Spaces:
Running
Running
File size: 7,705 Bytes
2debac3 a2dca05 2debac3 a2dca05 2debac3 f38a455 a2dca05 f38a455 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 a2dca05 2debac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import streamlit as st
import pandas as pd
import tempfile
import time
import sys
import re
import os
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, pipeline, AutoTokenizer
from torchaudio.transforms import Resample
import soundfile as sf
import torchaudio
import yt_dlp
import torch
class Interface:
@staticmethod
def get_header(title: str, description: str) -> None:
st.set_page_config(page_title="Audio Summarization", page_icon="π£οΈ")
st.markdown("""
<style>
header, #MainMenu, footer {visibility: hidden;}
</style>
""", unsafe_allow_html=True)
st.title(title)
st.info(description)
@staticmethod
def get_audio_file():
uploaded_file = st.file_uploader("Choose an audio file", type=["wav"], help="Upload a .wav audio file.")
if uploaded_file is not None:
if uploaded_file.name.endswith(".wav"):
st.audio(uploaded_file, format="audio/wav")
return uploaded_file # Return UploadedFile, not str
else:
st.warning("Please upload a valid .wav audio file.")
return None
@staticmethod
def get_approach() -> str:
return st.selectbox("Select summarization approach", ["Youtube Link", "Input Audio File"], index=1)
@staticmethod
def get_link_youtube() -> str:
youtube_link = st.text_input("Enter YouTube link", placeholder="https://www.youtube.com/watch?v=example")
if youtube_link.strip():
st.video(youtube_link)
return youtube_link
@staticmethod
def get_sidebar_input(state: dict) -> tuple:
with st.sidebar:
st.markdown("### Select Approach")
approach = Interface.get_approach()
state['session'] = 1
audio_path = None
if approach == "Input Audio File":
audio = Interface.get_audio_file()
if audio:
audio_path = Utils.temporary_file(audio)
elif approach == "Youtube Link":
youtube_link = Interface.get_link_youtube()
if youtube_link:
audio_path = Utils.download_youtube_audio_to_tempfile(youtube_link)
if audio_path:
with open(audio_path, "rb") as af:
st.audio(af.read(), format="audio/wav")
generate = audio_path and st.button("π Generate Result !!")
return audio_path, generate
class Utils:
@staticmethod
def temporary_file(uploaded_file: str) -> str:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(uploaded_file.read())
return tmp.name
@staticmethod
def clean_transcript(text: str) -> str:
text = re.sub(r'(?<=[a-zA-Z])\.(?=[a-zA-Z])', ' ', text)
text = re.sub(r'[^\w. ]+', ' ', text)
return re.sub(r'\s+', ' ', text).strip()
@staticmethod
def preprocess_audio(input_path: str) -> str:
waveform, sample_rate = torchaudio.load(input_path)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
if sample_rate != 16000:
waveform = Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
torchaudio.save(tmp.name, waveform, 16000)
return tmp.name
@staticmethod
def _format_filename(name: str, chunk=0) -> str:
clean = re.sub(r'[^a-zA-Z0-9]', '_', name.strip().lower())
return f"{clean}_chunk_{chunk}"
@staticmethod
def download_youtube_audio_to_tempfile(url: str) -> str:
try:
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info = ydl.extract_info(url, download=False)
filename = Utils._format_filename(info.get('title', 'audio'))
out_dir = tempfile.mkdtemp()
output_path = os.path.join(out_dir, filename)
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'outtmpl': output_path,
'quiet': True
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
final_path = output_path + ".wav"
for _ in range(5):
if os.path.exists(final_path):
return final_path
time.sleep(1)
raise FileNotFoundError(f"File not found: {final_path}")
except Exception as e:
st.toast(f"Download failed: {e}")
return None
class Generation:
def __init__(self, summarization_model="vian123/brio-finance-finetuned-v2", speech_to_text_model="nyrahealth/CrisperWhisper"):
self.device = "cpu"
self.dtype = torch.float32
self.processor = AutoProcessor.from_pretrained(speech_to_text_model)
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(speech_to_text_model, torch_dtype=self.dtype).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(summarization_model)
self.summarizer = pipeline("summarization", model=summarization_model, tokenizer=summarization_model)
def transcribe(self, audio_path: str) -> str:
processed_path = Utils.preprocess_audio(audio_path)
waveform, rate = torchaudio.load(processed_path)
if waveform.shape[1] / rate < 1:
return ""
asr_pipe = pipeline(
"automatic-speech-recognition",
model=self.model,
tokenizer=self.processor.tokenizer,
feature_extractor=self.processor.feature_extractor,
chunk_length_s=5,
torch_dtype=self.dtype,
device=self.device
)
try:
output = asr_pipe(processed_path)
return output.get("text", "")
except Exception as e:
print("ASR error:", e)
return ""
def summarize(self, text: str) -> str:
if len(text.strip()) < 10:
return ""
cleaned = self.tokenizer(text, truncation=True, max_length=512, return_tensors="pt")
decoded = self.tokenizer.decode(cleaned["input_ids"][0], skip_special_tokens=True)
word_count = len(decoded.split())
min_len, max_len = max(30, int(word_count * 0.5)), max(50, int(word_count * 0.75))
try:
summary = self.summarizer(decoded, max_length=max_len, min_length=min_len, do_sample=False)
return summary[0]['summary_text']
except Exception as e:
return f"Summarization error: {e}"
def main():
Interface.get_header(
title="Financial YouTube Video Audio Summarization",
description="π§ Upload a financial audio or YouTube video to transcribe and summarize using CrisperWhisper + fine-tuned BRIO."
)
state = dict(session=0)
audio_path, generate = Interface.get_sidebar_input(state)
if generate:
with st.spinner("Processing..."):
gen = Generation()
transcript = gen.transcribe(audio_path)
st.expander("Transcription Text", expanded=True).text_area("Transcription", transcript, height=300)
with st.spinner("Summarizing..."):
summary = gen.summarize(transcript)
st.expander("Summarization Text", expanded=True).text_area("Summarization", summary, height=300)
if __name__ == "__main__":
main()
|