File size: 28,522 Bytes
1a3088a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
#!/usr/bin/env python3
"""
GAIA Evaluator
A comprehensive evaluation system for analyzing GAIA agent performance across different dimensions.
"""

import json
import logging
from pathlib import Path
from typing import Dict, List, Any, Optional, Tuple
import statistics
from datetime import datetime
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

from answer_validator import AnswerValidator


class GAIAEvaluator:
    """
    A comprehensive evaluation system for GAIA benchmark performance analysis.
    Provides detailed metrics, visualizations, and comparative analysis.
    """
    
    def __init__(self, 
                 results_dir: Optional[str] = None,
                 validation_file: Optional[str] = "gaia_validation_metadata.jsonl"):
        """
        Initialize the GAIA evaluator.
        
        Args:
            results_dir: Directory containing test results (None to provide later)
            validation_file: Path to validation metadata file
        """
        self.logger = logging.getLogger("GAIAEvaluator")
        self.results_dir = Path(results_dir) if results_dir else None
        self.validation_file = Path(validation_file) if validation_file else None
        self.validator = AnswerValidator()
        
        # Performance metrics
        self.metrics = {}
        self.question_details = {}
        self.validation_data = {}
        
        # Load validation data if provided
        if self.validation_file and self.validation_file.exists():
            self._load_validation_data()
    
    def _load_validation_data(self) -> None:
        """Load validation data from JSONL file."""
        self.logger.info(f"Loading validation data from {self.validation_file}")
        
        try:
            with open(self.validation_file, 'r') as f:
                for line in f:
                    try:
                        entry = json.loads(line)
                        question_id = entry.get('question_id')
                        if question_id:
                            self.validation_data[question_id] = entry
                    except json.JSONDecodeError:
                        self.logger.warning(f"Could not parse line in validation file: {line[:50]}...")
        except Exception as e:
            self.logger.error(f"Error loading validation data: {e}")
    
    def set_results_directory(self, results_dir: str) -> None:
        """Set or update the results directory."""
        self.results_dir = Path(results_dir)
    
    def load_results(self, results_file: Optional[str] = None) -> Dict:
        """
        Load test results from the specified file or search for it.
        
        Args:
            results_file: Specific results file to load (None to search in results_dir)
            
        Returns:
            Dict of loaded results
        """
        if results_file:
            file_path = Path(results_file)
        elif self.results_dir:
            # Find the most recent results.json file
            json_files = list(self.results_dir.glob("**/results.json"))
            if not json_files:
                self.logger.error(f"No results.json files found in {self.results_dir}")
                return {}
            
            # Sort by modification time, newest first
            file_path = sorted(json_files, key=lambda x: x.stat().st_mtime, reverse=True)[0]
        else:
            self.logger.error("No results directory or file specified")
            return {}
        
        try:
            self.logger.info(f"Loading results from {file_path}")
            with open(file_path, 'r') as f:
                results = json.load(f)
                return results
        except Exception as e:
            self.logger.error(f"Error loading results: {e}")
            return {}
    
    def evaluate(self, results: Dict = None) -> Dict:
        """
        Evaluate GAIA test results with comprehensive metrics.
        
        Args:
            results: Test results dict (None to load from file)
            
        Returns:
            Dict of evaluation metrics
        """
        if not results:
            results = self.load_results()
            if not results:
                return {}
        
        # Calculate basic metrics
        total_questions = len(results)
        correct_answers = 0
        partial_answers = 0
        incorrect_answers = 0
        errors = 0
        timeouts = 0
        
        classification_accuracy = 0
        total_classified = 0
        
        processing_times = []
        confidence_scores = []
        
        # Analyze each question
        question_metrics = {}
        for question_id, data in results.items():
            # Extract validation status
            validation = data.get('validation', {})
            validation_status = validation.get('validation_status', 'error')
            
            # Basic counters
            if validation_status == 'correct':
                correct_answers += 1
            elif validation_status == 'partial':
                partial_answers += 1
            elif validation_status == 'incorrect':
                incorrect_answers += 1
            elif validation_status == 'error':
                errors += 1
            elif validation_status == 'timeout':
                timeouts += 1
                
            # Track processing time
            if 'processing_time' in data:
                processing_times.append(data['processing_time'])
                
            # Track confidence scores
            if 'confidence_score' in validation:
                confidence_scores.append(validation['confidence_score'])
                
            # Track classification accuracy
            if 'classification' in data:
                classification_data = data['classification']
                total_classified += 1
                if classification_data.get('is_correct', False):
                    classification_accuracy += 1
                    
            # Store detailed metrics per question
            question_metrics[question_id] = {
                'validation_status': validation_status,
                'processing_time': data.get('processing_time'),
                'confidence_score': validation.get('confidence_score'),
                'classification': data.get('classification', {}).get('classification'),
                'is_classification_correct': data.get('classification', {}).get('is_correct', False),
                'tools_used': data.get('tools_used', []),
                'steps_count': len(data.get('steps', [])),
            }
        
        # Calculate derived metrics
        accuracy = (correct_answers / total_questions) * 100 if total_questions > 0 else 0
        success_rate = ((correct_answers + partial_answers) / total_questions) * 100 if total_questions > 0 else 0
        classification_accuracy_pct = (classification_accuracy / total_classified) * 100 if total_classified > 0 else 0
        
        avg_processing_time = statistics.mean(processing_times) if processing_times else 0
        median_processing_time = statistics.median(processing_times) if processing_times else 0
        
        avg_confidence = statistics.mean(confidence_scores) if confidence_scores else 0
        
        # Store metrics
        self.metrics = {
            'total_questions': total_questions,
            'correct_answers': correct_answers,
            'partial_answers': partial_answers,
            'incorrect_answers': incorrect_answers,
            'errors': errors,
            'timeouts': timeouts,
            'accuracy': accuracy,
            'success_rate': success_rate,
            'classification_accuracy': classification_accuracy_pct,
            'avg_processing_time': avg_processing_time,
            'median_processing_time': median_processing_time,
            'avg_confidence_score': avg_confidence,
        }
        
        self.question_details = question_metrics
        
        return self.metrics
    
    def visualize_performance(self, output_dir: Optional[str] = None) -> None:
        """
        Generate visualizations of performance metrics.
        
        Args:
            output_dir: Directory to save visualizations (None to use results_dir)
        """
        if not self.metrics:
            self.logger.error("No metrics available. Run evaluate() first.")
            return
            
        if not output_dir:
            output_dir = self.results_dir
        
        output_path = Path(output_dir)
        output_path.mkdir(exist_ok=True)
        
        # Set the style
        sns.set(style="whitegrid")
        plt.rcParams.update({'font.size': 12})
        
        # Create visualizations
        self._create_accuracy_chart(output_path)
        self._create_timing_chart(output_path)
        self._create_question_type_chart(output_path)
        self._create_confidence_distribution(output_path)
        
    def _create_accuracy_chart(self, output_path: Path) -> None:
        """Create accuracy breakdown chart."""
        categories = ['Correct', 'Partial', 'Incorrect', 'Error', 'Timeout']
        values = [
            self.metrics['correct_answers'],
            self.metrics['partial_answers'],
            self.metrics['incorrect_answers'],
            self.metrics['errors'],
            self.metrics['timeouts']
        ]
        
        plt.figure(figsize=(10, 6))
        colors = ['#2ecc71', '#f39c12', '#e74c3c', '#7f8c8d', '#95a5a6']
        
        ax = plt.bar(categories, values, color=colors)
        
        for i, v in enumerate(values):
            plt.text(i, v + 0.1, str(v), ha='center')
        
        plt.title('Accuracy Breakdown')
        plt.ylabel('Number of Questions')
        plt.tight_layout()
        plt.savefig(output_path / 'accuracy_breakdown.png', dpi=300)
        plt.close()

    def _create_timing_chart(self, output_path: Path) -> None:
        """Create timing analysis chart."""
        if not self.question_details:
            return
            
        # Extract times and statuses
        times = []
        statuses = []
        labels = []
        
        for q_id, details in self.question_details.items():
            if details.get('processing_time'):
                times.append(details['processing_time'])
                statuses.append(details['validation_status'])
                labels.append(q_id)
        
        if not times:
            return
            
        # Convert to dataframe
        df = pd.DataFrame({
            'Question': labels,
            'Time (s)': times,
            'Status': statuses
        })
        
        # Sort by time
        df = df.sort_values('Time (s)', ascending=False)
        
        plt.figure(figsize=(12, 8))
        
        # Color mapping
        color_map = {
            'correct': '#2ecc71',
            'partial': '#f39c12',
            'incorrect': '#e74c3c',
            'error': '#7f8c8d',
            'timeout': '#95a5a6'
        }
        
        sns.barplot(x='Time (s)', y='Question', hue='Status', data=df, 
                   palette=color_map, dodge=False)
        
        plt.title('Processing Time by Question')
        plt.tight_layout()
        plt.savefig(output_path / 'processing_times.png', dpi=300)
        plt.close()

    def _create_question_type_chart(self, output_path: Path) -> None:
        """Create question type performance chart."""
        if not self.question_details:
            return
            
        # Group by classification type
        question_types = {}
        
        for q_id, details in self.question_details.items():
            q_type = details.get('classification', 'unknown')
            if q_type not in question_types:
                question_types[q_type] = {
                    'total': 0,
                    'correct': 0,
                    'partial': 0,
                    'incorrect': 0,
                    'other': 0
                }
                
            question_types[q_type]['total'] += 1
            
            status = details.get('validation_status')
            if status == 'correct':
                question_types[q_type]['correct'] += 1
            elif status == 'partial':
                question_types[q_type]['partial'] += 1
            elif status == 'incorrect':
                question_types[q_type]['incorrect'] += 1
            else:
                question_types[q_type]['other'] += 1
        
        # Convert to dataframe
        types = []
        statuses = []
        counts = []
        
        for q_type, stats in question_types.items():
            for status, count in stats.items():
                if status != 'total':
                    types.append(q_type)
                    statuses.append(status)
                    counts.append(count)
        
        df = pd.DataFrame({
            'Question Type': types,
            'Status': statuses,
            'Count': counts
        })
        
        plt.figure(figsize=(12, 8))
        
        # Create grouped bar chart
        sns.barplot(x='Question Type', y='Count', hue='Status', data=df)
        
        plt.title('Performance by Question Type')
        plt.tight_layout()
        plt.savefig(output_path / 'question_type_performance.png', dpi=300)
        plt.close()

    def _create_confidence_distribution(self, output_path: Path) -> None:
        """Create confidence score distribution chart."""
        if not self.question_details:
            return
            
        # Extract confidence scores and statuses
        scores = []
        statuses = []
        
        for details in self.question_details.values():
            conf_score = details.get('confidence_score')
            if conf_score is not None:
                scores.append(conf_score)
                statuses.append(details['validation_status'])
        
        if not scores:
            return
            
        # Create dataframe
        df = pd.DataFrame({
            'Confidence Score': scores,
            'Status': statuses
        })
        
        plt.figure(figsize=(10, 6))
        
        # Create histogram with KDE
        sns.histplot(data=df, x='Confidence Score', hue='Status', kde=True)
        
        plt.title('Confidence Score Distribution')
        plt.tight_layout()
        plt.savefig(output_path / 'confidence_distribution.png', dpi=300)
        plt.close()

    def generate_report(self, output_file: Optional[str] = None) -> str:
        """
        Generate a comprehensive evaluation report.
        
        Args:
            output_file: Path to save the report (None for no saving)
            
        Returns:
            HTML report as string
        """
        if not self.metrics:
            self.logger.error("No metrics available. Run evaluate() first.")
            return ""
            
        # Create report HTML
        report = f"""
        <html>
        <head>
            <title>GAIA Performance Evaluation Report</title>
            <style>
                body {{ font-family: Arial, sans-serif; margin: 20px; }}
                h1 {{ color: #2c3e50; }}
                h2 {{ color: #3498db; }}
                .metric-card {{ 
                    background-color: #f8f9fa;
                    border-radius: 8px;
                    padding: 15px;
                    margin-bottom: 20px;
                    box-shadow: 0 2px 5px rgba(0,0,0,0.1);
                }}
                .metric-title {{ font-weight: bold; margin-bottom: 8px; }}
                .metric-value {{ font-size: 24px; color: #2c3e50; }}
                .good {{ color: #2ecc71; }}
                .medium {{ color: #f39c12; }}
                .poor {{ color: #e74c3c; }}
                table {{ border-collapse: collapse; width: 100%; }}
                th, td {{ padding: 12px; text-align: left; border-bottom: 1px solid #ddd; }}
                th {{ background-color: #f2f2f2; }}
                tr:hover {{background-color: #f5f5f5;}}
                .chart-container {{ margin-top: 30px; margin-bottom: 30px; }}
                .chart {{ max-width: 100%; height: auto; }}
            </style>
        </head>
        <body>
            <h1>GAIA Performance Evaluation Report</h1>
            <p>Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</p>
            
            <div class="metric-card">
                <h2>Summary Metrics</h2>
                <div class="metric-row">
                    <div class="metric-title">Accuracy</div>
                    <div class="metric-value {self._get_color_class(self.metrics['accuracy'])}">
                        {self.metrics['accuracy']:.2f}%
                    </div>
                </div>
                <div class="metric-row">
                    <div class="metric-title">Success Rate (Correct + Partial)</div>
                    <div class="metric-value {self._get_color_class(self.metrics['success_rate'])}">
                        {self.metrics['success_rate']:.2f}%
                    </div>
                </div>
                <div class="metric-row">
                    <div class="metric-title">Classification Accuracy</div>
                    <div class="metric-value {self._get_color_class(self.metrics['classification_accuracy'])}">
                        {self.metrics['classification_accuracy']:.2f}%
                    </div>
                </div>
                <div class="metric-row">
                    <div class="metric-title">Average Processing Time</div>
                    <div class="metric-value">
                        {self.metrics['avg_processing_time']:.2f} seconds
                    </div>
                </div>
            </div>
            
            <div class="metric-card">
                <h2>Accuracy Breakdown</h2>
                <table>
                    <tr>
                        <th>Metric</th>
                        <th>Count</th>
                        <th>Percentage</th>
                    </tr>
                    <tr>
                        <td>Correct Answers</td>
                        <td>{self.metrics['correct_answers']}</td>
                        <td>{(self.metrics['correct_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
                    </tr>
                    <tr>
                        <td>Partial Answers</td>
                        <td>{self.metrics['partial_answers']}</td>
                        <td>{(self.metrics['partial_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
                    </tr>
                    <tr>
                        <td>Incorrect Answers</td>
                        <td>{self.metrics['incorrect_answers']}</td>
                        <td>{(self.metrics['incorrect_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
                    </tr>
                    <tr>
                        <td>Errors</td>
                        <td>{self.metrics['errors']}</td>
                        <td>{(self.metrics['errors'] / self.metrics['total_questions'] * 100):.2f}%</td>
                    </tr>
                    <tr>
                        <td>Timeouts</td>
                        <td>{self.metrics['timeouts']}</td>
                        <td>{(self.metrics['timeouts'] / self.metrics['total_questions'] * 100):.2f}%</td>
                    </tr>
                </table>
            </div>
            
            <!-- Include charts if available -->
            <div class="chart-container">
                <h2>Performance Visualizations</h2>
                <img class="chart" src="accuracy_breakdown.png" alt="Accuracy Breakdown" />
                <img class="chart" src="processing_times.png" alt="Processing Times" />
                <img class="chart" src="question_type_performance.png" alt="Question Type Performance" />
                <img class="chart" src="confidence_distribution.png" alt="Confidence Distribution" />
            </div>
            
            <!-- Detailed results table -->
            <div class="metric-card">
                <h2>Detailed Question Results</h2>
                <table>
                    <tr>
                        <th>Question ID</th>
                        <th>Status</th>
                        <th>Processing Time (s)</th>
                        <th>Confidence</th>
                        <th>Classification</th>
                    </tr>
                    {self._generate_question_rows()}
                </table>
            </div>
        </body>
        </html>
        """
        
        # Save if output file provided
        if output_file:
            try:
                with open(output_file, 'w') as f:
                    f.write(report)
                self.logger.info(f"Report saved to {output_file}")
            except Exception as e:
                self.logger.error(f"Error saving report: {e}")
                
        return report
    
    def _get_color_class(self, value: float) -> str:
        """Get CSS class based on value."""
        if value >= 80:
            return "good"
        elif value >= 60:
            return "medium"
        else:
            return "poor"
    
    def _generate_question_rows(self) -> str:
        """Generate HTML table rows for question details."""
        rows = ""
        for q_id, details in self.question_details.items():
            status = details.get('validation_status', 'unknown')
            proc_time = f"{details.get('processing_time', 'N/A'):.2f}" if details.get('processing_time') else 'N/A'
            confidence = f"{details.get('confidence_score', 'N/A'):.2f}" if details.get('confidence_score') is not None else 'N/A'
            classification = details.get('classification', 'unknown')
            
            # Get status class
            status_class = ""
            if status == 'correct':
                status_class = "good"
            elif status == 'partial':
                status_class = "medium"
            elif status in ('incorrect', 'error', 'timeout'):
                status_class = "poor"
                
            rows += f"""
            <tr>
                <td>{q_id}</td>
                <td class="{status_class}">{status}</td>
                <td>{proc_time}</td>
                <td>{confidence}</td>
                <td>{classification}</td>
            </tr>
            """
        return rows
    
    def compare_runs(self, results_files: List[str], labels: List[str]) -> Dict:
        """
        Compare metrics across multiple test runs.
        
        Args:
            results_files: List of results files to compare
            labels: Labels for each run
            
        Returns:
            Dict with comparison data
        """
        if len(results_files) != len(labels):
            self.logger.error("Number of result files must match number of labels")
            return {}
            
        comparison_data = {
            'runs': {},
            'metrics': ['accuracy', 'success_rate', 'classification_accuracy', 
                       'avg_processing_time', 'correct_answers', 'partial_answers',
                       'incorrect_answers', 'errors', 'timeouts']
        }
        
        for i, (file_path, label) in enumerate(zip(results_files, labels)):
            # Create a temporary evaluator to analyze this run
            temp_evaluator = GAIAEvaluator(validation_file=self.validation_file)
            results = temp_evaluator.load_results(file_path)
            metrics = temp_evaluator.evaluate(results)
            
            if metrics:
                comparison_data['runs'][label] = metrics
        
        return comparison_data
    
    def visualize_comparison(self, comparison_data: Dict, output_dir: str) -> None:
        """
        Create visualizations comparing multiple runs.
        
        Args:
            comparison_data: Data from compare_runs method
            output_dir: Directory to save visualizations
        """
        if not comparison_data or not comparison_data.get('runs'):
            self.logger.error("No comparison data available")
            return
            
        output_path = Path(output_dir)
        output_path.mkdir(exist_ok=True)
        
        # Set style
        sns.set(style="whitegrid")
        plt.rcParams.update({'font.size': 12})
        
        # Get run labels and metrics
        run_labels = list(comparison_data['runs'].keys())
        all_metrics = comparison_data['metrics']
        
        # Create bar chart for key metrics
        key_metrics = ['accuracy', 'success_rate', 'classification_accuracy']
        
        # Extract data
        metric_values = {metric: [] for metric in key_metrics}
        
        for run_label in run_labels:
            run_data = comparison_data['runs'][run_label]
            for metric in key_metrics:
                metric_values[metric].append(run_data.get(metric, 0))
        
        # Create grouped bar chart
        plt.figure(figsize=(12, 8))
        x = np.arange(len(run_labels))
        width = 0.25
        
        for i, metric in enumerate(key_metrics):
            plt.bar(x + i*width - width, metric_values[metric], width, label=metric.replace('_', ' ').title())
        
        plt.xlabel('Test Run')
        plt.ylabel('Percentage')
        plt.title('Key Metrics Comparison')
        plt.xticks(x, run_labels)
        plt.legend()
        plt.tight_layout()
        plt.savefig(output_path / 'metrics_comparison.png', dpi=300)
        plt.close()
        
        # Create processing time comparison
        times = [comparison_data['runs'][label].get('avg_processing_time', 0) for label in run_labels]
        
        plt.figure(figsize=(10, 6))
        plt.bar(run_labels, times)
        plt.xlabel('Test Run')
        plt.ylabel('Average Processing Time (s)')
        plt.title('Processing Time Comparison')
        plt.tight_layout()
        plt.savefig(output_path / 'processing_time_comparison.png', dpi=300)
        plt.close()


if __name__ == "__main__":
    import argparse
    
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
        handlers=[logging.StreamHandler()]
    )
    
    # Parse arguments
    parser = argparse.ArgumentParser(description="GAIA Benchmark Evaluation Tool")
    parser.add_argument("--results_dir", type=str, help="Directory containing test results")
    parser.add_argument("--results_file", type=str, help="Specific results file to evaluate")
    parser.add_argument("--validation_file", type=str, default="gaia_validation_metadata.jsonl", 
                       help="Path to validation metadata file")
    parser.add_argument("--output_dir", type=str, help="Directory to save evaluation outputs")
    parser.add_argument("--report_file", type=str, help="Path to save HTML report")
    parser.add_argument("--compare", action="store_true", help="Compare multiple test runs")
    parser.add_argument("--compare_files", type=str, nargs="+", help="List of files to compare")
    parser.add_argument("--compare_labels", type=str, nargs="+", help="Labels for comparison runs")
    
    args = parser.parse_args()
    
    # Initialize evaluator
    evaluator = GAIAEvaluator(
        results_dir=args.results_dir,
        validation_file=args.validation_file
    )
    
    # Handle comparison mode
    if args.compare and args.compare_files and args.compare_labels:
        comparison_data = evaluator.compare_runs(args.compare_files, args.compare_labels)
        if comparison_data and args.output_dir:
            evaluator.visualize_comparison(comparison_data, args.output_dir)
            print(f"Comparison visualizations saved to {args.output_dir}")
    else:
        # Regular evaluation
        if args.results_file:
            results = evaluator.load_results(args.results_file)
        else:
            results = evaluator.load_results()
            
        if results:
            metrics = evaluator.evaluate(results)
            print(f"Evaluation metrics: {metrics}")
            
            if args.output_dir:
                evaluator.visualize_performance(args.output_dir)
                print(f"Performance visualizations saved to {args.output_dir}")
                
            if args.report_file:
                evaluator.generate_report(args.report_file)
                print(f"Report saved to {args.report_file}")