Medical Whisper - Portuguese
This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3011
 - Wer: 30.6945
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
 - train_batch_size: 4
 - eval_batch_size: 16
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 4
 - gradient_accumulation_steps: 8
 - total_train_batch_size: 128
 - total_eval_batch_size: 64
 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 500
 - training_steps: 6000
 - mixed_precision_training: Native AMP
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | 
|---|---|---|---|---|
| 0.3654 | 0.3680 | 500 | 0.3516 | 35.6868 | 
| 0.3355 | 0.7360 | 1000 | 0.3341 | 35.0002 | 
| 0.2826 | 1.1041 | 1500 | 0.3248 | 34.6635 | 
| 0.2763 | 1.4721 | 2000 | 0.3171 | 33.6200 | 
| 0.2715 | 1.8401 | 2500 | 0.3101 | 33.1267 | 
| 0.2203 | 2.2081 | 3000 | 0.3071 | 31.3256 | 
| 0.2202 | 2.5761 | 3500 | 0.3019 | 30.5031 | 
| 0.2169 | 2.9442 | 4000 | 0.2975 | 30.7246 | 
| 0.1765 | 3.3122 | 4500 | 0.3002 | 31.2968 | 
| 0.1768 | 3.6802 | 5000 | 0.2985 | 30.5046 | 
| 0.1594 | 4.0482 | 5500 | 0.3003 | 30.5781 | 
| 0.1603 | 4.4162 | 6000 | 0.3011 | 30.6945 | 
Framework versions
- Transformers 4.46.0.dev0
 - Pytorch 2.1.0+cu118
 - Datasets 3.0.2.dev0
 - Tokenizers 0.20.0
 
- Downloads last month
 - 1
 
Model tree for todeschini/medical-whisper-pt
Base model
openai/whisper-large-v3
				Finetuned
	
	
openai/whisper-large-v3-turbo