Spaces:
Running
Running
File size: 14,507 Bytes
93de262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
#!/usr/bin/env python3
"""
Classification Analyzer
Performance analysis by question classification to identify improvement areas.
"""
import json
import logging
from collections import defaultdict, Counter
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Tuple, Any
import statistics
class ClassificationAnalyzer:
"""Analyzer for performance metrics by question classification."""
def __init__(self):
"""Initialize the classification analyzer."""
self.logger = logging.getLogger("ClassificationAnalyzer")
async def analyze_by_classification(self, results: Dict[str, Dict], session_dir: Path) -> Dict:
"""
Analyze test results by question classification.
Args:
results: Test results keyed by question_id
session_dir: Directory to save analysis results
Returns:
Classification analysis report
"""
self.logger.info("Starting classification-based analysis...")
# Organize results by classification
classification_data = self.organize_by_classification(results)
# Calculate performance metrics
performance_metrics = self.calculate_performance_metrics(classification_data)
# Analyze tool effectiveness
tool_effectiveness = self.analyze_tool_effectiveness(classification_data)
# Identify improvement areas
improvement_areas = self.identify_improvement_areas(performance_metrics, tool_effectiveness)
# Create comprehensive report
analysis_report = {
"analysis_timestamp": datetime.now().isoformat(),
"total_questions": len(results),
"classification_breakdown": self.get_classification_breakdown(classification_data),
"performance_metrics": performance_metrics,
"tool_effectiveness": tool_effectiveness,
"improvement_areas": improvement_areas,
"detailed_data": classification_data
}
# Save analysis report
report_file = session_dir / "classification_analysis.json"
with open(report_file, 'w') as f:
json.dump(analysis_report, f, indent=2)
self.logger.info(f"Classification analysis saved to: {report_file}")
return analysis_report
def organize_by_classification(self, results: Dict[str, Dict]) -> Dict[str, List[Dict]]:
"""Organize results by question classification."""
classification_data = defaultdict(list)
for question_id, result in results.items():
# Get classification info
classification = result.get('classification', {})
primary_agent = classification.get('primary_agent', 'unknown')
# Add to classification group
classification_data[primary_agent].append({
'question_id': question_id,
'result': result,
'classification': classification
})
return dict(classification_data)
def calculate_performance_metrics(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, Dict]:
"""Calculate performance metrics for each classification."""
metrics = {}
for classification, questions in classification_data.items():
# Accuracy metrics
validation_statuses = []
execution_times = []
complexity_scores = []
confidence_scores = []
correct_count = 0
partial_count = 0
incorrect_count = 0
timeout_count = 0
error_count = 0
for question_data in questions:
result = question_data['result']
classification_info = question_data['classification']
# Validation status
validation = result.get('validation', {})
status = validation.get('validation_status', 'unknown')
validation_statuses.append(status)
if status == 'correct':
correct_count += 1
elif status == 'partial':
partial_count += 1
elif status == 'incorrect':
incorrect_count += 1
# Execution metrics
solver_result = result.get('solver_result', {})
if solver_result.get('status') == 'timeout':
timeout_count += 1
elif solver_result.get('status') == 'error':
error_count += 1
# Timing
exec_time = result.get('total_processing_time', 0)
if exec_time > 0:
execution_times.append(exec_time)
# Classification metrics
complexity = classification_info.get('complexity', 0)
if complexity > 0:
complexity_scores.append(complexity)
confidence = classification_info.get('confidence', 0)
if confidence > 0:
confidence_scores.append(confidence)
total_questions = len(questions)
# Calculate metrics
accuracy = correct_count / total_questions if total_questions > 0 else 0
partial_rate = partial_count / total_questions if total_questions > 0 else 0
error_rate = (error_count + timeout_count) / total_questions if total_questions > 0 else 0
metrics[classification] = {
"total_questions": total_questions,
"accuracy": accuracy,
"partial_accuracy": partial_rate,
"error_rate": error_rate,
"counts": {
"correct": correct_count,
"partial": partial_count,
"incorrect": incorrect_count,
"timeout": timeout_count,
"error": error_count
},
"execution_time": {
"mean": statistics.mean(execution_times) if execution_times else 0,
"median": statistics.median(execution_times) if execution_times else 0,
"max": max(execution_times) if execution_times else 0,
"min": min(execution_times) if execution_times else 0
},
"complexity": {
"mean": statistics.mean(complexity_scores) if complexity_scores else 0,
"distribution": Counter(complexity_scores)
},
"classification_confidence": {
"mean": statistics.mean(confidence_scores) if confidence_scores else 0,
"min": min(confidence_scores) if confidence_scores else 0
}
}
return metrics
def analyze_tool_effectiveness(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, Dict]:
"""Analyze tool effectiveness across classifications."""
tool_usage = defaultdict(lambda: {
'total_uses': 0,
'successes': 0,
'by_classification': defaultdict(lambda: {'uses': 0, 'successes': 0})
})
for classification, questions in classification_data.items():
for question_data in questions:
result = question_data['result']
classification_info = question_data['classification']
# Get tools needed
tools_needed = classification_info.get('tools_needed', [])
success = result.get('validation', {}).get('validation_status') == 'correct'
for tool in tools_needed:
tool_usage[tool]['total_uses'] += 1
tool_usage[tool]['by_classification'][classification]['uses'] += 1
if success:
tool_usage[tool]['successes'] += 1
tool_usage[tool]['by_classification'][classification]['successes'] += 1
# Calculate effectiveness rates
tool_effectiveness = {}
for tool, usage_data in tool_usage.items():
total_uses = usage_data['total_uses']
successes = usage_data['successes']
effectiveness_rate = successes / total_uses if total_uses > 0 else 0
# Per-classification effectiveness
classification_effectiveness = {}
for classification, class_data in usage_data['by_classification'].items():
class_uses = class_data['uses']
class_successes = class_data['successes']
class_rate = class_successes / class_uses if class_uses > 0 else 0
classification_effectiveness[classification] = {
'uses': class_uses,
'successes': class_successes,
'effectiveness_rate': class_rate
}
tool_effectiveness[tool] = {
'total_uses': total_uses,
'total_successes': successes,
'overall_effectiveness': effectiveness_rate,
'by_classification': classification_effectiveness
}
return tool_effectiveness
def identify_improvement_areas(self, performance_metrics: Dict, tool_effectiveness: Dict) -> Dict[str, List[str]]:
"""Identify specific improvement areas based on analysis."""
improvements = {
"low_accuracy_classifications": [],
"high_error_rate_classifications": [],
"slow_processing_classifications": [],
"ineffective_tools": [],
"misclassified_questions": [],
"recommendations": []
}
# Identify low accuracy classifications
for classification, metrics in performance_metrics.items():
accuracy = metrics['accuracy']
error_rate = metrics['error_rate']
avg_time = metrics['execution_time']['mean']
if accuracy < 0.5: # Less than 50% accuracy
improvements["low_accuracy_classifications"].append({
"classification": classification,
"accuracy": accuracy,
"details": f"Only {accuracy:.1%} accuracy with {metrics['total_questions']} questions"
})
if error_rate > 0.3: # More than 30% errors/timeouts
improvements["high_error_rate_classifications"].append({
"classification": classification,
"error_rate": error_rate,
"details": f"{error_rate:.1%} error/timeout rate"
})
if avg_time > 600: # More than 10 minutes average
improvements["slow_processing_classifications"].append({
"classification": classification,
"avg_time": avg_time,
"details": f"Average {avg_time:.0f} seconds processing time"
})
# Identify ineffective tools
for tool, effectiveness in tool_effectiveness.items():
overall_rate = effectiveness['overall_effectiveness']
total_uses = effectiveness['total_uses']
if overall_rate < 0.4 and total_uses >= 3: # Less than 40% effectiveness with meaningful usage
improvements["ineffective_tools"].append({
"tool": tool,
"effectiveness": overall_rate,
"uses": total_uses,
"details": f"Only {overall_rate:.1%} success rate across {total_uses} uses"
})
# Generate recommendations
recommendations = []
if improvements["low_accuracy_classifications"]:
worst_classification = min(improvements["low_accuracy_classifications"],
key=lambda x: x['accuracy'])
recommendations.append(
f"PRIORITY: Improve {worst_classification['classification']} agent "
f"(currently {worst_classification['accuracy']:.1%} accuracy)"
)
if improvements["ineffective_tools"]:
worst_tool = min(improvements["ineffective_tools"],
key=lambda x: x['effectiveness'])
recommendations.append(
f"TOOL FIX: Revise {worst_tool['tool']} tool "
f"(currently {worst_tool['effectiveness']:.1%} effectiveness)"
)
if improvements["high_error_rate_classifications"]:
recommendations.append(
"STABILITY: Address timeout and error handling for classifications with high error rates"
)
overall_accuracy = self.calculate_overall_accuracy(performance_metrics)
if overall_accuracy < 0.7:
recommendations.append(
f"SYSTEM: Overall accuracy is {overall_accuracy:.1%} - target 70% for production readiness"
)
improvements["recommendations"] = recommendations
return improvements
def calculate_overall_accuracy(self, performance_metrics: Dict) -> float:
"""Calculate overall system accuracy across all classifications."""
total_correct = 0
total_questions = 0
for metrics in performance_metrics.values():
total_correct += metrics['counts']['correct']
total_questions += metrics['total_questions']
return total_correct / total_questions if total_questions > 0 else 0
def get_classification_breakdown(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, int]:
"""Get simple breakdown of question counts by classification."""
return {
classification: len(questions)
for classification, questions in classification_data.items()
} |