Qwen-Qwen3-1.7B / app.py
tuanhqv123's picture
Update app.py
d5238da verified
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import time
import asyncio
import json
import re
from typing import Dict, Any, Optional
import logging
import traceback
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(title="Qwen3 API", description="OpenAI-compatible API for Qwen3 models", version="1.0.0")
# Global variables
models = {}
tokenizers = {}
MODEL_CONFIGS = {
"qwen3-1.7b": "Qwen/Qwen3-1.7B",
"qwen3-4b": "Qwen/Qwen3-4B"
}
def download_model_safely(model_name: str, max_retries: int = 3):
"""Download model với retry logic"""
for attempt in range(max_retries):
try:
logger.info(f"Downloading {model_name} (attempt {attempt + 1}/{max_retries})...")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True
)
logger.info(f"Successfully loaded {model_name}")
return tokenizer, model
except Exception as e:
logger.error(f"Download failed (attempt {attempt + 1}): {str(e)}")
if attempt == max_retries - 1:
raise e
time.sleep(30)
def load_model_on_demand(model_key: str):
"""Load model khi cần thiết"""
if model_key not in models:
if model_key not in MODEL_CONFIGS:
raise ValueError(f"Unknown model key: {model_key}")
model_name = MODEL_CONFIGS[model_key]
logger.info(f"Loading {model_name} on demand...")
# Clear memory
if len(models) >= 1:
for key in list(models.keys()):
logger.info(f"Unloading {key} to free memory...")
del models[key]
del tokenizers[key]
if torch.cuda.is_available():
torch.cuda.empty_cache()
import gc
gc.collect()
tokenizer, model = download_model_safely(model_name)
tokenizers[model_key] = tokenizer
models[model_key] = model
logger.info(f"{model_name} loaded successfully!")
def extract_json_from_response(text: str) -> str:
"""Extract JSON from response text"""
# Remove thinking tags completely
text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
text = text.strip()
# Try to find JSON object
json_match = re.search(r'\{[^{}]*\}', text)
if json_match:
return json_match.group(0)
# If no JSON found, return the cleaned text
return text
def format_structured_prompt(messages: list, json_schema: dict) -> str:
"""Format messages with JSON schema instructions"""
# Extract schema properties for clear instructions
schema_info = json_schema.get('schema', {})
properties = schema_info.get('properties', {})
required = schema_info.get('required', [])
# Create clear JSON format instructions
json_instructions = f"""
You must respond with a valid JSON object only. No explanations, no markdown, no additional text.
Required JSON format:
{json.dumps(schema_info, indent=2)}
Example response format: {{"type": "examschedule"}}
"""
# Build the conversation
formatted_messages = []
for msg in messages:
if msg["role"] == "system":
# Append JSON instructions to system message
content = msg["content"] + "\n" + json_instructions
formatted_messages.append({"role": "system", "content": content})
else:
formatted_messages.append(msg)
return formatted_messages
@app.on_event("startup")
async def load_models():
"""Load default model"""
try:
logger.info("Loading default model: Qwen3-1.7B...")
tokenizer, model = download_model_safely("Qwen/Qwen3-1.7B")
tokenizers["qwen3-1.7b"] = tokenizer
models["qwen3-1.7b"] = model
logger.info("Default model loaded successfully!")
except Exception as e:
logger.error(f"Failed to load default model: {str(e)}")
logger.info("Server will continue running, models will be loaded on demand")
@app.get("/")
def health_check():
"""Health check endpoint"""
return {
"status": "API is running",
"available_models": list(MODEL_CONFIGS.keys()),
"loaded_models": list(models.keys()),
"version": "1.0.0",
"message": "Qwen3 API Service - OpenAI Compatible with Structured Output"
}
@app.get("/models")
def list_models():
"""List available models"""
return {
"available_models": MODEL_CONFIGS,
"loaded_models": list(models.keys()),
"total_available": len(MODEL_CONFIGS),
"total_loaded": len(models)
}
@app.post("/v1/chat/completions")
async def chat_completions(request: Dict[str, Any]):
"""OpenAI-compatible chat completions endpoint với Structured Output support"""
try:
logger.info("=== CHAT COMPLETIONS REQUEST START ===")
logger.info(f"Request payload: {json.dumps(request, ensure_ascii=False, indent=2)}")
# Parse request parameters
model_name = request.get("model", "qwen3-1.7b")
messages = request.get("messages", [])
temperature = request.get("temperature", 0.7)
max_tokens = request.get("max_tokens", 200)
response_format = request.get("response_format", None)
logger.info(f"Model: {model_name}, Temperature: {temperature}, Max tokens: {max_tokens}")
logger.info(f"Response format: {response_format}")
# Validate input
if not messages:
logger.error("Messages is empty")
raise HTTPException(status_code=400, detail="Messages cannot be empty")
# Determine model key
if "4b" in model_name.lower() or "4" in model_name.lower():
model_key = "qwen3-4b"
else:
model_key = "qwen3-1.7b"
logger.info(f"Using model key: {model_key}")
# Load model if needed
if model_key not in models:
logger.info(f"Model {model_key} not loaded, loading on demand...")
load_model_on_demand(model_key)
# Get model and tokenizer
tokenizer = tokenizers[model_key]
model = models[model_key]
logger.info(f"Got tokenizer and model for {model_key}")
# Handle structured output
if response_format and response_format.get("type") == "json_schema":
json_schema = response_format.get("json_schema", {})
logger.info("Structured output requested, formatting messages with JSON schema")
messages = format_structured_prompt(messages, json_schema)
# Format messages - FORCE DISABLE thinking mode
logger.info("Formatting messages with apply_chat_template...")
try:
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # CRITICAL: Force disable thinking
)
# AGGRESSIVE thinking mode removal
if "<think>" in text or "think>" in text:
logger.warning("Found thinking tags in formatted text, removing...")
text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
text = re.sub(r'<think>\s*</think>', '', text)
text = text.replace("<think>", "").replace("</think>", "")
logger.info(f"Formatted text (first 300 chars): {text[:300]}...")
except Exception as e:
logger.error(f"Error in apply_chat_template: {str(e)}")
# Fallback to simple format WITHOUT thinking
text = ""
for msg in messages:
if msg["role"] == "system":
text += f"<|im_start|>system\n{msg['content']}<|im_end|>\n"
elif msg["role"] == "user":
text += f"<|im_start|>user\n{msg['content']}<|im_end|>\n"
elif msg["role"] == "assistant":
text += f"<|im_start|>assistant\n{msg['content']}<|im_end|>\n"
text += "<|im_start|>assistant\n" # NO thinking tags
logger.info(f"Using fallback formatting")
# Tokenize input
logger.info("Tokenizing input...")
model_inputs = tokenizer([text], return_tensors="pt")
logger.info(f"Input tokens shape: {model_inputs.input_ids.shape}")
# Move to device
if hasattr(model, 'device'):
logger.info(f"Moving inputs to device: {model.device}")
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
# Generate response với timeout
logger.info("Starting generation...")
start_time = time.time()
try:
# Sử dụng asyncio timeout
async def generate_with_timeout():
with torch.no_grad():
generated_ids = model.generate(
**model_inputs,
max_new_tokens=min(max_tokens, 200),
temperature=temperature,
do_sample=True if temperature > 0 else False,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1,
top_p=0.9 if temperature > 0 else None,
use_cache=True
)
return generated_ids
# 30 second timeout
generated_ids = await asyncio.wait_for(generate_with_timeout(), timeout=30.0)
generation_time = time.time() - start_time
logger.info(f"Generation completed in {generation_time:.2f} seconds")
except asyncio.TimeoutError:
logger.error("Generation timeout after 30 seconds")
return {
"choices": [{
"message": {
"content": "Generation timeout. Please try a shorter prompt.",
"role": "assistant"
},
"finish_reason": "timeout",
"index": 0
}],
"error": "timeout",
"model": model_key
}
except Exception as e:
logger.error(f"Generation error: {str(e)}")
logger.error(f"Traceback: {traceback.format_exc()}")
return {
"choices": [{
"message": {
"content": f"Generation error: {str(e)}",
"role": "assistant"
},
"finish_reason": "error",
"index": 0
}],
"error": str(e),
"model": model_key
}
# Extract response
logger.info("Extracting response...")
try:
# Get input length correctly
if hasattr(model_inputs, 'input_ids'):
input_length = model_inputs.input_ids.shape[1]
elif isinstance(model_inputs, dict) and 'input_ids' in model_inputs:
input_length = model_inputs['input_ids'].shape[1]
else:
input_length = 0
# Extract output tokens
output_ids = generated_ids[0][input_length:].tolist()
response = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# Handle structured output
if response_format and response_format.get("type") == "json_schema":
response = extract_json_from_response(response)
logger.info(f"Extracted JSON response: {response}")
# Validate JSON
try:
json.loads(response)
except json.JSONDecodeError:
logger.warning("Generated response is not valid JSON, attempting to fix...")
# Try to extract just the JSON part
json_match = re.search(r'\{.*\}', response)
if json_match:
response = json_match.group(0)
else:
response = '{"type": "other"}' # Fallback
logger.info(f"Final response: {response}")
except Exception as e:
logger.error(f"Error extracting response: {str(e)}")
response = "Error extracting response"
# Clean up response
if not response:
response = "I apologize, but I couldn't generate a proper response. Please try again."
# Format response - tương thích với AiService
result = {
"choices": [{
"message": {
"content": response,
"role": "assistant"
},
"finish_reason": "stop",
"index": 0
}],
"model": model_key,
"usage": {
"prompt_tokens": input_length if 'input_length' in locals() else 0,
"completion_tokens": len(output_ids) if 'output_ids' in locals() else 0,
"total_tokens": (input_length if 'input_length' in locals() else 0) + (len(output_ids) if 'output_ids' in locals() else 0)
},
"object": "chat.completion",
"created": int(time.time())
}
logger.info("=== CHAT COMPLETIONS REQUEST END ===")
return result
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error in chat_completions: {str(e)}")
logger.error(f"Traceback: {traceback.format_exc()}")
return {
"choices": [{
"message": {
"content": f"Unexpected error: {str(e)}",
"role": "assistant"
},
"finish_reason": "error",
"index": 0
}],
"error": str(e),
"model": "qwen3-1.7b"
}
@app.get("/health")
def health():
"""Simple health check"""
return {
"status": "healthy",
"timestamp": int(time.time()),
"models_loaded": len(models)
}
# Error handlers
@app.exception_handler(404)
async def not_found_handler(request, exc):
return JSONResponse(
status_code=404,
content={
"error": {
"message": "Endpoint not found",
"type": "not_found_error",
"code": 404
}
}
)
@app.exception_handler(500)
async def internal_error_handler(request, exc):
return JSONResponse(
status_code=500,
content={
"error": {
"message": "Internal server error",
"type": "internal_server_error",
"code": 500
}
}
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)