Final_Assignment / classification_analyzer.py
tonthatthienvu's picture
๐Ÿš€ Priority 1: Advanced Testing Infrastructure Enhancement Complete
93de262
raw
history blame
14.5 kB
#!/usr/bin/env python3
"""
Classification Analyzer
Performance analysis by question classification to identify improvement areas.
"""
import json
import logging
from collections import defaultdict, Counter
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Tuple, Any
import statistics
class ClassificationAnalyzer:
"""Analyzer for performance metrics by question classification."""
def __init__(self):
"""Initialize the classification analyzer."""
self.logger = logging.getLogger("ClassificationAnalyzer")
async def analyze_by_classification(self, results: Dict[str, Dict], session_dir: Path) -> Dict:
"""
Analyze test results by question classification.
Args:
results: Test results keyed by question_id
session_dir: Directory to save analysis results
Returns:
Classification analysis report
"""
self.logger.info("Starting classification-based analysis...")
# Organize results by classification
classification_data = self.organize_by_classification(results)
# Calculate performance metrics
performance_metrics = self.calculate_performance_metrics(classification_data)
# Analyze tool effectiveness
tool_effectiveness = self.analyze_tool_effectiveness(classification_data)
# Identify improvement areas
improvement_areas = self.identify_improvement_areas(performance_metrics, tool_effectiveness)
# Create comprehensive report
analysis_report = {
"analysis_timestamp": datetime.now().isoformat(),
"total_questions": len(results),
"classification_breakdown": self.get_classification_breakdown(classification_data),
"performance_metrics": performance_metrics,
"tool_effectiveness": tool_effectiveness,
"improvement_areas": improvement_areas,
"detailed_data": classification_data
}
# Save analysis report
report_file = session_dir / "classification_analysis.json"
with open(report_file, 'w') as f:
json.dump(analysis_report, f, indent=2)
self.logger.info(f"Classification analysis saved to: {report_file}")
return analysis_report
def organize_by_classification(self, results: Dict[str, Dict]) -> Dict[str, List[Dict]]:
"""Organize results by question classification."""
classification_data = defaultdict(list)
for question_id, result in results.items():
# Get classification info
classification = result.get('classification', {})
primary_agent = classification.get('primary_agent', 'unknown')
# Add to classification group
classification_data[primary_agent].append({
'question_id': question_id,
'result': result,
'classification': classification
})
return dict(classification_data)
def calculate_performance_metrics(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, Dict]:
"""Calculate performance metrics for each classification."""
metrics = {}
for classification, questions in classification_data.items():
# Accuracy metrics
validation_statuses = []
execution_times = []
complexity_scores = []
confidence_scores = []
correct_count = 0
partial_count = 0
incorrect_count = 0
timeout_count = 0
error_count = 0
for question_data in questions:
result = question_data['result']
classification_info = question_data['classification']
# Validation status
validation = result.get('validation', {})
status = validation.get('validation_status', 'unknown')
validation_statuses.append(status)
if status == 'correct':
correct_count += 1
elif status == 'partial':
partial_count += 1
elif status == 'incorrect':
incorrect_count += 1
# Execution metrics
solver_result = result.get('solver_result', {})
if solver_result.get('status') == 'timeout':
timeout_count += 1
elif solver_result.get('status') == 'error':
error_count += 1
# Timing
exec_time = result.get('total_processing_time', 0)
if exec_time > 0:
execution_times.append(exec_time)
# Classification metrics
complexity = classification_info.get('complexity', 0)
if complexity > 0:
complexity_scores.append(complexity)
confidence = classification_info.get('confidence', 0)
if confidence > 0:
confidence_scores.append(confidence)
total_questions = len(questions)
# Calculate metrics
accuracy = correct_count / total_questions if total_questions > 0 else 0
partial_rate = partial_count / total_questions if total_questions > 0 else 0
error_rate = (error_count + timeout_count) / total_questions if total_questions > 0 else 0
metrics[classification] = {
"total_questions": total_questions,
"accuracy": accuracy,
"partial_accuracy": partial_rate,
"error_rate": error_rate,
"counts": {
"correct": correct_count,
"partial": partial_count,
"incorrect": incorrect_count,
"timeout": timeout_count,
"error": error_count
},
"execution_time": {
"mean": statistics.mean(execution_times) if execution_times else 0,
"median": statistics.median(execution_times) if execution_times else 0,
"max": max(execution_times) if execution_times else 0,
"min": min(execution_times) if execution_times else 0
},
"complexity": {
"mean": statistics.mean(complexity_scores) if complexity_scores else 0,
"distribution": Counter(complexity_scores)
},
"classification_confidence": {
"mean": statistics.mean(confidence_scores) if confidence_scores else 0,
"min": min(confidence_scores) if confidence_scores else 0
}
}
return metrics
def analyze_tool_effectiveness(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, Dict]:
"""Analyze tool effectiveness across classifications."""
tool_usage = defaultdict(lambda: {
'total_uses': 0,
'successes': 0,
'by_classification': defaultdict(lambda: {'uses': 0, 'successes': 0})
})
for classification, questions in classification_data.items():
for question_data in questions:
result = question_data['result']
classification_info = question_data['classification']
# Get tools needed
tools_needed = classification_info.get('tools_needed', [])
success = result.get('validation', {}).get('validation_status') == 'correct'
for tool in tools_needed:
tool_usage[tool]['total_uses'] += 1
tool_usage[tool]['by_classification'][classification]['uses'] += 1
if success:
tool_usage[tool]['successes'] += 1
tool_usage[tool]['by_classification'][classification]['successes'] += 1
# Calculate effectiveness rates
tool_effectiveness = {}
for tool, usage_data in tool_usage.items():
total_uses = usage_data['total_uses']
successes = usage_data['successes']
effectiveness_rate = successes / total_uses if total_uses > 0 else 0
# Per-classification effectiveness
classification_effectiveness = {}
for classification, class_data in usage_data['by_classification'].items():
class_uses = class_data['uses']
class_successes = class_data['successes']
class_rate = class_successes / class_uses if class_uses > 0 else 0
classification_effectiveness[classification] = {
'uses': class_uses,
'successes': class_successes,
'effectiveness_rate': class_rate
}
tool_effectiveness[tool] = {
'total_uses': total_uses,
'total_successes': successes,
'overall_effectiveness': effectiveness_rate,
'by_classification': classification_effectiveness
}
return tool_effectiveness
def identify_improvement_areas(self, performance_metrics: Dict, tool_effectiveness: Dict) -> Dict[str, List[str]]:
"""Identify specific improvement areas based on analysis."""
improvements = {
"low_accuracy_classifications": [],
"high_error_rate_classifications": [],
"slow_processing_classifications": [],
"ineffective_tools": [],
"misclassified_questions": [],
"recommendations": []
}
# Identify low accuracy classifications
for classification, metrics in performance_metrics.items():
accuracy = metrics['accuracy']
error_rate = metrics['error_rate']
avg_time = metrics['execution_time']['mean']
if accuracy < 0.5: # Less than 50% accuracy
improvements["low_accuracy_classifications"].append({
"classification": classification,
"accuracy": accuracy,
"details": f"Only {accuracy:.1%} accuracy with {metrics['total_questions']} questions"
})
if error_rate > 0.3: # More than 30% errors/timeouts
improvements["high_error_rate_classifications"].append({
"classification": classification,
"error_rate": error_rate,
"details": f"{error_rate:.1%} error/timeout rate"
})
if avg_time > 600: # More than 10 minutes average
improvements["slow_processing_classifications"].append({
"classification": classification,
"avg_time": avg_time,
"details": f"Average {avg_time:.0f} seconds processing time"
})
# Identify ineffective tools
for tool, effectiveness in tool_effectiveness.items():
overall_rate = effectiveness['overall_effectiveness']
total_uses = effectiveness['total_uses']
if overall_rate < 0.4 and total_uses >= 3: # Less than 40% effectiveness with meaningful usage
improvements["ineffective_tools"].append({
"tool": tool,
"effectiveness": overall_rate,
"uses": total_uses,
"details": f"Only {overall_rate:.1%} success rate across {total_uses} uses"
})
# Generate recommendations
recommendations = []
if improvements["low_accuracy_classifications"]:
worst_classification = min(improvements["low_accuracy_classifications"],
key=lambda x: x['accuracy'])
recommendations.append(
f"PRIORITY: Improve {worst_classification['classification']} agent "
f"(currently {worst_classification['accuracy']:.1%} accuracy)"
)
if improvements["ineffective_tools"]:
worst_tool = min(improvements["ineffective_tools"],
key=lambda x: x['effectiveness'])
recommendations.append(
f"TOOL FIX: Revise {worst_tool['tool']} tool "
f"(currently {worst_tool['effectiveness']:.1%} effectiveness)"
)
if improvements["high_error_rate_classifications"]:
recommendations.append(
"STABILITY: Address timeout and error handling for classifications with high error rates"
)
overall_accuracy = self.calculate_overall_accuracy(performance_metrics)
if overall_accuracy < 0.7:
recommendations.append(
f"SYSTEM: Overall accuracy is {overall_accuracy:.1%} - target 70% for production readiness"
)
improvements["recommendations"] = recommendations
return improvements
def calculate_overall_accuracy(self, performance_metrics: Dict) -> float:
"""Calculate overall system accuracy across all classifications."""
total_correct = 0
total_questions = 0
for metrics in performance_metrics.values():
total_correct += metrics['counts']['correct']
total_questions += metrics['total_questions']
return total_correct / total_questions if total_questions > 0 else 0
def get_classification_breakdown(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, int]:
"""Get simple breakdown of question counts by classification."""
return {
classification: len(questions)
for classification, questions in classification_data.items()
}