Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,42 +2,24 @@ import os
|
|
2 |
import random
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
-
from diffusers import
|
6 |
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
|
8 |
-
# Configuration
|
9 |
-
MODEL_ID = "CompVis/
|
10 |
MODEL_CACHE = "model_cache"
|
11 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
12 |
|
13 |
def get_pipeline():
|
14 |
-
|
15 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
16 |
MODEL_ID,
|
17 |
-
subfolder="text_encoder",
|
18 |
-
cache_dir=MODEL_CACHE
|
19 |
-
)
|
20 |
-
|
21 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
22 |
-
MODEL_ID,
|
23 |
-
subfolder="tokenizer",
|
24 |
-
cache_dir=MODEL_CACHE
|
25 |
-
)
|
26 |
-
|
27 |
-
# Create pipeline
|
28 |
-
pipe = DiffusionPipeline.from_pretrained(
|
29 |
-
MODEL_ID,
|
30 |
-
text_encoder=text_encoder,
|
31 |
-
tokenizer=tokenizer,
|
32 |
-
cache_dir=MODEL_CACHE,
|
33 |
torch_dtype=torch.float32,
|
34 |
-
|
|
|
|
|
35 |
)
|
36 |
-
|
37 |
-
# CPU optimizations
|
38 |
pipe = pipe.to("cpu")
|
39 |
pipe.enable_attention_slicing()
|
40 |
-
|
41 |
return pipe
|
42 |
|
43 |
# Load model
|
|
|
2 |
import random
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline # Changed import
|
6 |
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
|
8 |
+
# Configuration
|
9 |
+
MODEL_ID = "CompVis/stable-diffusion-v1-4" # Changed to working model
|
10 |
MODEL_CACHE = "model_cache"
|
11 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
12 |
|
13 |
def get_pipeline():
|
14 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
15 |
MODEL_ID,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
torch_dtype=torch.float32,
|
17 |
+
cache_dir=MODEL_CACHE,
|
18 |
+
safety_checker=None,
|
19 |
+
use_safetensors=True
|
20 |
)
|
|
|
|
|
21 |
pipe = pipe.to("cpu")
|
22 |
pipe.enable_attention_slicing()
|
|
|
23 |
return pipe
|
24 |
|
25 |
# Load model
|