audio-summarization / src /streamlit_app.py
vian123's picture
Update src/streamlit_app.py
f38a455 verified
import streamlit as st
import pandas as pd
import tempfile
import time
import sys
import re
import os
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, pipeline, AutoTokenizer
from torchaudio.transforms import Resample
import soundfile as sf
import torchaudio
import yt_dlp
import torch
class Interface:
@staticmethod
def get_header(title: str, description: str) -> None:
st.set_page_config(page_title="Audio Summarization", page_icon="πŸ—£οΈ")
st.markdown("""
<style>
header, #MainMenu, footer {visibility: hidden;}
</style>
""", unsafe_allow_html=True)
st.title(title)
st.info(description)
@staticmethod
def get_audio_file():
uploaded_file = st.file_uploader("Choose an audio file", type=["wav"], help="Upload a .wav audio file.")
if uploaded_file is not None:
if uploaded_file.name.endswith(".wav"):
st.audio(uploaded_file, format="audio/wav")
return uploaded_file # Return UploadedFile, not str
else:
st.warning("Please upload a valid .wav audio file.")
return None
@staticmethod
def get_approach() -> str:
return st.selectbox("Select summarization approach", ["Youtube Link", "Input Audio File"], index=1)
@staticmethod
def get_link_youtube() -> str:
youtube_link = st.text_input("Enter YouTube link", placeholder="https://www.youtube.com/watch?v=example")
if youtube_link.strip():
st.video(youtube_link)
return youtube_link
@staticmethod
def get_sidebar_input(state: dict) -> tuple:
with st.sidebar:
st.markdown("### Select Approach")
approach = Interface.get_approach()
state['session'] = 1
audio_path = None
if approach == "Input Audio File":
audio = Interface.get_audio_file()
if audio:
audio_path = Utils.temporary_file(audio)
elif approach == "Youtube Link":
youtube_link = Interface.get_link_youtube()
if youtube_link:
audio_path = Utils.download_youtube_audio_to_tempfile(youtube_link)
if audio_path:
with open(audio_path, "rb") as af:
st.audio(af.read(), format="audio/wav")
generate = audio_path and st.button("πŸš€ Generate Result !!")
return audio_path, generate
class Utils:
@staticmethod
def temporary_file(uploaded_file: str) -> str:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(uploaded_file.read())
return tmp.name
@staticmethod
def clean_transcript(text: str) -> str:
text = re.sub(r'(?<=[a-zA-Z])\.(?=[a-zA-Z])', ' ', text)
text = re.sub(r'[^\w. ]+', ' ', text)
return re.sub(r'\s+', ' ', text).strip()
@staticmethod
def preprocess_audio(input_path: str) -> str:
waveform, sample_rate = torchaudio.load(input_path)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
if sample_rate != 16000:
waveform = Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
torchaudio.save(tmp.name, waveform, 16000)
return tmp.name
@staticmethod
def _format_filename(name: str, chunk=0) -> str:
clean = re.sub(r'[^a-zA-Z0-9]', '_', name.strip().lower())
return f"{clean}_chunk_{chunk}"
@staticmethod
def download_youtube_audio_to_tempfile(url: str) -> str:
try:
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info = ydl.extract_info(url, download=False)
filename = Utils._format_filename(info.get('title', 'audio'))
out_dir = tempfile.mkdtemp()
output_path = os.path.join(out_dir, filename)
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'outtmpl': output_path,
'quiet': True
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
final_path = output_path + ".wav"
for _ in range(5):
if os.path.exists(final_path):
return final_path
time.sleep(1)
raise FileNotFoundError(f"File not found: {final_path}")
except Exception as e:
st.toast(f"Download failed: {e}")
return None
class Generation:
def __init__(self, summarization_model="vian123/brio-finance-finetuned-v2", speech_to_text_model="nyrahealth/CrisperWhisper"):
self.device = "cpu"
self.dtype = torch.float32
self.processor = AutoProcessor.from_pretrained(speech_to_text_model)
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(speech_to_text_model, torch_dtype=self.dtype).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(summarization_model)
self.summarizer = pipeline("summarization", model=summarization_model, tokenizer=summarization_model)
def transcribe(self, audio_path: str) -> str:
processed_path = Utils.preprocess_audio(audio_path)
waveform, rate = torchaudio.load(processed_path)
if waveform.shape[1] / rate < 1:
return ""
asr_pipe = pipeline(
"automatic-speech-recognition",
model=self.model,
tokenizer=self.processor.tokenizer,
feature_extractor=self.processor.feature_extractor,
chunk_length_s=5,
torch_dtype=self.dtype,
device=self.device
)
try:
output = asr_pipe(processed_path)
return output.get("text", "")
except Exception as e:
print("ASR error:", e)
return ""
def summarize(self, text: str) -> str:
if len(text.strip()) < 10:
return ""
cleaned = self.tokenizer(text, truncation=True, max_length=512, return_tensors="pt")
decoded = self.tokenizer.decode(cleaned["input_ids"][0], skip_special_tokens=True)
word_count = len(decoded.split())
min_len, max_len = max(30, int(word_count * 0.5)), max(50, int(word_count * 0.75))
try:
summary = self.summarizer(decoded, max_length=max_len, min_length=min_len, do_sample=False)
return summary[0]['summary_text']
except Exception as e:
return f"Summarization error: {e}"
def main():
Interface.get_header(
title="Financial YouTube Video Audio Summarization",
description="🎧 Upload a financial audio or YouTube video to transcribe and summarize using CrisperWhisper + fine-tuned BRIO."
)
state = dict(session=0)
audio_path, generate = Interface.get_sidebar_input(state)
if generate:
with st.spinner("Processing..."):
gen = Generation()
transcript = gen.transcribe(audio_path)
st.expander("Transcription Text", expanded=True).text_area("Transcription", transcript, height=300)
with st.spinner("Summarizing..."):
summary = gen.summarize(transcript)
st.expander("Summarization Text", expanded=True).text_area("Summarization", summary, height=300)
if __name__ == "__main__":
main()