SparseEncoder

This is a Sparse Encoder model trained on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 50368-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: Sparse Encoder
  • Maximum Sequence Length: 512 tokens
  • Training Dataset:
  • Language: en

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("sparse-embedding/splade-ModernBERT-nq-fresh-lq0.05-lc0.003_scale1_lr-1e-4_bs64")
# Run inference
sentences = [
    'is send in the clowns from a musical',
    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 50368)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.22 0.66 0.48 0.38 0.74 0.32 0.38 0.38 0.76 0.36 0.22 0.44 0.6122
dot_accuracy@3 0.46 0.76 0.82 0.52 0.8 0.6 0.5 0.62 0.86 0.62 0.56 0.66 0.8571
dot_accuracy@5 0.56 0.84 0.88 0.6 0.88 0.7 0.54 0.74 0.92 0.66 0.7 0.72 0.898
dot_accuracy@10 0.72 0.94 0.92 0.7 0.92 0.82 0.56 0.8 1.0 0.84 0.82 0.8 0.9592
dot_precision@1 0.22 0.66 0.48 0.38 0.74 0.32 0.38 0.38 0.76 0.36 0.22 0.44 0.6122
dot_precision@3 0.16 0.5267 0.28 0.2333 0.38 0.2 0.3267 0.2133 0.3333 0.28 0.1867 0.2333 0.5918
dot_precision@5 0.124 0.488 0.18 0.176 0.256 0.14 0.3 0.152 0.216 0.236 0.14 0.16 0.5143
dot_precision@10 0.086 0.448 0.094 0.106 0.142 0.082 0.238 0.084 0.128 0.174 0.082 0.09 0.4429
dot_recall@1 0.0667 0.0667 0.47 0.1839 0.37 0.32 0.0409 0.35 0.6673 0.0757 0.22 0.425 0.0435
dot_recall@3 0.2383 0.1197 0.79 0.3052 0.57 0.6 0.0705 0.59 0.808 0.1727 0.56 0.63 0.1286
dot_recall@5 0.28 0.1792 0.85 0.3767 0.64 0.7 0.0909 0.69 0.8613 0.2417 0.7 0.7 0.1792
dot_recall@10 0.37 0.3035 0.89 0.4737 0.71 0.82 0.1157 0.75 0.966 0.3567 0.82 0.79 0.294
dot_ndcg@10 0.2677 0.5343 0.7041 0.3885 0.6641 0.558 0.2972 0.5726 0.8419 0.3329 0.515 0.6152 0.5011
dot_mrr@10 0.3606 0.7355 0.6527 0.4707 0.7923 0.475 0.4452 0.5327 0.8272 0.5093 0.4177 0.5621 0.7391
dot_map@100 0.1851 0.4049 0.6419 0.3248 0.5976 0.4854 0.1283 0.5141 0.7951 0.253 0.4241 0.5632 0.3876

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4579
dot_accuracy@3 0.6644
dot_accuracy@5 0.7414
dot_accuracy@10 0.8307
dot_precision@1 0.4579
dot_precision@3 0.3035
dot_precision@5 0.2371
dot_precision@10 0.169
dot_recall@1 0.2538
dot_recall@3 0.4295
dot_recall@5 0.4992
dot_recall@10 0.5892
dot_ndcg@10 0.5225
dot_mrr@10 0.5785
dot_map@100 0.4389

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 29 characters
    • mean: 46.96 characters
    • max: 93 characters
    • min: 10 characters
    • mean: 582.13 characters
    • max: 2141 characters
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: SpladeLoss with these parameters:
    {'lambda_corpus': 0.003, 'lambda_query': 0.05, 'main_loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    )}
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 30 characters
    • mean: 47.2 characters
    • max: 96 characters
    • min: 58 characters
    • mean: 598.96 characters
    • max: 2480 characters
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: SpladeLoss with these parameters:
    {'lambda_corpus': 0.003, 'lambda_query': 0.05, 'main_loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    )}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 0.0001
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.0065 10 7184.1445 - - - - - - - - - - - - - - -
0.0129 20 1903.0385 - - - - - - - - - - - - - - -
0.0194 30 909.2298 - - - - - - - - - - - - - - -
0.0259 40 316.7136 - - - - - - - - - - - - - - -
0.0323 50 244.4539 - - - - - - - - - - - - - - -
0.0388 60 294.2571 - - - - - - - - - - - - - - -
0.0452 70 353.676 - - - - - - - - - - - - - - -
0.0517 80 152.3629 - - - - - - - - - - - - - - -
0.0582 90 104.8372 - - - - - - - - - - - - - - -
0.0646 100 45.3187 - - - - - - - - - - - - - - -
0.0711 110 22.4178 - - - - - - - - - - - - - - -
0.0776 120 13.1608 - - - - - - - - - - - - - - -
0.0840 130 8.5385 - - - - - - - - - - - - - - -
0.0905 140 6.384 - - - - - - - - - - - - - - -
0.0970 150 4.6373 - - - - - - - - - - - - - - -
0.1034 160 4.4281 - - - - - - - - - - - - - - -
0.1099 170 3.8958 - - - - - - - - - - - - - - -
0.1164 180 2.9138 - - - - - - - - - - - - - - -
0.1228 190 2.0 - - - - - - - - - - - - - - -
0.1293 200 1.3596 - - - - - - - - - - - - - - -
0.1357 210 0.931 - - - - - - - - - - - - - - -
0.1422 220 0.8304 - - - - - - - - - - - - - - -
0.1487 230 0.5943 - - - - - - - - - - - - - - -
0.1551 240 0.4164 - - - - - - - - - - - - - - -
0.1616 250 0.3703 - - - - - - - - - - - - - - -
0.1681 260 0.3452 - - - - - - - - - - - - - - -
0.1745 270 0.3224 - - - - - - - - - - - - - - -
0.1810 280 0.2795 - - - - - - - - - - - - - - -
0.1875 290 0.2597 - - - - - - - - - - - - - - -
0.1939 300 0.3003 - - - - - - - - - - - - - - -
0.1997 309 - 0.2614 0.2510 0.4642 0.7084 0.2488 0.5736 0.4460 0.2437 0.3954 0.6417 0.2529 0.3068 0.5133 0.3905 0.4182
0.2004 310 0.2549 - - - - - - - - - - - - - - -
0.2069 320 0.2208 - - - - - - - - - - - - - - -
0.2133 330 0.215 - - - - - - - - - - - - - - -
0.2198 340 0.2113 - - - - - - - - - - - - - - -
0.2262 350 0.198 - - - - - - - - - - - - - - -
0.2327 360 0.2177 - - - - - - - - - - - - - - -
0.2392 370 0.3034 - - - - - - - - - - - - - - -
0.2456 380 0.2184 - - - - - - - - - - - - - - -
0.2521 390 0.211 - - - - - - - - - - - - - - -
0.2586 400 0.1726 - - - - - - - - - - - - - - -
0.2650 410 0.1745 - - - - - - - - - - - - - - -
0.2715 420 0.1978 - - - - - - - - - - - - - - -
0.2780 430 0.1966 - - - - - - - - - - - - - - -
0.2844 440 0.1961 - - - - - - - - - - - - - - -
0.2909 450 0.1705 - - - - - - - - - - - - - - -
0.2973 460 0.2358 - - - - - - - - - - - - - - -
0.3038 470 0.1643 - - - - - - - - - - - - - - -
0.3103 480 0.1824 - - - - - - - - - - - - - - -
0.3167 490 0.2357 - - - - - - - - - - - - - - -
0.3232 500 0.1341 - - - - - - - - - - - - - - -
0.3297 510 0.1786 - - - - - - - - - - - - - - -
0.3361 520 0.1392 - - - - - - - - - - - - - - -
0.3426 530 0.1434 - - - - - - - - - - - - - - -
0.3491 540 0.1684 - - - - - - - - - - - - - - -
0.3555 550 0.1827 - - - - - - - - - - - - - - -
0.3620 560 0.1296 - - - - - - - - - - - - - - -
0.3685 570 0.1731 - - - - - - - - - - - - - - -
0.3749 580 0.182 - - - - - - - - - - - - - - -
0.3814 590 0.1587 - - - - - - - - - - - - - - -
0.3878 600 0.1519 - - - - - - - - - - - - - - -
0.3943 610 0.1944 - - - - - - - - - - - - - - -
0.3995 618 - 0.1768 0.2776 0.4818 0.7670 0.3444 0.5941 0.4696 0.2791 0.5422 0.7823 0.2977 0.4389 0.5579 0.4978 0.4869
0.4008 620 0.1778 - - - - - - - - - - - - - - -
0.4072 630 0.1595 - - - - - - - - - - - - - - -
0.4137 640 0.1268 - - - - - - - - - - - - - - -
0.4202 650 0.1361 - - - - - - - - - - - - - - -
0.4266 660 0.1416 - - - - - - - - - - - - - - -
0.4331 670 0.1139 - - - - - - - - - - - - - - -
0.4396 680 0.1734 - - - - - - - - - - - - - - -
0.4460 690 0.1082 - - - - - - - - - - - - - - -
0.4525 700 0.1198 - - - - - - - - - - - - - - -
0.4590 710 0.0981 - - - - - - - - - - - - - - -
0.4654 720 0.0943 - - - - - - - - - - - - - - -
0.4719 730 0.1421 - - - - - - - - - - - - - - -
0.4783 740 0.0903 - - - - - - - - - - - - - - -
0.4848 750 0.1339 - - - - - - - - - - - - - - -
0.4913 760 0.1109 - - - - - - - - - - - - - - -
0.4977 770 0.1245 - - - - - - - - - - - - - - -
0.5042 780 0.0949 - - - - - - - - - - - - - - -
0.5107 790 0.0954 - - - - - - - - - - - - - - -
0.5171 800 0.1136 - - - - - - - - - - - - - - -
0.5236 810 0.1206 - - - - - - - - - - - - - - -
0.5301 820 0.101 - - - - - - - - - - - - - - -
0.5365 830 0.1372 - - - - - - - - - - - - - - -
0.5430 840 0.1123 - - - - - - - - - - - - - - -
0.5495 850 0.1358 - - - - - - - - - - - - - - -
0.5559 860 0.1303 - - - - - - - - - - - - - - -
0.5624 870 0.1339 - - - - - - - - - - - - - - -
0.5688 880 0.1096 - - - - - - - - - - - - - - -
0.5753 890 0.079 - - - - - - - - - - - - - - -
0.5818 900 0.0988 - - - - - - - - - - - - - - -
0.5882 910 0.1042 - - - - - - - - - - - - - - -
0.5947 920 0.0905 - - - - - - - - - - - - - - -
0.5992 927 - 0.1155 0.2490 0.5054 0.7070 0.3375 0.6075 0.4871 0.2843 0.5344 0.7616 0.3309 0.4869 0.6136 0.4983 0.4926
0.6012 930 0.0841 - - - - - - - - - - - - - - -
0.6076 940 0.0946 - - - - - - - - - - - - - - -
0.6141 950 0.086 - - - - - - - - - - - - - - -
0.6206 960 0.118 - - - - - - - - - - - - - - -
0.6270 970 0.0981 - - - - - - - - - - - - - - -
0.6335 980 0.117 - - - - - - - - - - - - - - -
0.6399 990 0.0984 - - - - - - - - - - - - - - -
0.6464 1000 0.1235 - - - - - - - - - - - - - - -
0.6529 1010 0.1026 - - - - - - - - - - - - - - -
0.6593 1020 0.0919 - - - - - - - - - - - - - - -
0.6658 1030 0.0891 - - - - - - - - - - - - - - -
0.6723 1040 0.1363 - - - - - - - - - - - - - - -
0.6787 1050 0.0765 - - - - - - - - - - - - - - -
0.6852 1060 0.0918 - - - - - - - - - - - - - - -
0.6917 1070 0.1433 - - - - - - - - - - - - - - -
0.6981 1080 0.076 - - - - - - - - - - - - - - -
0.7046 1090 0.0851 - - - - - - - - - - - - - - -
0.7111 1100 0.0811 - - - - - - - - - - - - - - -
0.7175 1110 0.0775 - - - - - - - - - - - - - - -
0.7240 1120 0.1029 - - - - - - - - - - - - - - -
0.7304 1130 0.104 - - - - - - - - - - - - - - -
0.7369 1140 0.0961 - - - - - - - - - - - - - - -
0.7434 1150 0.1159 - - - - - - - - - - - - - - -
0.7498 1160 0.0919 - - - - - - - - - - - - - - -
0.7563 1170 0.0849 - - - - - - - - - - - - - - -
0.7628 1180 0.1021 - - - - - - - - - - - - - - -
0.7692 1190 0.065 - - - - - - - - - - - - - - -
0.7757 1200 0.0858 - - - - - - - - - - - - - - -
0.7822 1210 0.0826 - - - - - - - - - - - - - - -
0.7886 1220 0.069 - - - - - - - - - - - - - - -
0.7951 1230 0.0718 - - - - - - - - - - - - - - -
0.799 1236 - 0.0956 0.2677 0.5343 0.7041 0.3885 0.6641 0.558 0.2972 0.5726 0.8419 0.3329 0.515 0.6152 0.5011 0.5225
0.8016 1240 0.076 - - - - - - - - - - - - - - -
0.8080 1250 0.0703 - - - - - - - - - - - - - - -
0.8145 1260 0.0615 - - - - - - - - - - - - - - -
0.8209 1270 0.0969 - - - - - - - - - - - - - - -
0.8274 1280 0.104 - - - - - - - - - - - - - - -
0.8339 1290 0.0616 - - - - - - - - - - - - - - -
0.8403 1300 0.0752 - - - - - - - - - - - - - - -
0.8468 1310 0.0762 - - - - - - - - - - - - - - -
0.8533 1320 0.0691 - - - - - - - - - - - - - - -
0.8597 1330 0.102 - - - - - - - - - - - - - - -
0.8662 1340 0.0778 - - - - - - - - - - - - - - -
0.8727 1350 0.0619 - - - - - - - - - - - - - - -
0.8791 1360 0.0865 - - - - - - - - - - - - - - -
0.8856 1370 0.0546 - - - - - - - - - - - - - - -
0.8920 1380 0.0705 - - - - - - - - - - - - - - -
0.8985 1390 0.0713 - - - - - - - - - - - - - - -
0.9050 1400 0.0669 - - - - - - - - - - - - - - -
0.9114 1410 0.0742 - - - - - - - - - - - - - - -
0.9179 1420 0.0714 - - - - - - - - - - - - - - -
0.9244 1430 0.0753 - - - - - - - - - - - - - - -
0.9308 1440 0.0536 - - - - - - - - - - - - - - -
0.9373 1450 0.0765 - - - - - - - - - - - - - - -
0.9438 1460 0.0665 - - - - - - - - - - - - - - -
0.9502 1470 0.0736 - - - - - - - - - - - - - - -
0.9567 1480 0.0559 - - - - - - - - - - - - - - -
0.9632 1490 0.0587 - - - - - - - - - - - - - - -
0.9696 1500 0.0798 - - - - - - - - - - - - - - -
0.9761 1510 0.0819 - - - - - - - - - - - - - - -
0.9825 1520 0.1039 - - - - - - - - - - - - - - -
0.9890 1530 0.0617 - - - - - - - - - - - - - - -
0.9955 1540 0.062 - - - - - - - - - - - - - - -
0.9987 1545 - 0.0789 0.2818 0.5012 0.6833 0.3634 0.5937 0.5268 0.2913 0.5805 0.8237 0.3454 0.5020 0.6028 0.4961 0.5071
1 -1 - - 0.2677 0.5343 0.7041 0.3885 0.6641 0.5580 0.2972 0.5726 0.8419 0.3329 0.5150 0.6152 0.5011 0.5225
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.10
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.48.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@inproceedings{10.1145/3477495.3531857,
author = {Formal, Thibault and Lassance, Carlos and Piwowarski, Benjamin and Clinchant, St'{e}phane},
title = {From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
year = {2022},
isbn = {9781450387323},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3477495.3531857},
doi = {10.1145/3477495.3531857},
abstract = {Neural retrievers based on dense representations combined with Approximate Nearest Neighbors search have recently received a lot of attention, owing their success to distillation and/or better sampling of examples for training -- while still relying on the same backbone architecture. In the meantime, sparse representation learning fueled by traditional inverted indexing techniques has seen a growing interest, inheriting from desirable IR priors such as explicit lexical matching. While some architectural variants have been proposed, a lesser effort has been put in the training of such models. In this work, we build on SPLADE -- a sparse expansion-based retriever -- and show to which extent it is able to benefit from the same training improvements as dense models, by studying the effect of distillation, hard-negative mining as well as the Pre-trained Language Model initialization. We furthermore study the link between effectiveness and efficiency, on in-domain and zero-shot settings, leading to state-of-the-art results in both scenarios for sufficiently expressive models.},
booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2353–2359},
numpages = {7},
keywords = {neural networks, indexing, sparse representations, regularization},
location = {Madrid, Spain},
series = {SIGIR '22}
}
}
Downloads last month
3
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train sparse-encoder/splade-ModernBERT-nq-fresh-lq0.05-lc0.003_scale1_lr-1e-4_bs64

Evaluation results