File size: 12,555 Bytes
2debac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import streamlit as st
import pandas as pd
import tempfile
import time
import sys
import re
import os

from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, pipeline, AutoTokenizer
from torchaudio.transforms import Resample
import soundfile as sf
import torchaudio
import yt_dlp
import torch

class Interface:
    @staticmethod
    def get_header(title: str, description: str) -> None:
        """
        Display the header of the application.
        """
        st.set_page_config(
            page_title="Audio Summarization",
            page_icon="πŸ—£οΈ",
        )

        hide_decoration_bar_style = """<style>header {visibility: hidden;}</style>"""
        st.markdown(hide_decoration_bar_style, unsafe_allow_html=True)
        hide_streamlit_footer = """
        <style>#MainMenu {visibility: hidden;}
        footer {visibility: hidden;}</style>
        """
        st.markdown(hide_streamlit_footer, unsafe_allow_html=True)
        
        st.title(title)
            
        st.info(description)
        st.write("\n")

    @staticmethod
    def get_audio_file() -> str:
        """
        Upload an audio file for transcription and summarization.
        """
        uploaded_file = st.file_uploader(
            "Choose an audio file",
            type=["wav"],
            help="Upload an audio file for transcription and summarization.",
        )
        if uploaded_file is None:
            return None
        
        if uploaded_file.name.endswith(".wav"):
            st.audio(uploaded_file, format="audio/wav")
        else:
            st.warning("Please upload a valid .wav audio file.")
            return None
        
        return uploaded_file
    
    @staticmethod
    def get_approach() -> None:
        """
        Select the approach for input audio summarization.
        """
        approach = st.selectbox(
            "Select the approach for input audio summarization",
            options=["Youtube Link", "Input Audio File"],
            index=1,
            help="Choose the approach you want to use for summarization.",
        )

        return approach
    
    @staticmethod
    def get_link_youtube() -> str:
        """
        Input a YouTube link for audio summarization.
        """
        youtube_link = st.text_input(
            "Enter the YouTube link",
            placeholder="https://www.youtube.com/watch?v=example",
            help="Paste the YouTube link of the video you want to summarize.",
        )
        if youtube_link.strip():
            st.video(youtube_link)

        return youtube_link
    
    @staticmethod
    def get_sidebar_input(state: dict) -> str:
        """
        Handles sidebar interaction and returns the audio path if available.
        """
        with st.sidebar:
            st.markdown("### Select Approach")
            approach = Interface.get_approach()
            state['session'] = 1

            audio_path = None

            if approach == "Input Audio File" and state['session'] == 1:
                audio = Interface.get_audio_file()
                if audio is not None:
                    audio_path = Utils.temporary_file(audio)
                    state['session'] = 2

            elif approach == "Youtube Link" and state['session'] == 1:
                youtube_link = Interface.get_link_youtube()
                if youtube_link:
                    audio_path = Utils.download_youtube_audio_to_tempfile(youtube_link)
                    if audio_path is not None:
                        with open(audio_path, "rb") as audio_file:
                            audio_bytes = audio_file.read()
                            st.audio(audio_bytes, format="audio/wav")
                        state['session'] = 2
            
            generate = False
            if state['session'] == 2 and 'audio_path' in locals() and audio_path:
                generate = st.button("πŸš€ Generate Result !!")

            return audio_path, generate

class Utils:
    @staticmethod
    def temporary_file(uploaded_file: str) -> str:
        """
        Create a temporary file for the uploaded audio file.
        """
        if uploaded_file is not None:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
                temp_file.write(uploaded_file.read())
                temp_file_path = temp_file.name
            return temp_file_path
        
    @staticmethod   
    def clean_transcript(text: str) -> str:
        """
        Clean the transcript text by removing unwanted characters and formatting.
        """
        text = text.replace(",", " ")
        text = re.sub(r'(?<=[a-zA-Z])\.(?=[a-zA-Z])', ' ', text)
        text = re.sub(r'\s+', ' ', text)
        text = re.sub(r'\s*\.\s*', '. ', text)
        return text.strip()
    
    @staticmethod
    def preprocess_audio(input_path: str) -> str:
        """
        Preprocess the audio file by converting it to mono and resampling to 16000 Hz.
        """
        waveform, sample_rate = torchaudio.load(input_path)
        print(f"πŸ“’ Original waveform shape: {waveform.shape}")
        print(f"πŸ“’ Original sample rate: {sample_rate}")

        # Convert to mono (average if stereo)
        if waveform.shape[0] > 1:
            waveform = waveform.mean(dim=0, keepdim=True)
            print("βœ… Converted to mono.")

        # Resample to 16000 Hz if needed
        target_sample_rate = 16000
        if sample_rate != target_sample_rate:
            resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
            waveform = resampler(waveform)
            print(f"βœ… Resampled to {target_sample_rate} Hz.")
            sample_rate = target_sample_rate

        # Create a temporary file for the output
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
            output_path = tmpfile.name

        torchaudio.save(output_path, waveform, sample_rate)
        print(f"βœ… Saved preprocessed audio to temporary file: {output_path}")

        return output_path
    
    @staticmethod
    def _format_filename(input_string, chunk_number=0):
        """
        Format the input string to create a valid filename.
        Replaces non-alphanumeric characters with underscores, removes extra spaces,
        and appends a chunk number if provided.
        """
        input_string = input_string.strip()
        formatted_string = re.sub(r'[^a-zA-Z0-9\s]', '_', input_string)
        formatted_string = re.sub(r'[\s_]+', '_', formatted_string)
        formatted_string = formatted_string.lower()
        formatted_string += f'_chunk_{chunk_number}'
        return formatted_string

    @staticmethod
    def download_youtube_audio_to_tempfile(youtube_url):
        """
        Download audio from a YouTube video and save it as a WAV file in a temporary directory.
        Returns the path to the saved WAV file.
        """
        try:
            # Get video info to use its title in the filename
            with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
                info_dict = ydl.extract_info(youtube_url, download=False)
                original_title = info_dict.get('title', 'audio')
                formatted_title = Utils._format_filename(original_title)

            # Create a temporary directory
            temp_dir = tempfile.mkdtemp()
            output_path_no_ext = os.path.join(temp_dir, formatted_title)

            ydl_opts = {
                'format': 'bestaudio/best',
                'postprocessors': [{
                    'key': 'FFmpegExtractAudio',
                    'preferredcodec': 'wav',
                    'preferredquality': '192',
                }],
                'outtmpl': output_path_no_ext,
                'quiet': True
            }

            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                ydl.download([youtube_url])

            # Wait for yt_dlp to actually create the WAV file
            expected_output = output_path_no_ext + ".wav"
            timeout = 5
            while not os.path.exists(expected_output) and timeout > 0:
                time.sleep(1)
                timeout -= 1

            if not os.path.exists(expected_output):
                raise FileNotFoundError(f"Audio file was not saved as expected: {expected_output}")

            st.toast(f"Audio downloaded and saved to: {expected_output}")
            return expected_output

        except Exception as e:
            st.toast(f"Failed to download {youtube_url}: {e}")
            return None

class Generation:
    def __init__(
            self, 
            summarization_model: str = "vian123/brio-finance-finetuned-v2",
            speech_to_text_model: str = "nyrahealth/CrisperWhisper", 
    ):
        self.summarization_model = summarization_model
        self.speech_to_text_model = speech_to_text_model
        self.device = "cpu"
        self.dtype = torch.float32
        self.processor_speech = AutoProcessor.from_pretrained(speech_to_text_model)
        self.model_speech = AutoModelForSpeechSeq2Seq.from_pretrained(
            speech_to_text_model,
            torch_dtype=self.dtype,
            low_cpu_mem_usage=True,
            use_safetensors=True,
            attn_implementation="eager",
        ).to(self.device)
        self.summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)

    def transcribe_audio_pytorch(self, file_path: str) -> str:
        """
        transcribe audio using the PyTorch-based speech-to-text model.
        """
        converted_path = Utils.preprocess_audio(file_path)
        waveform, sample_rate = torchaudio.load(converted_path)
        duration = waveform.shape[1] / sample_rate
        if duration < 1.0:
            print("❌ Audio too short to process.")
            return ""

        pipe = pipeline(
            "automatic-speech-recognition",
            model=self.model_speech,
            tokenizer=self.processor_speech.tokenizer,
            feature_extractor=self.processor_speech.feature_extractor,
            chunk_length_s=5,
            batch_size=1,
            return_timestamps=None,
            torch_dtype=self.dtype,
            device=self.device,
            model_kwargs={"language": "en"},
        )

        try:
            hf_pipeline_output = pipe(converted_path)
            print("βœ… HF pipeline output:", hf_pipeline_output)
            return hf_pipeline_output.get("text", "")
        except Exception as e:
            print("❌ Pipeline failed with error:", e)
            return ""

    def summarize_string(self, text: str) -> str:
        """
        Summarize the input text using the summarization model.
        """
        summarizer = pipeline("summarization", model=self.summarization_model, tokenizer=self.summarization_model)
        try:
            if len(text.strip()) < 10:
                return ""

            inputs = self.summarization_tokenizer(text, truncation=True, max_length=512, return_tensors="pt")
            truncated_text = self.summarization_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)

            word_count = len(truncated_text.split())
            min_len = max(int(word_count * 0.5), 30)
            max_len = max(min_len + 20, int(word_count * 0.75))

            summary = summarizer(
                truncated_text,
                max_length=max_len,
                min_length=min_len,
                do_sample=False
            )
            return summary[0]['summary_text']
        except Exception as e:
            return f"Error: {e}"
        
def main():
  Interface.get_header(
    title="Financial YouTube Video Audio Summarization",
    description="🎧 Upload an financial audio file or financial YouTube video link to πŸ“ transcribe and πŸ“„ summarize its content using CrisperWhisper and Financial Fine-tuned BRIO πŸ€–."
  )

  generate = False  
  state = dict(session=0)
  
  audio_path, generate = Interface.get_sidebar_input(state)

  if generate and state['session'] == 2:
      with st.spinner("Generating ..."):
          generation = Generation()
          transcribe = generation.transcribe_audio_pytorch(audio_path)

      with st.expander("Transcription Text", expanded=True):
          st.text_area("Transcription:", transcribe, height=300)

      summarization = generation.summarize_string(transcribe)
      with st.expander("Summarization Text", expanded=True):
          st.text_area("Summarization:", summarization, height=300)

if __name__ == "__main__":
    main()