EAGLE-3 Draft Model for Qwen3-4B-Thinking-2507

Model Overview

This repository contains an EAGLE-3 style draft model specifically trained to accelerate the inference of the Qwen3-4B-Thinking-2507 large language model.

This is not a standalone model. It must be used in conjunction with its corresponding base model (Qwen3-4B-Thinking-2507) within a speculative decoding framework to achieve significant speedups in text generation.

  • Base Model: Qwen3-4B-Thinking-2507
  • Model Architecture: EAGLE-3 (Speculative Decoding Draft Model)
  • Primary Benefit: Accelerates text generation throughput by 1.5x to 2.5x without compromising the generation quality of the base model.

What is EAGLE?

EAGLE (Extrapolative A* Generative Language Engine) is an advanced speculative decoding method. It uses a small draft model to generate a sequence of draft tokens in parallel. These tokens are then verified by the larger, more powerful base model in a single forward pass. If the draft is accepted, the generation process advances multiple steps at once, leading to a substantial increase in speed.

Performance

This model was evaluated on a diverse set of benchmarks. The acc_length (average number of accepted draft tokens) indicates the efficiency of the acceleration. A higher value is better.

Benchmark acc_length (num_draft_tokens=4) acc_length (num_draft_tokens=8)
gsm8k 2.07 2.07
humaneval 1.99 1.98
math500 1.98 1.98
ceval 1.82 1.82
cmmlu 1.76 1.76
mtbench 1.71 1.71
Average ~1.89 ~1.89

These results demonstrate consistent and effective acceleration across various tasks, including coding, math, and general conversation.

Training Details

  • Training Framework: This model was trained using SpecForge, an open-source framework for speculative decoding research.
  • Training Data: The model was trained on the EagleChat dataset. Available on Hugging Face and ModelScope.

适用于 Qwen3-4B-Thinking-2507 的 EAGLE-3 草稿模型

模型简介

本仓库包含一个 EAGLE-3 风格的草稿模型,专为加速 Qwen3-4B-Thinking-2507 大语言模型的推理而训练。

请注意:这是一个非独立模型。它必须与对应的基座模型 (Qwen3-4B-Thinking-2507) 在推测解码 (speculative decoding) 框架下配合使用,才能实现显著的文本生成加速效果。

  • 基座模型: Qwen3-4B-Thinking-2507
  • 模型架构: EAGLE-3 (推测解码草稿模型)
  • 核心优势: 在不牺牲基座模型生成质量的前提下,将文本生成吞吐量提升 1.5 到 2.5 倍。

什么是 EAGLE?

EAGLE (Extrapolative A* Generative Language Engine) 是一种先进的推测解码方法。它利用一个轻量的草稿模型并行生成一系列草稿词元 (draft tokens),然后由更大、更强的基座模型通过单次前向传播进行验证。如果草稿被接受,生成过程就能一次性前进多个步骤,从而实现显著的速度提升。

性能表现

本模型在一系列多样化的评测基准上进行了评估。acc_length (平均接受的草稿词元数) 反映了加速的效率,数值越高越好。

评测基准 (Benchmark) acc_length (num_draft_tokens=4) acc_length (num_draft_tokens=8)
gsm8k 2.07 2.07
humaneval 1.99 1.98
math500 1.98 1.98
ceval 1.82 1.82
cmmlu 1.76 1.76
mtbench 1.71 1.71
平均值 ~1.89 ~1.89

这些结果表明,该模型在编码、数学和通用对话等不同任务上都能提供稳定且高效的加速效果。

训练细节

  • 训练框架: 本模型使用开源推测解码研究框架 SpecForge 进行训练。
  • 训练数据: 训练数据使用了 EagleChat 数据集。您可以在 Hugging FaceModelScope 上获取该数据集。
Downloads last month
16
Safetensors
Model size
0.2B params
Tensor type
I64
·
BF16
·
BOOL
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including taobao-mnn/Qwen3-4B-Thinking-2507-Eagle