Spaces:
Running
Running
File size: 24,202 Bytes
93de262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
#!/usr/bin/env python3
"""
Summary Report Generator
Master reporting with improvement recommendations and actionable insights.
"""
import json
import logging
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Any
import statistics
class SummaryReportGenerator:
"""Generator for comprehensive summary reports with actionable insights."""
def __init__(self):
"""Initialize the summary report generator."""
self.logger = logging.getLogger("SummaryReportGenerator")
async def generate_master_report(self,
results: Dict[str, Dict],
session_dir: Path,
classification_report: Dict) -> Dict:
"""
Generate comprehensive master report with actionable insights.
Args:
results: Raw test results
session_dir: Session directory for output
classification_report: Classification analysis results
Returns:
Master report dictionary
"""
self.logger.info("Generating master summary report...")
# Generate all report sections
executive_summary = self.generate_executive_summary(results, classification_report)
detailed_metrics = self.generate_detailed_metrics(results, classification_report)
improvement_roadmap = self.generate_improvement_roadmap(classification_report)
technical_insights = self.generate_technical_insights(results, classification_report)
# Compile master report
master_report = {
"report_metadata": {
"generated_at": datetime.now().isoformat(),
"total_questions": len(results),
"session_directory": str(session_dir),
"report_version": "1.0"
},
"executive_summary": executive_summary,
"detailed_metrics": detailed_metrics,
"improvement_roadmap": improvement_roadmap,
"technical_insights": technical_insights
}
# Save master report
report_file = session_dir / "master_summary_report.json"
with open(report_file, 'w') as f:
json.dump(master_report, f, indent=2)
# Generate human-readable markdown report
markdown_report = self.generate_markdown_report(master_report)
markdown_file = session_dir / "SUMMARY_REPORT.md"
with open(markdown_file, 'w') as f:
f.write(markdown_report)
self.logger.info(f"Master report saved to: {report_file}")
self.logger.info(f"Markdown report saved to: {markdown_file}")
return master_report
def generate_executive_summary(self, results: Dict, classification_report: Dict) -> Dict:
"""Generate executive summary with key metrics and status."""
performance_metrics = classification_report.get('performance_metrics', {})
# Calculate overall metrics
total_questions = len(results)
total_correct = sum(metrics.get('counts', {}).get('correct', 0)
for metrics in performance_metrics.values())
total_partial = sum(metrics.get('counts', {}).get('partial', 0)
for metrics in performance_metrics.values())
total_errors = sum(metrics.get('counts', {}).get('error', 0) +
metrics.get('counts', {}).get('timeout', 0)
for metrics in performance_metrics.values())
overall_accuracy = total_correct / total_questions if total_questions > 0 else 0
partial_rate = total_partial / total_questions if total_questions > 0 else 0
error_rate = total_errors / total_questions if total_questions > 0 else 0
# Best and worst performing classifications
classification_accuracies = {
classification: metrics.get('accuracy', 0)
for classification, metrics in performance_metrics.items()
}
best_classification = max(classification_accuracies.items(),
key=lambda x: x[1], default=('none', 0))
worst_classification = min(classification_accuracies.items(),
key=lambda x: x[1], default=('none', 0))
# Production readiness assessment
production_ready = overall_accuracy >= 0.7 and error_rate <= 0.1
return {
"overall_performance": {
"accuracy": overall_accuracy,
"partial_accuracy": partial_rate,
"error_rate": error_rate,
"total_questions": total_questions
},
"classification_performance": {
"best": {
"classification": best_classification[0],
"accuracy": best_classification[1]
},
"worst": {
"classification": worst_classification[0],
"accuracy": worst_classification[1]
}
},
"production_readiness": {
"ready": production_ready,
"accuracy_target": 0.7,
"current_accuracy": overall_accuracy,
"gap_to_target": max(0, 0.7 - overall_accuracy)
},
"key_findings": self.extract_key_findings(results, classification_report)
}
def generate_detailed_metrics(self, results: Dict, classification_report: Dict) -> Dict:
"""Generate detailed performance metrics breakdown."""
performance_metrics = classification_report.get('performance_metrics', {})
tool_effectiveness = classification_report.get('tool_effectiveness', {})
# Processing time analysis
all_times = []
for result in results.values():
time_taken = result.get('total_processing_time', 0)
if time_taken > 0:
all_times.append(time_taken)
time_analysis = {
"mean": statistics.mean(all_times) if all_times else 0,
"median": statistics.median(all_times) if all_times else 0,
"max": max(all_times) if all_times else 0,
"min": min(all_times) if all_times else 0,
"total_processing_time": sum(all_times)
}
# Tool usage ranking
tool_ranking = sorted(
tool_effectiveness.items(),
key=lambda x: x[1].get('overall_effectiveness', 0),
reverse=True
)
return {
"by_classification": performance_metrics,
"processing_time_analysis": time_analysis,
"tool_effectiveness_ranking": [
{
"tool": tool,
"effectiveness": data.get('overall_effectiveness', 0),
"total_uses": data.get('total_uses', 0)
}
for tool, data in tool_ranking
],
"error_analysis": self.analyze_errors(results)
}
def analyze_errors(self, results: Dict) -> Dict:
"""Analyze error patterns and types."""
error_types = {}
timeout_questions = []
error_questions = []
for question_id, result in results.items():
solver_result = result.get('solver_result', {})
status = solver_result.get('status', 'unknown')
if status == 'timeout':
timeout_questions.append(question_id)
elif status == 'error':
error_questions.append(question_id)
error_msg = solver_result.get('error', 'Unknown error')
error_types[error_msg] = error_types.get(error_msg, 0) + 1
return {
"timeout_count": len(timeout_questions),
"error_count": len(error_questions),
"timeout_questions": timeout_questions,
"error_questions": error_questions,
"error_types": error_types
}
def generate_improvement_roadmap(self, classification_report: Dict) -> Dict:
"""Generate structured improvement roadmap."""
improvement_areas = classification_report.get('improvement_areas', {})
# Prioritize improvements
high_priority = []
medium_priority = []
low_priority = []
# High priority: Low accuracy classifications
for item in improvement_areas.get('low_accuracy_classifications', []):
if item['accuracy'] < 0.3:
high_priority.append({
"type": "critical_accuracy",
"target": item['classification'],
"current_accuracy": item['accuracy'],
"action": f"Redesign {item['classification']} agent logic and prompts",
"expected_impact": "High - directly improves success rate"
})
# High priority: High error rates
for item in improvement_areas.get('high_error_rate_classifications', []):
if item['error_rate'] > 0.4:
high_priority.append({
"type": "stability",
"target": item['classification'],
"current_error_rate": item['error_rate'],
"action": f"Fix timeout and error handling for {item['classification']} questions",
"expected_impact": "High - reduces system failures"
})
# Medium priority: Tool improvements
for item in improvement_areas.get('ineffective_tools', []):
if item['uses'] >= 5: # Only tools with significant usage
medium_priority.append({
"type": "tool_effectiveness",
"target": item['tool'],
"current_effectiveness": item['effectiveness'],
"action": f"Revise {item['tool']} tool implementation and error handling",
"expected_impact": "Medium - improves specific question types"
})
# Low priority: Performance optimizations
for item in improvement_areas.get('slow_processing_classifications', []):
low_priority.append({
"type": "performance",
"target": item['classification'],
"current_time": item['avg_time'],
"action": f"Optimize processing pipeline for {item['classification']} questions",
"expected_impact": "Low - improves user experience"
})
return {
"high_priority": high_priority,
"medium_priority": medium_priority,
"low_priority": low_priority,
"recommended_sequence": self.generate_implementation_sequence(
high_priority, medium_priority, low_priority
),
"effort_estimates": self.estimate_implementation_effort(
high_priority, medium_priority, low_priority
)
}
def generate_implementation_sequence(self, high_priority: List, medium_priority: List, low_priority: List) -> List[str]:
"""Generate recommended implementation sequence."""
sequence = []
# Start with highest impact accuracy improvements
critical_accuracy = [item for item in high_priority if item['type'] == 'critical_accuracy']
if critical_accuracy:
worst_accuracy = min(critical_accuracy, key=lambda x: x['current_accuracy'])
sequence.append(f"1. Fix {worst_accuracy['target']} agent (critical accuracy issue)")
# Then stability issues
stability_issues = [item for item in high_priority if item['type'] == 'stability']
if stability_issues:
sequence.append("2. Address high error rate classifications")
# Then tool improvements that affect multiple classifications
if medium_priority:
sequence.append("3. Improve ineffective tools with high usage")
# Finally performance optimizations
if low_priority:
sequence.append("4. Optimize processing performance")
return sequence
def estimate_implementation_effort(self, high_priority: List, medium_priority: List, low_priority: List) -> Dict:
"""Estimate implementation effort for improvements."""
return {
"high_priority_items": len(high_priority),
"estimated_effort": {
"agent_redesign": f"{len([i for i in high_priority if i['type'] == 'critical_accuracy'])} weeks",
"stability_fixes": f"{len([i for i in high_priority if i['type'] == 'stability'])} days",
"tool_improvements": f"{len(medium_priority)} days",
"performance_optimization": f"{len(low_priority)} days"
},
"total_estimated_effort": f"{len(high_priority) * 5 + len(medium_priority) * 2 + len(low_priority)} person-days"
}
def generate_technical_insights(self, results: Dict, classification_report: Dict) -> Dict:
"""Generate technical insights and patterns."""
# Question complexity vs success rate
complexity_analysis = self.analyze_complexity_patterns(results)
# Classification accuracy patterns
classification_patterns = self.analyze_classification_patterns(classification_report)
# Tool usage patterns
tool_patterns = self.analyze_tool_patterns(classification_report)
return {
"complexity_analysis": complexity_analysis,
"classification_patterns": classification_patterns,
"tool_patterns": tool_patterns,
"system_limitations": self.identify_system_limitations(results, classification_report)
}
def analyze_complexity_patterns(self, results: Dict) -> Dict:
"""Analyze how question complexity affects success rate."""
complexity_buckets = {}
for result in results.values():
classification = result.get('classification', {})
complexity = classification.get('complexity', 0)
validation = result.get('validation', {})
success = validation.get('validation_status') == 'correct'
if complexity not in complexity_buckets:
complexity_buckets[complexity] = {'total': 0, 'successful': 0}
complexity_buckets[complexity]['total'] += 1
if success:
complexity_buckets[complexity]['successful'] += 1
# Calculate success rates by complexity
complexity_success_rates = {}
for complexity, data in complexity_buckets.items():
success_rate = data['successful'] / data['total'] if data['total'] > 0 else 0
complexity_success_rates[complexity] = {
'success_rate': success_rate,
'total_questions': data['total']
}
return complexity_success_rates
def analyze_classification_patterns(self, classification_report: Dict) -> Dict:
"""Analyze patterns in classification performance."""
performance_metrics = classification_report.get('performance_metrics', {})
patterns = {
"high_performers": [],
"low_performers": [],
"inconsistent_performers": []
}
for classification, metrics in performance_metrics.items():
accuracy = metrics.get('accuracy', 0)
error_rate = metrics.get('error_rate', 0)
total_questions = metrics.get('total_questions', 0)
if accuracy >= 0.8 and total_questions >= 3:
patterns["high_performers"].append({
"classification": classification,
"accuracy": accuracy,
"questions": total_questions
})
elif accuracy <= 0.3 and total_questions >= 3:
patterns["low_performers"].append({
"classification": classification,
"accuracy": accuracy,
"questions": total_questions
})
elif error_rate > 0.5:
patterns["inconsistent_performers"].append({
"classification": classification,
"error_rate": error_rate,
"questions": total_questions
})
return patterns
def analyze_tool_patterns(self, classification_report: Dict) -> Dict:
"""Analyze tool usage and effectiveness patterns."""
tool_effectiveness = classification_report.get('tool_effectiveness', {})
# Group tools by effectiveness
highly_effective = []
moderately_effective = []
ineffective = []
for tool, data in tool_effectiveness.items():
effectiveness = data.get('overall_effectiveness', 0)
uses = data.get('total_uses', 0)
if uses >= 3: # Only consider tools with meaningful usage
if effectiveness >= 0.8:
highly_effective.append({
"tool": tool,
"effectiveness": effectiveness,
"uses": uses
})
elif effectiveness >= 0.5:
moderately_effective.append({
"tool": tool,
"effectiveness": effectiveness,
"uses": uses
})
else:
ineffective.append({
"tool": tool,
"effectiveness": effectiveness,
"uses": uses
})
return {
"highly_effective_tools": highly_effective,
"moderately_effective_tools": moderately_effective,
"ineffective_tools": ineffective
}
def identify_system_limitations(self, results: Dict, classification_report: Dict) -> List[str]:
"""Identify current system limitations."""
limitations = []
# Overall accuracy limitation
overall_accuracy = sum(
metrics.get('counts', {}).get('correct', 0)
for metrics in classification_report.get('performance_metrics', {}).values()
) / len(results) if results else 0
if overall_accuracy < 0.7:
limitations.append(f"Overall accuracy ({overall_accuracy:.1%}) below production target (70%)")
# High error rate limitation
total_errors = sum(
metrics.get('counts', {}).get('error', 0) + metrics.get('counts', {}).get('timeout', 0)
for metrics in classification_report.get('performance_metrics', {}).values()
)
error_rate = total_errors / len(results) if results else 0
if error_rate > 0.1:
limitations.append(f"High error/timeout rate ({error_rate:.1%}) indicates stability issues")
# Processing time limitation
slow_classifications = classification_report.get('improvement_areas', {}).get('slow_processing_classifications', [])
if slow_classifications:
limitations.append("Slow processing times for some question types may affect user experience")
# Tool effectiveness limitation
ineffective_tools = classification_report.get('improvement_areas', {}).get('ineffective_tools', [])
if len(ineffective_tools) > 3:
limitations.append("Multiple tools showing low effectiveness, impacting overall system performance")
return limitations
def extract_key_findings(self, results: Dict, classification_report: Dict) -> List[str]:
"""Extract key findings from the analysis."""
findings = []
performance_metrics = classification_report.get('performance_metrics', {})
# Best performing classification
if performance_metrics:
best_classification = max(performance_metrics.items(), key=lambda x: x[1].get('accuracy', 0))
findings.append(f"Best performing agent: {best_classification[0]} ({best_classification[1].get('accuracy', 0):.1%} accuracy)")
# Most problematic classification
if performance_metrics:
worst_classification = min(performance_metrics.items(), key=lambda x: x[1].get('accuracy', 0))
if worst_classification[1].get('accuracy', 0) < 0.5:
findings.append(f"Critical issue: {worst_classification[0]} agent has {worst_classification[1].get('accuracy', 0):.1%} accuracy")
# Tool insights
tool_effectiveness = classification_report.get('tool_effectiveness', {})
if tool_effectiveness:
most_effective_tool = max(tool_effectiveness.items(), key=lambda x: x[1].get('overall_effectiveness', 0))
findings.append(f"Most effective tool: {most_effective_tool[0]} ({most_effective_tool[1].get('overall_effectiveness', 0):.1%} success rate)")
return findings
def generate_markdown_report(self, master_report: Dict) -> str:
"""Generate human-readable markdown report."""
report = []
# Header
metadata = master_report.get('report_metadata', {})
report.append("# GAIA Test System - Master Summary Report")
report.append(f"**Generated:** {metadata.get('generated_at', 'Unknown')}")
report.append(f"**Total Questions:** {metadata.get('total_questions', 0)}")
report.append("")
# Executive Summary
exec_summary = master_report.get('executive_summary', {})
overall_perf = exec_summary.get('overall_performance', {})
report.append("## Executive Summary")
report.append(f"- **Overall Accuracy:** {overall_perf.get('accuracy', 0):.1%}")
report.append(f"- **Error Rate:** {overall_perf.get('error_rate', 0):.1%}")
production = exec_summary.get('production_readiness', {})
if production.get('ready', False):
report.append("- **Status:** ✅ Production Ready")
else:
gap = production.get('gap_to_target', 0)
report.append(f"- **Status:** ❌ Not Production Ready (need {gap:.1%} improvement)")
report.append("")
# Key Findings
findings = exec_summary.get('key_findings', [])
if findings:
report.append("### Key Findings")
for finding in findings:
report.append(f"- {finding}")
report.append("")
# Improvement Roadmap
roadmap = master_report.get('improvement_roadmap', {})
high_priority = roadmap.get('high_priority', [])
if high_priority:
report.append("## High Priority Improvements")
for i, item in enumerate(high_priority, 1):
report.append(f"{i}. **{item.get('target', 'Unknown')}** - {item.get('action', 'No action specified')}")
report.append(f" - Current: {item.get('current_accuracy', item.get('current_error_rate', 'Unknown'))}")
report.append(f" - Impact: {item.get('expected_impact', 'Unknown')}")
report.append("")
# Implementation Sequence
sequence = roadmap.get('recommended_sequence', [])
if sequence:
report.append("## Recommended Implementation Sequence")
for step in sequence:
report.append(f"- {step}")
report.append("")
return "\n".join(report) |