Spaces:
Running
Running
File size: 13,902 Bytes
27db1bc 61381f8 27db1bc ada1ba4 1965e34 27db1bc 0fc56b2 59e0fbf 27db1bc 5a89790 27db1bc 1965e34 b2866bb 1965e34 1196507 27db1bc c72d354 8d92328 27db1bc 8d92328 8ece74f ad5b28d 0fc56b2 8d92328 87d36b1 27db1bc 87d36b1 27db1bc 87d36b1 27db1bc 99d281a 52ec167 8d92328 4580319 8d92328 27db1bc 03adde9 27db1bc 03adde9 27db1bc 03adde9 27db1bc 03adde9 8d3d560 c9b36dd 5a1ce10 27db1bc 001e747 682351e 001e747 4aac08d 27db1bc 76a15d6 27db1bc 76a15d6 27db1bc c72d354 27db1bc 03bb46a 27db1bc 87d36b1 8d92328 5a89790 6c08b19 59e0fbf 6c08b19 8a3224a 11cc1d4 6c08b19 372cb13 f788f71 87d36b1 27db1bc 87d36b1 27db1bc 87d36b1 d059d28 27db1bc 03bb46a 27db1bc 03bb46a 27db1bc 949c802 27db1bc 62e3463 27db1bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# main.py
import io
import os
from ctypes import c_int, pointer, string_at
from datetime import datetime
from typing import List
import cv2
import numpy as np
from fastapi import FastAPI, HTTPException, Request, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from paddleocr import PaddleOCR
from PIL import Image, ImageEnhance
import dds
from app import (
DEFAULT_THRESHOLDS,
arrange_data,
format_dds_data,
get_player_regions,
validate_deal,
)
from identify_cards import (
SUIT_TEMPLATE_PATH,
determine_and_correct_orientation,
find_rank_candidates,
get_not_white_mask,
get_suit_from_image_rules,
load_suit_templates,
save_img_with_rect,
)
from utils import convert2pbn, convert2pbn_txt, is_text_valid
# from app import arrange_data, run_dds_analysis # Gradioのapp.pyからロジックを移植
# FastAPIインスタンスを作成
app = FastAPI()
origins = [
"http://localhost",
"http://localhost:5173", # Default URL for Vite React dev server
"https://board-recognizer-30ib6veo9-wai572s-projects.vercel.app", # Your deployed frontend
"https://board-recognizer.vercel.app",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins, # Specifies the allowed origins
allow_credentials=True, # Allows cookies to be included in requests
allow_methods=["*"], # Allows all methods (GET, POST, etc.)
allow_headers=["*"], # Allows all headers
)
# AIモデルとテンプレートを起動時に読み込む
# trocr_pipeline = None # load_model()のロジックをここに
reader = None
suit_templates = None
@app.on_event("startup")
def load_ocr_model():
"""
アプリケーション起動時に一度だけEasyOCRのモデルを読み込み、
グローバル変数readerに格納する。
"""
global reader
# 使用する言語と、モデルの保存先ディレクトリを指定してReaderを初期化
reader = PaddleOCR(
lang="en",
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False,
)
print(f"PaddleOCR model loaded successfully.")
# @app.on_event("startup")
# def load_dependencies():
# global trocr_pipeline, suit_templates
# # TrOCRモデルをロード (Gradioのload_model関数を参考)
# from transformers import pipeline
# try:
# print("Loading TrOCR model...")
# trocr_pipeline = pipeline(
# "image-to-text", model="microsoft/trocr-small-printed"
# )
# print("TrOCR model loaded.")
# except Exception as e:
# print(f"Failed to load TrOCR model: {e}")
# trocr_pipeline = None
# # スートテンプレートをロード
# suit_templates = load_suit_templates("templates/suits/")
@app.post("/analyze/")
async def analyze_image(image_paths: list[UploadFile]):
# print(request)
# print(list(request.keys()))
# image_paths = request["image_paths"]
print(image_paths)
progress = lambda x, desc: print(x, desc)
global reader
# global trocr_pipeline
# # モデルが読み込まれているか確認
if reader is None:
print(
"AIモデルがまだ読み込まれていません。しばらく待ってから再度お試しください。"
)
# 空の更新を返すことで、UIの状態を変えずに処理を終了
return
all_results = []
num_total_files = len(image_paths)
progress(0, desc="テンプレート画像読み込み中...")
suit_templates = load_suit_templates(SUIT_TEMPLATE_PATH)
if not suit_templates:
raise (
f"エラー: {SUIT_TEMPLATE_PATH} フォルダにスートのテンプレート画像が見つかりません。"
)
try:
all_candidates_global = []
processed_files_info = []
# image_objects = {}
for i, image_path in enumerate(image_paths):
progress(
(i + 1) / num_total_files * 0.15,
desc="ステージ1/3: 文字候補を検出中...",
)
filename = os.path.basename(image_path.filename)
progress(
(i + 1) / num_total_files * 0.3,
f"分析中 ({i+1}/{num_total_files}): {filename}",
)
try:
# ファイルをバイナリモードで安全に読み込む
# file_bytes = np.asarray(bytearray(image_path))
print(image_path.file)
# file_bytes = np.asarray(bytearray(image_path.file))
# with open(image_path.filename, "rb") as f:
# # バイトデータをNumPy配列に変換
# file_bytes = np.asarray(
# bytearray(f.read()), dtype=np.uint8
# )
# NumPy配列(メモリ上のデータ)から画像をデコード
file_bytes = await image_path.read()
# print("file", file_bytes)
file_array = np.asarray(bytearray(file_bytes), dtype=np.uint8)
image = cv2.imdecode(file_array, cv2.IMREAD_COLOR)
# image = image_path.file
if image is None:
raise (
"OpenCVが画像をデコードできませんでした。ファイルが破損しているか、非対応の形式の可能性があります。"
)
# image_objects[filename] = image
except Exception as e:
# ファイル読み込み自体のエラーをキャッチ
print(e)
all_results.append(
{"filename": filename, "error": f"画像読み込みエラー: {e}"}
)
# image_objects[filename] = None
continue
# box = find_center_box(image)
print("detect board")
rotated_image, box, scale = determine_and_correct_orientation(
image, lambda msg: print(msg)
)
if box is None:
all_results.append(
{"filename": filename, "error": "中央ボードの検出に失敗"}
)
continue
print(box)
save_img_with_rect("debug_rotated.jpg", rotated_image, [box])
MARGIN = 200
player_regions = get_player_regions(rotated_image, box, MARGIN)
for player, region in player_regions.items():
candidates = find_rank_candidates(
region, suit_templates, player, scale
)
for cand in candidates:
cand["filename"] = filename
cand["player"] = player
all_candidates_global.append(cand)
processed_files_info.append({"filename": filename, "error": None})
progress(
0.4, desc="ステージ2/3: 文字認識を実行中... (時間がかかります)"
)
if not all_candidates_global:
progress(1, desc="認識する文字候補がありませんでした。")
print("認識する文字候補がありませんでした。")
return JSONResponse(
content=all_results
) # エラーがあった画像の結果だけを返す
try:
ocr_results = []
for candidate in all_candidates_global:
# img = Image.fromarray(
# cv2.cvtColor(candidate["img"], cv2.COLOR_BGR2RGB)
# )
img = candidate["img"]
pil_img = Image.fromarray(img)
enhancer = ImageEnhance.Contrast(pil_img)
im_con = enhancer.enhance(2.0)
np_img = np.asarray(im_con)
# text_mask = get_not_white_mask(img)
# masked_img = cv2.bitwise_and(img, img, mask=text_mask)
# result = reader.readtext(candidate["img"])
result = reader.predict(np_img)
print(result)
if len(result) > 0:
ocr_results.append(result)
# candidates_pil_images = [
# Image.fromarray(cv2.cvtColor(c["img"], cv2.COLOR_BGR2RGB))
# for c in all_candidates_global
# ]
# ocr_results = trocr_pipeline(candidates_pil_images)
except Exception as e:
print(f"OCR処理中にエラーが発生しました: {e}")
# --- ステージ3: 結果の仕分けと最終的なカードの特定 ---
progress(0.9, desc="ステージ3/3: 認識結果を仕分け中...")
# print([result[0]["generated_text"] for result in ocr_results])
raw_data = []
# blacks = []
# reds = []
for i, result in enumerate(ocr_results):
# text = result[0]["generated_text"].upper().strip()
text = result[0]["rec_texts"]
if len(text) > 0:
text = text[0]
else:
text = ""
print(text, is_text_valid(text))
text = is_text_valid(text)
if text is not None:
candidate_info = all_candidates_global[i]
print(
f"--- 診断中: ランク '{text}' of {candidate_info['player']} at {candidate_info['pos']} with thick:{candidate_info['thickness']} ---"
)
color_name, avg_lab = get_suit_from_image_rules(
candidate_info["no_pad"], DEFAULT_THRESHOLDS
)
print(color_name)
if color_name == "mark":
continue
candidate_info["avg_lab"] = avg_lab
candidate_info["color"] = color_name
candidate_info["name"] = text
raw_data.append(candidate_info)
# print("\r\n".join(blacks))
# print("\r\n".join(reds))
all_results = arrange_data(raw_data)
# pbn_content = convert2pbn(all_results)
# pbn_filename = f"analysis_{datetime.now().strftime('%Y%m%d')}.pbn"
# if processed_files_info:
# last_result = {"filename": processed_files_info[0]["filename"], 1ands": all_results[0][1ands"]}
# if all_results:
# # ダウンロード用にPBNコンテンツを値として設定し、表示状態にする
# export_update = gr.update(interactive=True)
# else:
# export_update = gr.update(interactive=False)
# final_result = all_results[0]["hands"]
# filenames = [os.path.basename(p) for p in image_paths]
# dropdown_update = gr.update(
# choices=filenames, value=filenames[0], interactive=True, open=True
# )
dataframes = run_dds_analysis(all_results)
for result in all_results:
if result["filename"] in dataframes.keys():
result["dds"] = dataframes[result["filename"]]
return JSONResponse(content=all_results)
except Exception as e:
raise (f"致命的なエラー: {e}")
def run_dds_analysis(all_results_state):
"""ダブルダミー分析を実行する"""
valid_deals = []
for result in all_results_state:
if "hands" in result:
print(result["hands"])
is_valid, _ = validate_deal(result["hands"])
if is_valid:
valid_deals.append(result)
if len(valid_deals) == 0:
raise ("分析不可", "分析対象となる正常なディールがありません。")
# self.status_var.set(f"{len(valid_deals)}件のディールを分析中...")
try:
deals = dds.ddTableDealsPBN()
deals.noOfTables = len(valid_deals)
for i, result in enumerate(valid_deals):
pbn_deal_string = convert2pbn_txt(result["hands"], "N")
print(pbn_deal_string)
# table_deal_pbn = dds.ddTableDealPBN()
# table_deal_pbn.cards = pbn_deal_string.encode("utf-8")
deals.deals[i].cards = pbn_deal_string.encode("utf-8")
dds.SetMaxThreads(0)
table_res = dds.ddTablesRes()
per_res = dds.allParResults()
# table_res_pointer = pointer(table_res)
res = dds.CalcAllTablesPBN(
pointer(deals),
0,
(c_int * 5)(0, 0, 0, 0, 0),
pointer(table_res),
pointer(per_res),
)
print("dds")
if res != dds.RETURN_NO_FAULT:
err_char_p = dds.ErrorMessage(res)
err_string = (
string_at(err_char_p).decode("utf-8")
if err_char_p
else "Unknown error"
)
raise RuntimeError(
f"DDS Solver failed with code: {res} ({err_string})"
)
print("dds")
filenames = [d["filename"] for d in valid_deals]
dataframes = {}
for i, filename in enumerate(filenames):
headers, rows = format_dds_data(table_res.results[i].resTable)
print(rows)
dataframes[filename] = rows
return dataframes
# 3. 結果を新しいウィンドウで表示
except Exception as e:
raise (f"DDS分析エラー: 分析中にエラーが発生しました:\n{e}")
# self.status_var.set("DDS分析中にエラーが発生しました。")
|