File size: 15,701 Bytes
ad57d9c
a0e2cb1
ad57d9c
12983d4
ad57d9c
444c7fd
d5238da
 
ad57d9c
a0e2cb1
444c7fd
d4de464
a0e2cb1
 
 
 
 
d4de464
444c7fd
12983d4
 
 
 
52e87fe
 
12983d4
 
ad57d9c
444c7fd
ad57d9c
 
a0e2cb1
ad57d9c
 
 
444c7fd
ad57d9c
 
 
 
e8bbc64
ad57d9c
 
444c7fd
ad57d9c
 
a0e2cb1
ad57d9c
 
 
a0e2cb1
ad57d9c
 
444c7fd
ad57d9c
 
444c7fd
ad57d9c
 
 
 
 
a0e2cb1
ad57d9c
444c7fd
ad57d9c
444c7fd
 
 
 
 
ad57d9c
 
444c7fd
 
 
ad57d9c
 
 
 
a0e2cb1
ad57d9c
d5238da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12983d4
 
444c7fd
ad57d9c
a0e2cb1
ad57d9c
 
 
a0e2cb1
ad57d9c
a0e2cb1
 
ad57d9c
 
 
 
 
 
 
 
 
d5238da
ad57d9c
 
 
 
 
 
 
 
 
 
 
12983d4
 
444c7fd
d5238da
52e87fe
444c7fd
d5238da
444c7fd
 
52e87fe
 
 
e8bbc64
d5238da
444c7fd
 
d5238da
52e87fe
ad57d9c
 
444c7fd
ad57d9c
 
444c7fd
ad57d9c
52e87fe
 
 
 
444c7fd
ad57d9c
444c7fd
52e87fe
444c7fd
ad57d9c
52e87fe
444c7fd
52e87fe
 
444c7fd
52e87fe
d5238da
 
 
 
 
 
e8bbc64
444c7fd
 
 
 
 
 
e8bbc64
444c7fd
e8bbc64
d5238da
 
e8bbc64
 
d5238da
 
e8bbc64
d5238da
e8bbc64
444c7fd
 
e8bbc64
444c7fd
 
d5238da
 
 
e8bbc64
444c7fd
e8bbc64
 
d5238da
52e87fe
ad57d9c
444c7fd
ad57d9c
444c7fd
52e87fe
444c7fd
a0e2cb1
444c7fd
ad57d9c
 
444c7fd
 
 
 
 
 
 
 
 
 
d5238da
444c7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52e87fe
d5238da
444c7fd
e8bbc64
 
 
 
 
 
 
 
 
 
d5238da
e8bbc64
d5238da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8bbc64
 
 
d5238da
444c7fd
ad57d9c
 
 
 
e8bbc64
444c7fd
52e87fe
 
 
 
ad57d9c
 
 
52e87fe
ad57d9c
 
e8bbc64
 
 
ad57d9c
 
 
52e87fe
 
444c7fd
 
 
ad57d9c
 
52e87fe
444c7fd
 
52e87fe
 
 
444c7fd
52e87fe
ad57d9c
 
 
52e87fe
444c7fd
ad57d9c
52e87fe
 
ad57d9c
 
 
 
 
 
 
 
 
444c7fd
ad57d9c
 
a0e2cb1
 
 
 
 
 
 
 
ad57d9c
a0e2cb1
ad57d9c
 
 
a0e2cb1
 
 
 
 
 
 
 
ad57d9c
a0e2cb1
ad57d9c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import time
import asyncio
import json
import re
from typing import Dict, Any, Optional
import logging
import traceback

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(title="Qwen3 API", description="OpenAI-compatible API for Qwen3 models", version="1.0.0")

# Global variables
models = {}
tokenizers = {}

MODEL_CONFIGS = {
    "qwen3-1.7b": "Qwen/Qwen3-1.7B",
    "qwen3-4b": "Qwen/Qwen3-4B"
}

def download_model_safely(model_name: str, max_retries: int = 3):
    """Download model với retry logic"""
    for attempt in range(max_retries):
        try:
            logger.info(f"Downloading {model_name} (attempt {attempt + 1}/{max_retries})...")
            
            tokenizer = AutoTokenizer.from_pretrained(
                model_name,
                trust_remote_code=True
            )
            
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float16,
                device_map="auto",
                trust_remote_code=True,
                low_cpu_mem_usage=True
            )
            
            logger.info(f"Successfully loaded {model_name}")
            return tokenizer, model
            
        except Exception as e:
            logger.error(f"Download failed (attempt {attempt + 1}): {str(e)}")
            if attempt == max_retries - 1:
                raise e
            time.sleep(30)

def load_model_on_demand(model_key: str):
    """Load model khi cần thiết"""
    if model_key not in models:
        if model_key not in MODEL_CONFIGS:
            raise ValueError(f"Unknown model key: {model_key}")
        
        model_name = MODEL_CONFIGS[model_key]
        logger.info(f"Loading {model_name} on demand...")
        
        # Clear memory
        if len(models) >= 1:
            for key in list(models.keys()):
                logger.info(f"Unloading {key} to free memory...")
                del models[key]
                del tokenizers[key]
            
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            
            import gc
            gc.collect()
        
        tokenizer, model = download_model_safely(model_name)
        tokenizers[model_key] = tokenizer
        models[model_key] = model
        logger.info(f"{model_name} loaded successfully!")

def extract_json_from_response(text: str) -> str:
    """Extract JSON from response text"""
    # Remove thinking tags completely
    text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
    text = text.strip()
    
    # Try to find JSON object
    json_match = re.search(r'\{[^{}]*\}', text)
    if json_match:
        return json_match.group(0)
    
    # If no JSON found, return the cleaned text
    return text

def format_structured_prompt(messages: list, json_schema: dict) -> str:
    """Format messages with JSON schema instructions"""
    # Extract schema properties for clear instructions
    schema_info = json_schema.get('schema', {})
    properties = schema_info.get('properties', {})
    required = schema_info.get('required', [])
    
    # Create clear JSON format instructions
    json_instructions = f"""
You must respond with a valid JSON object only. No explanations, no markdown, no additional text.

Required JSON format:
{json.dumps(schema_info, indent=2)}

Example response format: {{"type": "examschedule"}}
"""
    
    # Build the conversation
    formatted_messages = []
    for msg in messages:
        if msg["role"] == "system":
            # Append JSON instructions to system message
            content = msg["content"] + "\n" + json_instructions
            formatted_messages.append({"role": "system", "content": content})
        else:
            formatted_messages.append(msg)
    
    return formatted_messages

@app.on_event("startup")
async def load_models():
    """Load default model"""
    try:
        logger.info("Loading default model: Qwen3-1.7B...")
        tokenizer, model = download_model_safely("Qwen/Qwen3-1.7B")
        tokenizers["qwen3-1.7b"] = tokenizer
        models["qwen3-1.7b"] = model
        logger.info("Default model loaded successfully!")
    except Exception as e:
        logger.error(f"Failed to load default model: {str(e)}")
        logger.info("Server will continue running, models will be loaded on demand")

@app.get("/")
def health_check():
    """Health check endpoint"""
    return {
        "status": "API is running",
        "available_models": list(MODEL_CONFIGS.keys()),
        "loaded_models": list(models.keys()),
        "version": "1.0.0",
        "message": "Qwen3 API Service - OpenAI Compatible with Structured Output"
    }

@app.get("/models")
def list_models():
    """List available models"""
    return {
        "available_models": MODEL_CONFIGS,
        "loaded_models": list(models.keys()),
        "total_available": len(MODEL_CONFIGS),
        "total_loaded": len(models)
    }

@app.post("/v1/chat/completions")
async def chat_completions(request: Dict[str, Any]):
    """OpenAI-compatible chat completions endpoint với Structured Output support"""
    try:
        logger.info("=== CHAT COMPLETIONS REQUEST START ===")
        logger.info(f"Request payload: {json.dumps(request, ensure_ascii=False, indent=2)}")
        
        # Parse request parameters
        model_name = request.get("model", "qwen3-1.7b")
        messages = request.get("messages", [])
        temperature = request.get("temperature", 0.7)
        max_tokens = request.get("max_tokens", 200)
        response_format = request.get("response_format", None)
        
        logger.info(f"Model: {model_name}, Temperature: {temperature}, Max tokens: {max_tokens}")
        logger.info(f"Response format: {response_format}")
        
        # Validate input
        if not messages:
            logger.error("Messages is empty")
            raise HTTPException(status_code=400, detail="Messages cannot be empty")
        
        # Determine model key
        if "4b" in model_name.lower() or "4" in model_name.lower():
            model_key = "qwen3-4b"
        else:
            model_key = "qwen3-1.7b"
        
        logger.info(f"Using model key: {model_key}")
        
        # Load model if needed
        if model_key not in models:
            logger.info(f"Model {model_key} not loaded, loading on demand...")
            load_model_on_demand(model_key)
        
        # Get model and tokenizer
        tokenizer = tokenizers[model_key]
        model = models[model_key]
        logger.info(f"Got tokenizer and model for {model_key}")
        
        # Handle structured output
        if response_format and response_format.get("type") == "json_schema":
            json_schema = response_format.get("json_schema", {})
            logger.info("Structured output requested, formatting messages with JSON schema")
            messages = format_structured_prompt(messages, json_schema)
        
        # Format messages - FORCE DISABLE thinking mode
        logger.info("Formatting messages with apply_chat_template...")
        try:
            text = tokenizer.apply_chat_template(
                messages,
                tokenize=False,
                add_generation_prompt=True,
                enable_thinking=False  # CRITICAL: Force disable thinking
            )
            
            # AGGRESSIVE thinking mode removal
            if "<think>" in text or "think>" in text:
                logger.warning("Found thinking tags in formatted text, removing...")
                text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
                text = re.sub(r'<think>\s*</think>', '', text)
                text = text.replace("<think>", "").replace("</think>", "")
            
            logger.info(f"Formatted text (first 300 chars): {text[:300]}...")
            
        except Exception as e:
            logger.error(f"Error in apply_chat_template: {str(e)}")
            # Fallback to simple format WITHOUT thinking
            text = ""
            for msg in messages:
                if msg["role"] == "system":
                    text += f"<|im_start|>system\n{msg['content']}<|im_end|>\n"
                elif msg["role"] == "user":
                    text += f"<|im_start|>user\n{msg['content']}<|im_end|>\n"
                elif msg["role"] == "assistant":
                    text += f"<|im_start|>assistant\n{msg['content']}<|im_end|>\n"
            text += "<|im_start|>assistant\n"  # NO thinking tags
            logger.info(f"Using fallback formatting")
        
        # Tokenize input
        logger.info("Tokenizing input...")
        model_inputs = tokenizer([text], return_tensors="pt")
        logger.info(f"Input tokens shape: {model_inputs.input_ids.shape}")
        
        # Move to device
        if hasattr(model, 'device'):
            logger.info(f"Moving inputs to device: {model.device}")
            model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
        
        # Generate response với timeout
        logger.info("Starting generation...")
        start_time = time.time()
        
        try:
            # Sử dụng asyncio timeout
            async def generate_with_timeout():
                with torch.no_grad():
                    generated_ids = model.generate(
                        **model_inputs,
                        max_new_tokens=min(max_tokens, 200),
                        temperature=temperature,
                        do_sample=True if temperature > 0 else False,
                        pad_token_id=tokenizer.eos_token_id,
                        eos_token_id=tokenizer.eos_token_id,
                        repetition_penalty=1.1,
                        top_p=0.9 if temperature > 0 else None,
                        use_cache=True
                    )
                return generated_ids
            
            # 30 second timeout
            generated_ids = await asyncio.wait_for(generate_with_timeout(), timeout=30.0)
            
            generation_time = time.time() - start_time
            logger.info(f"Generation completed in {generation_time:.2f} seconds")
            
        except asyncio.TimeoutError:
            logger.error("Generation timeout after 30 seconds")
            return {
                "choices": [{
                    "message": {
                        "content": "Generation timeout. Please try a shorter prompt.",
                        "role": "assistant"
                    },
                    "finish_reason": "timeout",
                    "index": 0
                }],
                "error": "timeout",
                "model": model_key
            }
        except Exception as e:
            logger.error(f"Generation error: {str(e)}")
            logger.error(f"Traceback: {traceback.format_exc()}")
            return {
                "choices": [{
                    "message": {
                        "content": f"Generation error: {str(e)}",
                        "role": "assistant"
                    },
                    "finish_reason": "error",
                    "index": 0
                }],
                "error": str(e),
                "model": model_key
            }
        
        # Extract response
        logger.info("Extracting response...")
        try:
            # Get input length correctly
            if hasattr(model_inputs, 'input_ids'):
                input_length = model_inputs.input_ids.shape[1]
            elif isinstance(model_inputs, dict) and 'input_ids' in model_inputs:
                input_length = model_inputs['input_ids'].shape[1]
            else:
                input_length = 0
            
            # Extract output tokens
            output_ids = generated_ids[0][input_length:].tolist()
            response = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
            
            # Handle structured output
            if response_format and response_format.get("type") == "json_schema":
                response = extract_json_from_response(response)
                logger.info(f"Extracted JSON response: {response}")
                
                # Validate JSON
                try:
                    json.loads(response)
                except json.JSONDecodeError:
                    logger.warning("Generated response is not valid JSON, attempting to fix...")
                    # Try to extract just the JSON part
                    json_match = re.search(r'\{.*\}', response)
                    if json_match:
                        response = json_match.group(0)
                    else:
                        response = '{"type": "other"}'  # Fallback
            
            logger.info(f"Final response: {response}")
            
        except Exception as e:
            logger.error(f"Error extracting response: {str(e)}")
            response = "Error extracting response"
        
        # Clean up response
        if not response:
            response = "I apologize, but I couldn't generate a proper response. Please try again."
        
        # Format response - tương thích với AiService
        result = {
            "choices": [{
                "message": {
                    "content": response,
                    "role": "assistant"
                },
                "finish_reason": "stop",
                "index": 0
            }],
            "model": model_key,
            "usage": {
                "prompt_tokens": input_length if 'input_length' in locals() else 0,
                "completion_tokens": len(output_ids) if 'output_ids' in locals() else 0,
                "total_tokens": (input_length if 'input_length' in locals() else 0) + (len(output_ids) if 'output_ids' in locals() else 0)
            },
            "object": "chat.completion",
            "created": int(time.time())
        }
        
        logger.info("=== CHAT COMPLETIONS REQUEST END ===")
        return result
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Unexpected error in chat_completions: {str(e)}")
        logger.error(f"Traceback: {traceback.format_exc()}")
        return {
            "choices": [{
                "message": {
                    "content": f"Unexpected error: {str(e)}",
                    "role": "assistant"
                },
                "finish_reason": "error",
                "index": 0
            }],
            "error": str(e),
            "model": "qwen3-1.7b"
        }

@app.get("/health")
def health():
    """Simple health check"""
    return {
        "status": "healthy",
        "timestamp": int(time.time()),
        "models_loaded": len(models)
    }

# Error handlers
@app.exception_handler(404)
async def not_found_handler(request, exc):
    return JSONResponse(
        status_code=404,
        content={
            "error": {
                "message": "Endpoint not found",
                "type": "not_found_error",
                "code": 404
            }
        }
    )

@app.exception_handler(500)
async def internal_error_handler(request, exc):
    return JSONResponse(
        status_code=500,
        content={
            "error": {
                "message": "Internal server error",
                "type": "internal_server_error",
                "code": 500
            }
        }
    )

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)