0201 - - - - -
1.0666 6600 0.0212 - - - - -
1.0989 6800 0.0209 - - - - -
1.1312 7000 0.0319 0.0484 0.5389 0.3125 0.5364 0.4626
1.1635 7200 0.0243 - - - - -
1.1959 7400 0.0219 - - - - -
1.2282 7600 0.022 - - - - -
1.2605 7800 0.0237 - - - - -
1.2928 8000 0.0257 0.0461 0.5594 0.3314 0.5339 0.4749
1.3251 8200 0.0152 - - - - -
1.3575 8400 0.0177 - - - - -
1.3898 8600 0.0228 - - - - -
1.4221 8800 0.0197 - - - - -
1.4544 9000 0.025 0.0416 0.5534 0.3253 0.5838 0.4875
1.4867 9200 0.025 - - - - -
1.5191 9400 0.0229 - - - - -
1.5514 9600 0.0198 - - - - -
1.5837 9800 0.022 - - - - -
1.6160 10000 0.0279 0.0434 0.5778 0.3390 0.5574 0.4914
1.6484 10200 0.0201 - - - - -
1.6807 10400 0.0196 - - - - -
1.7130 10600 0.0188 - - - - -
1.7453 10800 0.0207 - - - - -
1.7776 11000 0.0194 0.0446 0.5603 0.3301 0.5776 0.4893
1.8100 11200 0.0166 - - - - -
1.8423 11400 0.0207 - - - - -
1.8746 11600 0.0212 - - - - -
1.9069 11800 0.0172 - - - - -
1.9392 12000 0.0198 0.0451 0.5653 0.3344 0.5716 0.4904
1.9716 12200 0.0183 - - - - -
2.0039 12400 0.0212 - - - - -
2.0362 12600 0.0111 - - - - -
2.0685 12800 0.0144 - - - - -
2.1008 13000 0.0124 0.0412 0.5408 0.3278 0.5869 0.4852
2.1332 13200 0.014 - - - - -
2.1655 13400 0.0162 - - - - -
2.1978 13600 0.0118 - - - - -
2.2301 13800 0.0138 - - - - -
2.2624 14000 0.0137 0.0404 0.5265 0.3313 0.5875 0.4817
2.2948 14200 0.0147 - - - - -
2.3271 14400 0.0134 - - - - -
2.3594 14600 0.0137 - - - - -
2.3917 14800 0.0119 - - - - -
2.4240 15000 0.0139 0.0409 0.5140 0.3347 0.5665 0.4717
2.4564 15200 0.0135 - - - - -
2.4887 15400 0.0169 - - - - -
2.5210 15600 0.0123 - - - - -
2.5533 15800 0.0147 - - - - -
2.5856 16000 0.0154 0.0388 0.5210 0.3278 0.5713 0.4734
2.6180 16200 0.0117 - - - - -
2.6503 16400 0.0125 - - - - -
2.6826 16600 0.0137 - - - - -
2.7149 16800 0.0143 - - - - -
2.7473 17000 0.0118 0.0410 0.5345 0.3306 0.5739 0.4797
2.7796 17200 0.0123 - - - - -
2.8119 17400 0.0105 - - - - -
2.8442 17600 0.0139 - - - - -
2.8765 17800 0.0138 - - - - -
2.9089 18000 0.0122 0.0396 0.5250 0.3235 0.5880 0.4788
2.9412 18200 0.0114 - - - - -
2.9735 18400 0.0131 - - - - -
-1 -1 - - 0.5301 0.3246 0.5795 0.4781

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.249 kWh
  • Carbon Emitted: 0.097 kg of CO2
  • Hours Used: 0.63 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train tomaarsen/inference-free-splade-distilbert-base-uncased-nq-3e-4-lc

Evaluation results