audio-summarization / src /streamlit_app.py
vian123's picture
Upload streamlit_app.py
2debac3 verified
raw
history blame
12.6 kB
import streamlit as st
import pandas as pd
import tempfile
import time
import sys
import re
import os
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, pipeline, AutoTokenizer
from torchaudio.transforms import Resample
import soundfile as sf
import torchaudio
import yt_dlp
import torch
class Interface:
@staticmethod
def get_header(title: str, description: str) -> None:
"""
Display the header of the application.
"""
st.set_page_config(
page_title="Audio Summarization",
page_icon="πŸ—£οΈ",
)
hide_decoration_bar_style = """<style>header {visibility: hidden;}</style>"""
st.markdown(hide_decoration_bar_style, unsafe_allow_html=True)
hide_streamlit_footer = """
<style>#MainMenu {visibility: hidden;}
footer {visibility: hidden;}</style>
"""
st.markdown(hide_streamlit_footer, unsafe_allow_html=True)
st.title(title)
st.info(description)
st.write("\n")
@staticmethod
def get_audio_file() -> str:
"""
Upload an audio file for transcription and summarization.
"""
uploaded_file = st.file_uploader(
"Choose an audio file",
type=["wav"],
help="Upload an audio file for transcription and summarization.",
)
if uploaded_file is None:
return None
if uploaded_file.name.endswith(".wav"):
st.audio(uploaded_file, format="audio/wav")
else:
st.warning("Please upload a valid .wav audio file.")
return None
return uploaded_file
@staticmethod
def get_approach() -> None:
"""
Select the approach for input audio summarization.
"""
approach = st.selectbox(
"Select the approach for input audio summarization",
options=["Youtube Link", "Input Audio File"],
index=1,
help="Choose the approach you want to use for summarization.",
)
return approach
@staticmethod
def get_link_youtube() -> str:
"""
Input a YouTube link for audio summarization.
"""
youtube_link = st.text_input(
"Enter the YouTube link",
placeholder="https://www.youtube.com/watch?v=example",
help="Paste the YouTube link of the video you want to summarize.",
)
if youtube_link.strip():
st.video(youtube_link)
return youtube_link
@staticmethod
def get_sidebar_input(state: dict) -> str:
"""
Handles sidebar interaction and returns the audio path if available.
"""
with st.sidebar:
st.markdown("### Select Approach")
approach = Interface.get_approach()
state['session'] = 1
audio_path = None
if approach == "Input Audio File" and state['session'] == 1:
audio = Interface.get_audio_file()
if audio is not None:
audio_path = Utils.temporary_file(audio)
state['session'] = 2
elif approach == "Youtube Link" and state['session'] == 1:
youtube_link = Interface.get_link_youtube()
if youtube_link:
audio_path = Utils.download_youtube_audio_to_tempfile(youtube_link)
if audio_path is not None:
with open(audio_path, "rb") as audio_file:
audio_bytes = audio_file.read()
st.audio(audio_bytes, format="audio/wav")
state['session'] = 2
generate = False
if state['session'] == 2 and 'audio_path' in locals() and audio_path:
generate = st.button("πŸš€ Generate Result !!")
return audio_path, generate
class Utils:
@staticmethod
def temporary_file(uploaded_file: str) -> str:
"""
Create a temporary file for the uploaded audio file.
"""
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
return temp_file_path
@staticmethod
def clean_transcript(text: str) -> str:
"""
Clean the transcript text by removing unwanted characters and formatting.
"""
text = text.replace(",", " ")
text = re.sub(r'(?<=[a-zA-Z])\.(?=[a-zA-Z])', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\s*\.\s*', '. ', text)
return text.strip()
@staticmethod
def preprocess_audio(input_path: str) -> str:
"""
Preprocess the audio file by converting it to mono and resampling to 16000 Hz.
"""
waveform, sample_rate = torchaudio.load(input_path)
print(f"πŸ“’ Original waveform shape: {waveform.shape}")
print(f"πŸ“’ Original sample rate: {sample_rate}")
# Convert to mono (average if stereo)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
print("βœ… Converted to mono.")
# Resample to 16000 Hz if needed
target_sample_rate = 16000
if sample_rate != target_sample_rate:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
waveform = resampler(waveform)
print(f"βœ… Resampled to {target_sample_rate} Hz.")
sample_rate = target_sample_rate
# Create a temporary file for the output
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
output_path = tmpfile.name
torchaudio.save(output_path, waveform, sample_rate)
print(f"βœ… Saved preprocessed audio to temporary file: {output_path}")
return output_path
@staticmethod
def _format_filename(input_string, chunk_number=0):
"""
Format the input string to create a valid filename.
Replaces non-alphanumeric characters with underscores, removes extra spaces,
and appends a chunk number if provided.
"""
input_string = input_string.strip()
formatted_string = re.sub(r'[^a-zA-Z0-9\s]', '_', input_string)
formatted_string = re.sub(r'[\s_]+', '_', formatted_string)
formatted_string = formatted_string.lower()
formatted_string += f'_chunk_{chunk_number}'
return formatted_string
@staticmethod
def download_youtube_audio_to_tempfile(youtube_url):
"""
Download audio from a YouTube video and save it as a WAV file in a temporary directory.
Returns the path to the saved WAV file.
"""
try:
# Get video info to use its title in the filename
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(youtube_url, download=False)
original_title = info_dict.get('title', 'audio')
formatted_title = Utils._format_filename(original_title)
# Create a temporary directory
temp_dir = tempfile.mkdtemp()
output_path_no_ext = os.path.join(temp_dir, formatted_title)
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'outtmpl': output_path_no_ext,
'quiet': True
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
# Wait for yt_dlp to actually create the WAV file
expected_output = output_path_no_ext + ".wav"
timeout = 5
while not os.path.exists(expected_output) and timeout > 0:
time.sleep(1)
timeout -= 1
if not os.path.exists(expected_output):
raise FileNotFoundError(f"Audio file was not saved as expected: {expected_output}")
st.toast(f"Audio downloaded and saved to: {expected_output}")
return expected_output
except Exception as e:
st.toast(f"Failed to download {youtube_url}: {e}")
return None
class Generation:
def __init__(
self,
summarization_model: str = "vian123/brio-finance-finetuned-v2",
speech_to_text_model: str = "nyrahealth/CrisperWhisper",
):
self.summarization_model = summarization_model
self.speech_to_text_model = speech_to_text_model
self.device = "cpu"
self.dtype = torch.float32
self.processor_speech = AutoProcessor.from_pretrained(speech_to_text_model)
self.model_speech = AutoModelForSpeechSeq2Seq.from_pretrained(
speech_to_text_model,
torch_dtype=self.dtype,
low_cpu_mem_usage=True,
use_safetensors=True,
attn_implementation="eager",
).to(self.device)
self.summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)
def transcribe_audio_pytorch(self, file_path: str) -> str:
"""
transcribe audio using the PyTorch-based speech-to-text model.
"""
converted_path = Utils.preprocess_audio(file_path)
waveform, sample_rate = torchaudio.load(converted_path)
duration = waveform.shape[1] / sample_rate
if duration < 1.0:
print("❌ Audio too short to process.")
return ""
pipe = pipeline(
"automatic-speech-recognition",
model=self.model_speech,
tokenizer=self.processor_speech.tokenizer,
feature_extractor=self.processor_speech.feature_extractor,
chunk_length_s=5,
batch_size=1,
return_timestamps=None,
torch_dtype=self.dtype,
device=self.device,
model_kwargs={"language": "en"},
)
try:
hf_pipeline_output = pipe(converted_path)
print("βœ… HF pipeline output:", hf_pipeline_output)
return hf_pipeline_output.get("text", "")
except Exception as e:
print("❌ Pipeline failed with error:", e)
return ""
def summarize_string(self, text: str) -> str:
"""
Summarize the input text using the summarization model.
"""
summarizer = pipeline("summarization", model=self.summarization_model, tokenizer=self.summarization_model)
try:
if len(text.strip()) < 10:
return ""
inputs = self.summarization_tokenizer(text, truncation=True, max_length=512, return_tensors="pt")
truncated_text = self.summarization_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
word_count = len(truncated_text.split())
min_len = max(int(word_count * 0.5), 30)
max_len = max(min_len + 20, int(word_count * 0.75))
summary = summarizer(
truncated_text,
max_length=max_len,
min_length=min_len,
do_sample=False
)
return summary[0]['summary_text']
except Exception as e:
return f"Error: {e}"
def main():
Interface.get_header(
title="Financial YouTube Video Audio Summarization",
description="🎧 Upload an financial audio file or financial YouTube video link to πŸ“ transcribe and πŸ“„ summarize its content using CrisperWhisper and Financial Fine-tuned BRIO πŸ€–."
)
generate = False
state = dict(session=0)
audio_path, generate = Interface.get_sidebar_input(state)
if generate and state['session'] == 2:
with st.spinner("Generating ..."):
generation = Generation()
transcribe = generation.transcribe_audio_pytorch(audio_path)
with st.expander("Transcription Text", expanded=True):
st.text_area("Transcription:", transcribe, height=300)
summarization = generation.summarize_string(transcribe)
with st.expander("Summarization Text", expanded=True):
st.text_area("Summarization:", summarization, height=300)
if __name__ == "__main__":
main()