Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,54 @@
|
|
1 |
import os
|
2 |
import random
|
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
-
from diffusers import
|
6 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
|
8 |
-
# Configuration
|
9 |
-
MODEL_ID = "
|
10 |
MODEL_CACHE = "model_cache"
|
11 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
12 |
|
|
|
13 |
def get_pipeline():
|
14 |
-
pipe =
|
15 |
MODEL_ID,
|
16 |
torch_dtype=torch.float32,
|
17 |
cache_dir=MODEL_CACHE,
|
18 |
safety_checker=None,
|
19 |
use_safetensors=True
|
20 |
)
|
|
|
|
|
|
|
21 |
pipe = pipe.to("cpu")
|
22 |
pipe.enable_attention_slicing()
|
23 |
return pipe
|
24 |
|
25 |
# Load model
|
|
|
|
|
26 |
pipeline = get_pipeline()
|
|
|
|
|
27 |
|
28 |
def generate_image(
|
29 |
prompt: str,
|
30 |
-
negative_prompt: str = "",
|
31 |
width: int = 768,
|
32 |
height: int = 768,
|
33 |
seed: int = -1,
|
34 |
-
guidance_scale: float =
|
35 |
-
num_inference_steps: int =
|
36 |
):
|
|
|
37 |
if seed == -1:
|
38 |
seed = random.randint(0, 2147483647)
|
39 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
40 |
|
|
|
|
|
41 |
with torch.no_grad():
|
42 |
image = pipeline(
|
43 |
prompt=prompt,
|
@@ -48,34 +59,78 @@ def generate_image(
|
|
48 |
num_inference_steps=num_inference_steps,
|
49 |
generator=generator
|
50 |
).images[0]
|
|
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
|
57 |
with gr.Row():
|
58 |
-
with gr.Column():
|
59 |
-
prompt = gr.Textbox(
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
with gr.Accordion("Advanced", open=False):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
68 |
seed = gr.Number(label="Seed", value=-1)
|
69 |
|
70 |
-
with gr.Column():
|
71 |
-
output_image = gr.Image(label="Result", type="pil")
|
72 |
used_seed = gr.Textbox(label="Used Seed")
|
73 |
-
|
|
|
|
|
74 |
generate_btn.click(
|
75 |
generate_image,
|
76 |
inputs=[prompt, negative_prompt, width, height, seed, guidance, steps],
|
77 |
-
outputs=[output_image, used_seed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
|
|
|
80 |
if __name__ == "__main__":
|
81 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
import random
|
3 |
+
import time
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
+
from diffusers import DiffusionPipeline, LCMScheduler
|
|
|
7 |
|
8 |
+
# Configuration - Using optimized Flux model with LCM
|
9 |
+
MODEL_ID = "ByteDance/Hyper-SD"
|
10 |
MODEL_CACHE = "model_cache"
|
11 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
12 |
|
13 |
+
# Load model with CPU optimizations
|
14 |
def get_pipeline():
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(
|
16 |
MODEL_ID,
|
17 |
torch_dtype=torch.float32,
|
18 |
cache_dir=MODEL_CACHE,
|
19 |
safety_checker=None,
|
20 |
use_safetensors=True
|
21 |
)
|
22 |
+
|
23 |
+
# Configure for fast generation
|
24 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
25 |
pipe = pipe.to("cpu")
|
26 |
pipe.enable_attention_slicing()
|
27 |
return pipe
|
28 |
|
29 |
# Load model
|
30 |
+
print("Loading model...")
|
31 |
+
start_time = time.time()
|
32 |
pipeline = get_pipeline()
|
33 |
+
load_time = time.time() - start_time
|
34 |
+
print(f"Model loaded in {load_time:.2f} seconds")
|
35 |
|
36 |
def generate_image(
|
37 |
prompt: str,
|
38 |
+
negative_prompt: str = "blurry, low quality, cartoon, drawing, text",
|
39 |
width: int = 768,
|
40 |
height: int = 768,
|
41 |
seed: int = -1,
|
42 |
+
guidance_scale: float = 2.0,
|
43 |
+
num_inference_steps: int = 4
|
44 |
):
|
45 |
+
# Set seed if not provided
|
46 |
if seed == -1:
|
47 |
seed = random.randint(0, 2147483647)
|
48 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
49 |
|
50 |
+
# Generate image with timing
|
51 |
+
start_gen = time.time()
|
52 |
with torch.no_grad():
|
53 |
image = pipeline(
|
54 |
prompt=prompt,
|
|
|
59 |
num_inference_steps=num_inference_steps,
|
60 |
generator=generator
|
61 |
).images[0]
|
62 |
+
gen_time = time.time() - start_gen
|
63 |
|
64 |
+
print(f"Generated {width}x{height} image in {gen_time:.2f} seconds")
|
65 |
+
return image, seed, f"Generated in {gen_time:.2f}s | Loaded in {load_time:.2f}s"
|
66 |
|
67 |
+
# Create optimized interface
|
68 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal")) as demo:
|
69 |
+
gr.Markdown("""
|
70 |
+
# ⚡ FLUX Turbo Generator
|
71 |
+
**Professional Quality Images · Lightning Fast CPU Generation**
|
72 |
+
""")
|
73 |
|
74 |
with gr.Row():
|
75 |
+
with gr.Column(scale=1):
|
76 |
+
prompt = gr.Textbox(
|
77 |
+
label="Prompt",
|
78 |
+
placeholder="Describe a professional, high-quality image...",
|
79 |
+
lines=3
|
80 |
+
)
|
81 |
+
negative_prompt = gr.Textbox(
|
82 |
+
label="Negative Prompt",
|
83 |
+
value="blurry, low quality, cartoon, drawing, text"
|
84 |
+
)
|
85 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
86 |
|
87 |
+
with gr.Accordion("Advanced Settings", open=False):
|
88 |
+
with gr.Row():
|
89 |
+
width = gr.Slider(512, 1024, value=768, step=64, label="Width")
|
90 |
+
height = gr.Slider(512, 1024, value=768, step=64, label="Height")
|
91 |
+
with gr.Row():
|
92 |
+
guidance = gr.Slider(1.0, 5.0, value=2.0, step=0.1, label="Guidance")
|
93 |
+
steps = gr.Slider(1, 8, value=4, step=1, label="Steps")
|
94 |
seed = gr.Number(label="Seed", value=-1)
|
95 |
|
96 |
+
with gr.Column(scale=1):
|
97 |
+
output_image = gr.Image(label="Result", type="pil", height=500)
|
98 |
used_seed = gr.Textbox(label="Used Seed")
|
99 |
+
perf_info = gr.Textbox(label="Performance Info")
|
100 |
+
|
101 |
+
# Generation handler
|
102 |
generate_btn.click(
|
103 |
generate_image,
|
104 |
inputs=[prompt, negative_prompt, width, height, seed, guidance, steps],
|
105 |
+
outputs=[output_image, used_seed, perf_info]
|
106 |
+
)
|
107 |
+
|
108 |
+
# Professional examples
|
109 |
+
gr.Examples(
|
110 |
+
examples=[
|
111 |
+
[
|
112 |
+
"Professional photograph of a futuristic city at golden hour, cinematic lighting, ultra-detailed",
|
113 |
+
"blurry, cartoon, drawing, text, watermark",
|
114 |
+
768,
|
115 |
+
768
|
116 |
+
],
|
117 |
+
[
|
118 |
+
"Hyperrealistic portrait of a wise elderly man, detailed wrinkles, studio lighting, 8k resolution",
|
119 |
+
"anime, cartoon, deformed, ugly",
|
120 |
+
768,
|
121 |
+
1024
|
122 |
+
],
|
123 |
+
[
|
124 |
+
"Majestic mountain landscape with crystal clear lake reflection, autumn colors, sharp focus",
|
125 |
+
"low quality, blurry, people, buildings",
|
126 |
+
1024,
|
127 |
+
768
|
128 |
+
]
|
129 |
+
],
|
130 |
+
inputs=[prompt, negative_prompt, width, height],
|
131 |
+
label="Professional Examples"
|
132 |
)
|
133 |
|
134 |
+
# Launch the app
|
135 |
if __name__ == "__main__":
|
136 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|