Final_Assignment / summary_report_generator.py
tonthatthienvu's picture
πŸš€ Priority 1: Advanced Testing Infrastructure Enhancement Complete
93de262
raw
history blame
24.2 kB
#!/usr/bin/env python3
"""
Summary Report Generator
Master reporting with improvement recommendations and actionable insights.
"""
import json
import logging
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Any
import statistics
class SummaryReportGenerator:
"""Generator for comprehensive summary reports with actionable insights."""
def __init__(self):
"""Initialize the summary report generator."""
self.logger = logging.getLogger("SummaryReportGenerator")
async def generate_master_report(self,
results: Dict[str, Dict],
session_dir: Path,
classification_report: Dict) -> Dict:
"""
Generate comprehensive master report with actionable insights.
Args:
results: Raw test results
session_dir: Session directory for output
classification_report: Classification analysis results
Returns:
Master report dictionary
"""
self.logger.info("Generating master summary report...")
# Generate all report sections
executive_summary = self.generate_executive_summary(results, classification_report)
detailed_metrics = self.generate_detailed_metrics(results, classification_report)
improvement_roadmap = self.generate_improvement_roadmap(classification_report)
technical_insights = self.generate_technical_insights(results, classification_report)
# Compile master report
master_report = {
"report_metadata": {
"generated_at": datetime.now().isoformat(),
"total_questions": len(results),
"session_directory": str(session_dir),
"report_version": "1.0"
},
"executive_summary": executive_summary,
"detailed_metrics": detailed_metrics,
"improvement_roadmap": improvement_roadmap,
"technical_insights": technical_insights
}
# Save master report
report_file = session_dir / "master_summary_report.json"
with open(report_file, 'w') as f:
json.dump(master_report, f, indent=2)
# Generate human-readable markdown report
markdown_report = self.generate_markdown_report(master_report)
markdown_file = session_dir / "SUMMARY_REPORT.md"
with open(markdown_file, 'w') as f:
f.write(markdown_report)
self.logger.info(f"Master report saved to: {report_file}")
self.logger.info(f"Markdown report saved to: {markdown_file}")
return master_report
def generate_executive_summary(self, results: Dict, classification_report: Dict) -> Dict:
"""Generate executive summary with key metrics and status."""
performance_metrics = classification_report.get('performance_metrics', {})
# Calculate overall metrics
total_questions = len(results)
total_correct = sum(metrics.get('counts', {}).get('correct', 0)
for metrics in performance_metrics.values())
total_partial = sum(metrics.get('counts', {}).get('partial', 0)
for metrics in performance_metrics.values())
total_errors = sum(metrics.get('counts', {}).get('error', 0) +
metrics.get('counts', {}).get('timeout', 0)
for metrics in performance_metrics.values())
overall_accuracy = total_correct / total_questions if total_questions > 0 else 0
partial_rate = total_partial / total_questions if total_questions > 0 else 0
error_rate = total_errors / total_questions if total_questions > 0 else 0
# Best and worst performing classifications
classification_accuracies = {
classification: metrics.get('accuracy', 0)
for classification, metrics in performance_metrics.items()
}
best_classification = max(classification_accuracies.items(),
key=lambda x: x[1], default=('none', 0))
worst_classification = min(classification_accuracies.items(),
key=lambda x: x[1], default=('none', 0))
# Production readiness assessment
production_ready = overall_accuracy >= 0.7 and error_rate <= 0.1
return {
"overall_performance": {
"accuracy": overall_accuracy,
"partial_accuracy": partial_rate,
"error_rate": error_rate,
"total_questions": total_questions
},
"classification_performance": {
"best": {
"classification": best_classification[0],
"accuracy": best_classification[1]
},
"worst": {
"classification": worst_classification[0],
"accuracy": worst_classification[1]
}
},
"production_readiness": {
"ready": production_ready,
"accuracy_target": 0.7,
"current_accuracy": overall_accuracy,
"gap_to_target": max(0, 0.7 - overall_accuracy)
},
"key_findings": self.extract_key_findings(results, classification_report)
}
def generate_detailed_metrics(self, results: Dict, classification_report: Dict) -> Dict:
"""Generate detailed performance metrics breakdown."""
performance_metrics = classification_report.get('performance_metrics', {})
tool_effectiveness = classification_report.get('tool_effectiveness', {})
# Processing time analysis
all_times = []
for result in results.values():
time_taken = result.get('total_processing_time', 0)
if time_taken > 0:
all_times.append(time_taken)
time_analysis = {
"mean": statistics.mean(all_times) if all_times else 0,
"median": statistics.median(all_times) if all_times else 0,
"max": max(all_times) if all_times else 0,
"min": min(all_times) if all_times else 0,
"total_processing_time": sum(all_times)
}
# Tool usage ranking
tool_ranking = sorted(
tool_effectiveness.items(),
key=lambda x: x[1].get('overall_effectiveness', 0),
reverse=True
)
return {
"by_classification": performance_metrics,
"processing_time_analysis": time_analysis,
"tool_effectiveness_ranking": [
{
"tool": tool,
"effectiveness": data.get('overall_effectiveness', 0),
"total_uses": data.get('total_uses', 0)
}
for tool, data in tool_ranking
],
"error_analysis": self.analyze_errors(results)
}
def analyze_errors(self, results: Dict) -> Dict:
"""Analyze error patterns and types."""
error_types = {}
timeout_questions = []
error_questions = []
for question_id, result in results.items():
solver_result = result.get('solver_result', {})
status = solver_result.get('status', 'unknown')
if status == 'timeout':
timeout_questions.append(question_id)
elif status == 'error':
error_questions.append(question_id)
error_msg = solver_result.get('error', 'Unknown error')
error_types[error_msg] = error_types.get(error_msg, 0) + 1
return {
"timeout_count": len(timeout_questions),
"error_count": len(error_questions),
"timeout_questions": timeout_questions,
"error_questions": error_questions,
"error_types": error_types
}
def generate_improvement_roadmap(self, classification_report: Dict) -> Dict:
"""Generate structured improvement roadmap."""
improvement_areas = classification_report.get('improvement_areas', {})
# Prioritize improvements
high_priority = []
medium_priority = []
low_priority = []
# High priority: Low accuracy classifications
for item in improvement_areas.get('low_accuracy_classifications', []):
if item['accuracy'] < 0.3:
high_priority.append({
"type": "critical_accuracy",
"target": item['classification'],
"current_accuracy": item['accuracy'],
"action": f"Redesign {item['classification']} agent logic and prompts",
"expected_impact": "High - directly improves success rate"
})
# High priority: High error rates
for item in improvement_areas.get('high_error_rate_classifications', []):
if item['error_rate'] > 0.4:
high_priority.append({
"type": "stability",
"target": item['classification'],
"current_error_rate": item['error_rate'],
"action": f"Fix timeout and error handling for {item['classification']} questions",
"expected_impact": "High - reduces system failures"
})
# Medium priority: Tool improvements
for item in improvement_areas.get('ineffective_tools', []):
if item['uses'] >= 5: # Only tools with significant usage
medium_priority.append({
"type": "tool_effectiveness",
"target": item['tool'],
"current_effectiveness": item['effectiveness'],
"action": f"Revise {item['tool']} tool implementation and error handling",
"expected_impact": "Medium - improves specific question types"
})
# Low priority: Performance optimizations
for item in improvement_areas.get('slow_processing_classifications', []):
low_priority.append({
"type": "performance",
"target": item['classification'],
"current_time": item['avg_time'],
"action": f"Optimize processing pipeline for {item['classification']} questions",
"expected_impact": "Low - improves user experience"
})
return {
"high_priority": high_priority,
"medium_priority": medium_priority,
"low_priority": low_priority,
"recommended_sequence": self.generate_implementation_sequence(
high_priority, medium_priority, low_priority
),
"effort_estimates": self.estimate_implementation_effort(
high_priority, medium_priority, low_priority
)
}
def generate_implementation_sequence(self, high_priority: List, medium_priority: List, low_priority: List) -> List[str]:
"""Generate recommended implementation sequence."""
sequence = []
# Start with highest impact accuracy improvements
critical_accuracy = [item for item in high_priority if item['type'] == 'critical_accuracy']
if critical_accuracy:
worst_accuracy = min(critical_accuracy, key=lambda x: x['current_accuracy'])
sequence.append(f"1. Fix {worst_accuracy['target']} agent (critical accuracy issue)")
# Then stability issues
stability_issues = [item for item in high_priority if item['type'] == 'stability']
if stability_issues:
sequence.append("2. Address high error rate classifications")
# Then tool improvements that affect multiple classifications
if medium_priority:
sequence.append("3. Improve ineffective tools with high usage")
# Finally performance optimizations
if low_priority:
sequence.append("4. Optimize processing performance")
return sequence
def estimate_implementation_effort(self, high_priority: List, medium_priority: List, low_priority: List) -> Dict:
"""Estimate implementation effort for improvements."""
return {
"high_priority_items": len(high_priority),
"estimated_effort": {
"agent_redesign": f"{len([i for i in high_priority if i['type'] == 'critical_accuracy'])} weeks",
"stability_fixes": f"{len([i for i in high_priority if i['type'] == 'stability'])} days",
"tool_improvements": f"{len(medium_priority)} days",
"performance_optimization": f"{len(low_priority)} days"
},
"total_estimated_effort": f"{len(high_priority) * 5 + len(medium_priority) * 2 + len(low_priority)} person-days"
}
def generate_technical_insights(self, results: Dict, classification_report: Dict) -> Dict:
"""Generate technical insights and patterns."""
# Question complexity vs success rate
complexity_analysis = self.analyze_complexity_patterns(results)
# Classification accuracy patterns
classification_patterns = self.analyze_classification_patterns(classification_report)
# Tool usage patterns
tool_patterns = self.analyze_tool_patterns(classification_report)
return {
"complexity_analysis": complexity_analysis,
"classification_patterns": classification_patterns,
"tool_patterns": tool_patterns,
"system_limitations": self.identify_system_limitations(results, classification_report)
}
def analyze_complexity_patterns(self, results: Dict) -> Dict:
"""Analyze how question complexity affects success rate."""
complexity_buckets = {}
for result in results.values():
classification = result.get('classification', {})
complexity = classification.get('complexity', 0)
validation = result.get('validation', {})
success = validation.get('validation_status') == 'correct'
if complexity not in complexity_buckets:
complexity_buckets[complexity] = {'total': 0, 'successful': 0}
complexity_buckets[complexity]['total'] += 1
if success:
complexity_buckets[complexity]['successful'] += 1
# Calculate success rates by complexity
complexity_success_rates = {}
for complexity, data in complexity_buckets.items():
success_rate = data['successful'] / data['total'] if data['total'] > 0 else 0
complexity_success_rates[complexity] = {
'success_rate': success_rate,
'total_questions': data['total']
}
return complexity_success_rates
def analyze_classification_patterns(self, classification_report: Dict) -> Dict:
"""Analyze patterns in classification performance."""
performance_metrics = classification_report.get('performance_metrics', {})
patterns = {
"high_performers": [],
"low_performers": [],
"inconsistent_performers": []
}
for classification, metrics in performance_metrics.items():
accuracy = metrics.get('accuracy', 0)
error_rate = metrics.get('error_rate', 0)
total_questions = metrics.get('total_questions', 0)
if accuracy >= 0.8 and total_questions >= 3:
patterns["high_performers"].append({
"classification": classification,
"accuracy": accuracy,
"questions": total_questions
})
elif accuracy <= 0.3 and total_questions >= 3:
patterns["low_performers"].append({
"classification": classification,
"accuracy": accuracy,
"questions": total_questions
})
elif error_rate > 0.5:
patterns["inconsistent_performers"].append({
"classification": classification,
"error_rate": error_rate,
"questions": total_questions
})
return patterns
def analyze_tool_patterns(self, classification_report: Dict) -> Dict:
"""Analyze tool usage and effectiveness patterns."""
tool_effectiveness = classification_report.get('tool_effectiveness', {})
# Group tools by effectiveness
highly_effective = []
moderately_effective = []
ineffective = []
for tool, data in tool_effectiveness.items():
effectiveness = data.get('overall_effectiveness', 0)
uses = data.get('total_uses', 0)
if uses >= 3: # Only consider tools with meaningful usage
if effectiveness >= 0.8:
highly_effective.append({
"tool": tool,
"effectiveness": effectiveness,
"uses": uses
})
elif effectiveness >= 0.5:
moderately_effective.append({
"tool": tool,
"effectiveness": effectiveness,
"uses": uses
})
else:
ineffective.append({
"tool": tool,
"effectiveness": effectiveness,
"uses": uses
})
return {
"highly_effective_tools": highly_effective,
"moderately_effective_tools": moderately_effective,
"ineffective_tools": ineffective
}
def identify_system_limitations(self, results: Dict, classification_report: Dict) -> List[str]:
"""Identify current system limitations."""
limitations = []
# Overall accuracy limitation
overall_accuracy = sum(
metrics.get('counts', {}).get('correct', 0)
for metrics in classification_report.get('performance_metrics', {}).values()
) / len(results) if results else 0
if overall_accuracy < 0.7:
limitations.append(f"Overall accuracy ({overall_accuracy:.1%}) below production target (70%)")
# High error rate limitation
total_errors = sum(
metrics.get('counts', {}).get('error', 0) + metrics.get('counts', {}).get('timeout', 0)
for metrics in classification_report.get('performance_metrics', {}).values()
)
error_rate = total_errors / len(results) if results else 0
if error_rate > 0.1:
limitations.append(f"High error/timeout rate ({error_rate:.1%}) indicates stability issues")
# Processing time limitation
slow_classifications = classification_report.get('improvement_areas', {}).get('slow_processing_classifications', [])
if slow_classifications:
limitations.append("Slow processing times for some question types may affect user experience")
# Tool effectiveness limitation
ineffective_tools = classification_report.get('improvement_areas', {}).get('ineffective_tools', [])
if len(ineffective_tools) > 3:
limitations.append("Multiple tools showing low effectiveness, impacting overall system performance")
return limitations
def extract_key_findings(self, results: Dict, classification_report: Dict) -> List[str]:
"""Extract key findings from the analysis."""
findings = []
performance_metrics = classification_report.get('performance_metrics', {})
# Best performing classification
if performance_metrics:
best_classification = max(performance_metrics.items(), key=lambda x: x[1].get('accuracy', 0))
findings.append(f"Best performing agent: {best_classification[0]} ({best_classification[1].get('accuracy', 0):.1%} accuracy)")
# Most problematic classification
if performance_metrics:
worst_classification = min(performance_metrics.items(), key=lambda x: x[1].get('accuracy', 0))
if worst_classification[1].get('accuracy', 0) < 0.5:
findings.append(f"Critical issue: {worst_classification[0]} agent has {worst_classification[1].get('accuracy', 0):.1%} accuracy")
# Tool insights
tool_effectiveness = classification_report.get('tool_effectiveness', {})
if tool_effectiveness:
most_effective_tool = max(tool_effectiveness.items(), key=lambda x: x[1].get('overall_effectiveness', 0))
findings.append(f"Most effective tool: {most_effective_tool[0]} ({most_effective_tool[1].get('overall_effectiveness', 0):.1%} success rate)")
return findings
def generate_markdown_report(self, master_report: Dict) -> str:
"""Generate human-readable markdown report."""
report = []
# Header
metadata = master_report.get('report_metadata', {})
report.append("# GAIA Test System - Master Summary Report")
report.append(f"**Generated:** {metadata.get('generated_at', 'Unknown')}")
report.append(f"**Total Questions:** {metadata.get('total_questions', 0)}")
report.append("")
# Executive Summary
exec_summary = master_report.get('executive_summary', {})
overall_perf = exec_summary.get('overall_performance', {})
report.append("## Executive Summary")
report.append(f"- **Overall Accuracy:** {overall_perf.get('accuracy', 0):.1%}")
report.append(f"- **Error Rate:** {overall_perf.get('error_rate', 0):.1%}")
production = exec_summary.get('production_readiness', {})
if production.get('ready', False):
report.append("- **Status:** βœ… Production Ready")
else:
gap = production.get('gap_to_target', 0)
report.append(f"- **Status:** ❌ Not Production Ready (need {gap:.1%} improvement)")
report.append("")
# Key Findings
findings = exec_summary.get('key_findings', [])
if findings:
report.append("### Key Findings")
for finding in findings:
report.append(f"- {finding}")
report.append("")
# Improvement Roadmap
roadmap = master_report.get('improvement_roadmap', {})
high_priority = roadmap.get('high_priority', [])
if high_priority:
report.append("## High Priority Improvements")
for i, item in enumerate(high_priority, 1):
report.append(f"{i}. **{item.get('target', 'Unknown')}** - {item.get('action', 'No action specified')}")
report.append(f" - Current: {item.get('current_accuracy', item.get('current_error_rate', 'Unknown'))}")
report.append(f" - Impact: {item.get('expected_impact', 'Unknown')}")
report.append("")
# Implementation Sequence
sequence = roadmap.get('recommended_sequence', [])
if sequence:
report.append("## Recommended Implementation Sequence")
for step in sequence:
report.append(f"- {step}")
report.append("")
return "\n".join(report)