Spaces:
Running
Running
GAIA Developer
Claude
commited on
Commit
ยท
1a3088a
1
Parent(s):
1fc2038
๐ feat: Add comprehensive GAIA evaluation system and batch testing infrastructure
Browse files- Add GAIAEvaluator with performance analysis, metrics, and visualizations
- Add improved batch testing system with async processing support
- Support detailed question analysis and comparative evaluation
- Include test session logging and performance tracking
๐ค Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
- app/gaia_evaluator.py +740 -0
- app/improved_gaia_batch_test.py +0 -0
app/gaia_evaluator.py
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
GAIA Evaluator
|
4 |
+
A comprehensive evaluation system for analyzing GAIA agent performance across different dimensions.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Dict, List, Any, Optional, Tuple
|
11 |
+
import statistics
|
12 |
+
from datetime import datetime
|
13 |
+
import pandas as pd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import seaborn as sns
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from answer_validator import AnswerValidator
|
19 |
+
|
20 |
+
|
21 |
+
class GAIAEvaluator:
|
22 |
+
"""
|
23 |
+
A comprehensive evaluation system for GAIA benchmark performance analysis.
|
24 |
+
Provides detailed metrics, visualizations, and comparative analysis.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self,
|
28 |
+
results_dir: Optional[str] = None,
|
29 |
+
validation_file: Optional[str] = "gaia_validation_metadata.jsonl"):
|
30 |
+
"""
|
31 |
+
Initialize the GAIA evaluator.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
results_dir: Directory containing test results (None to provide later)
|
35 |
+
validation_file: Path to validation metadata file
|
36 |
+
"""
|
37 |
+
self.logger = logging.getLogger("GAIAEvaluator")
|
38 |
+
self.results_dir = Path(results_dir) if results_dir else None
|
39 |
+
self.validation_file = Path(validation_file) if validation_file else None
|
40 |
+
self.validator = AnswerValidator()
|
41 |
+
|
42 |
+
# Performance metrics
|
43 |
+
self.metrics = {}
|
44 |
+
self.question_details = {}
|
45 |
+
self.validation_data = {}
|
46 |
+
|
47 |
+
# Load validation data if provided
|
48 |
+
if self.validation_file and self.validation_file.exists():
|
49 |
+
self._load_validation_data()
|
50 |
+
|
51 |
+
def _load_validation_data(self) -> None:
|
52 |
+
"""Load validation data from JSONL file."""
|
53 |
+
self.logger.info(f"Loading validation data from {self.validation_file}")
|
54 |
+
|
55 |
+
try:
|
56 |
+
with open(self.validation_file, 'r') as f:
|
57 |
+
for line in f:
|
58 |
+
try:
|
59 |
+
entry = json.loads(line)
|
60 |
+
question_id = entry.get('question_id')
|
61 |
+
if question_id:
|
62 |
+
self.validation_data[question_id] = entry
|
63 |
+
except json.JSONDecodeError:
|
64 |
+
self.logger.warning(f"Could not parse line in validation file: {line[:50]}...")
|
65 |
+
except Exception as e:
|
66 |
+
self.logger.error(f"Error loading validation data: {e}")
|
67 |
+
|
68 |
+
def set_results_directory(self, results_dir: str) -> None:
|
69 |
+
"""Set or update the results directory."""
|
70 |
+
self.results_dir = Path(results_dir)
|
71 |
+
|
72 |
+
def load_results(self, results_file: Optional[str] = None) -> Dict:
|
73 |
+
"""
|
74 |
+
Load test results from the specified file or search for it.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
results_file: Specific results file to load (None to search in results_dir)
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
Dict of loaded results
|
81 |
+
"""
|
82 |
+
if results_file:
|
83 |
+
file_path = Path(results_file)
|
84 |
+
elif self.results_dir:
|
85 |
+
# Find the most recent results.json file
|
86 |
+
json_files = list(self.results_dir.glob("**/results.json"))
|
87 |
+
if not json_files:
|
88 |
+
self.logger.error(f"No results.json files found in {self.results_dir}")
|
89 |
+
return {}
|
90 |
+
|
91 |
+
# Sort by modification time, newest first
|
92 |
+
file_path = sorted(json_files, key=lambda x: x.stat().st_mtime, reverse=True)[0]
|
93 |
+
else:
|
94 |
+
self.logger.error("No results directory or file specified")
|
95 |
+
return {}
|
96 |
+
|
97 |
+
try:
|
98 |
+
self.logger.info(f"Loading results from {file_path}")
|
99 |
+
with open(file_path, 'r') as f:
|
100 |
+
results = json.load(f)
|
101 |
+
return results
|
102 |
+
except Exception as e:
|
103 |
+
self.logger.error(f"Error loading results: {e}")
|
104 |
+
return {}
|
105 |
+
|
106 |
+
def evaluate(self, results: Dict = None) -> Dict:
|
107 |
+
"""
|
108 |
+
Evaluate GAIA test results with comprehensive metrics.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
results: Test results dict (None to load from file)
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
Dict of evaluation metrics
|
115 |
+
"""
|
116 |
+
if not results:
|
117 |
+
results = self.load_results()
|
118 |
+
if not results:
|
119 |
+
return {}
|
120 |
+
|
121 |
+
# Calculate basic metrics
|
122 |
+
total_questions = len(results)
|
123 |
+
correct_answers = 0
|
124 |
+
partial_answers = 0
|
125 |
+
incorrect_answers = 0
|
126 |
+
errors = 0
|
127 |
+
timeouts = 0
|
128 |
+
|
129 |
+
classification_accuracy = 0
|
130 |
+
total_classified = 0
|
131 |
+
|
132 |
+
processing_times = []
|
133 |
+
confidence_scores = []
|
134 |
+
|
135 |
+
# Analyze each question
|
136 |
+
question_metrics = {}
|
137 |
+
for question_id, data in results.items():
|
138 |
+
# Extract validation status
|
139 |
+
validation = data.get('validation', {})
|
140 |
+
validation_status = validation.get('validation_status', 'error')
|
141 |
+
|
142 |
+
# Basic counters
|
143 |
+
if validation_status == 'correct':
|
144 |
+
correct_answers += 1
|
145 |
+
elif validation_status == 'partial':
|
146 |
+
partial_answers += 1
|
147 |
+
elif validation_status == 'incorrect':
|
148 |
+
incorrect_answers += 1
|
149 |
+
elif validation_status == 'error':
|
150 |
+
errors += 1
|
151 |
+
elif validation_status == 'timeout':
|
152 |
+
timeouts += 1
|
153 |
+
|
154 |
+
# Track processing time
|
155 |
+
if 'processing_time' in data:
|
156 |
+
processing_times.append(data['processing_time'])
|
157 |
+
|
158 |
+
# Track confidence scores
|
159 |
+
if 'confidence_score' in validation:
|
160 |
+
confidence_scores.append(validation['confidence_score'])
|
161 |
+
|
162 |
+
# Track classification accuracy
|
163 |
+
if 'classification' in data:
|
164 |
+
classification_data = data['classification']
|
165 |
+
total_classified += 1
|
166 |
+
if classification_data.get('is_correct', False):
|
167 |
+
classification_accuracy += 1
|
168 |
+
|
169 |
+
# Store detailed metrics per question
|
170 |
+
question_metrics[question_id] = {
|
171 |
+
'validation_status': validation_status,
|
172 |
+
'processing_time': data.get('processing_time'),
|
173 |
+
'confidence_score': validation.get('confidence_score'),
|
174 |
+
'classification': data.get('classification', {}).get('classification'),
|
175 |
+
'is_classification_correct': data.get('classification', {}).get('is_correct', False),
|
176 |
+
'tools_used': data.get('tools_used', []),
|
177 |
+
'steps_count': len(data.get('steps', [])),
|
178 |
+
}
|
179 |
+
|
180 |
+
# Calculate derived metrics
|
181 |
+
accuracy = (correct_answers / total_questions) * 100 if total_questions > 0 else 0
|
182 |
+
success_rate = ((correct_answers + partial_answers) / total_questions) * 100 if total_questions > 0 else 0
|
183 |
+
classification_accuracy_pct = (classification_accuracy / total_classified) * 100 if total_classified > 0 else 0
|
184 |
+
|
185 |
+
avg_processing_time = statistics.mean(processing_times) if processing_times else 0
|
186 |
+
median_processing_time = statistics.median(processing_times) if processing_times else 0
|
187 |
+
|
188 |
+
avg_confidence = statistics.mean(confidence_scores) if confidence_scores else 0
|
189 |
+
|
190 |
+
# Store metrics
|
191 |
+
self.metrics = {
|
192 |
+
'total_questions': total_questions,
|
193 |
+
'correct_answers': correct_answers,
|
194 |
+
'partial_answers': partial_answers,
|
195 |
+
'incorrect_answers': incorrect_answers,
|
196 |
+
'errors': errors,
|
197 |
+
'timeouts': timeouts,
|
198 |
+
'accuracy': accuracy,
|
199 |
+
'success_rate': success_rate,
|
200 |
+
'classification_accuracy': classification_accuracy_pct,
|
201 |
+
'avg_processing_time': avg_processing_time,
|
202 |
+
'median_processing_time': median_processing_time,
|
203 |
+
'avg_confidence_score': avg_confidence,
|
204 |
+
}
|
205 |
+
|
206 |
+
self.question_details = question_metrics
|
207 |
+
|
208 |
+
return self.metrics
|
209 |
+
|
210 |
+
def visualize_performance(self, output_dir: Optional[str] = None) -> None:
|
211 |
+
"""
|
212 |
+
Generate visualizations of performance metrics.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
output_dir: Directory to save visualizations (None to use results_dir)
|
216 |
+
"""
|
217 |
+
if not self.metrics:
|
218 |
+
self.logger.error("No metrics available. Run evaluate() first.")
|
219 |
+
return
|
220 |
+
|
221 |
+
if not output_dir:
|
222 |
+
output_dir = self.results_dir
|
223 |
+
|
224 |
+
output_path = Path(output_dir)
|
225 |
+
output_path.mkdir(exist_ok=True)
|
226 |
+
|
227 |
+
# Set the style
|
228 |
+
sns.set(style="whitegrid")
|
229 |
+
plt.rcParams.update({'font.size': 12})
|
230 |
+
|
231 |
+
# Create visualizations
|
232 |
+
self._create_accuracy_chart(output_path)
|
233 |
+
self._create_timing_chart(output_path)
|
234 |
+
self._create_question_type_chart(output_path)
|
235 |
+
self._create_confidence_distribution(output_path)
|
236 |
+
|
237 |
+
def _create_accuracy_chart(self, output_path: Path) -> None:
|
238 |
+
"""Create accuracy breakdown chart."""
|
239 |
+
categories = ['Correct', 'Partial', 'Incorrect', 'Error', 'Timeout']
|
240 |
+
values = [
|
241 |
+
self.metrics['correct_answers'],
|
242 |
+
self.metrics['partial_answers'],
|
243 |
+
self.metrics['incorrect_answers'],
|
244 |
+
self.metrics['errors'],
|
245 |
+
self.metrics['timeouts']
|
246 |
+
]
|
247 |
+
|
248 |
+
plt.figure(figsize=(10, 6))
|
249 |
+
colors = ['#2ecc71', '#f39c12', '#e74c3c', '#7f8c8d', '#95a5a6']
|
250 |
+
|
251 |
+
ax = plt.bar(categories, values, color=colors)
|
252 |
+
|
253 |
+
for i, v in enumerate(values):
|
254 |
+
plt.text(i, v + 0.1, str(v), ha='center')
|
255 |
+
|
256 |
+
plt.title('Accuracy Breakdown')
|
257 |
+
plt.ylabel('Number of Questions')
|
258 |
+
plt.tight_layout()
|
259 |
+
plt.savefig(output_path / 'accuracy_breakdown.png', dpi=300)
|
260 |
+
plt.close()
|
261 |
+
|
262 |
+
def _create_timing_chart(self, output_path: Path) -> None:
|
263 |
+
"""Create timing analysis chart."""
|
264 |
+
if not self.question_details:
|
265 |
+
return
|
266 |
+
|
267 |
+
# Extract times and statuses
|
268 |
+
times = []
|
269 |
+
statuses = []
|
270 |
+
labels = []
|
271 |
+
|
272 |
+
for q_id, details in self.question_details.items():
|
273 |
+
if details.get('processing_time'):
|
274 |
+
times.append(details['processing_time'])
|
275 |
+
statuses.append(details['validation_status'])
|
276 |
+
labels.append(q_id)
|
277 |
+
|
278 |
+
if not times:
|
279 |
+
return
|
280 |
+
|
281 |
+
# Convert to dataframe
|
282 |
+
df = pd.DataFrame({
|
283 |
+
'Question': labels,
|
284 |
+
'Time (s)': times,
|
285 |
+
'Status': statuses
|
286 |
+
})
|
287 |
+
|
288 |
+
# Sort by time
|
289 |
+
df = df.sort_values('Time (s)', ascending=False)
|
290 |
+
|
291 |
+
plt.figure(figsize=(12, 8))
|
292 |
+
|
293 |
+
# Color mapping
|
294 |
+
color_map = {
|
295 |
+
'correct': '#2ecc71',
|
296 |
+
'partial': '#f39c12',
|
297 |
+
'incorrect': '#e74c3c',
|
298 |
+
'error': '#7f8c8d',
|
299 |
+
'timeout': '#95a5a6'
|
300 |
+
}
|
301 |
+
|
302 |
+
sns.barplot(x='Time (s)', y='Question', hue='Status', data=df,
|
303 |
+
palette=color_map, dodge=False)
|
304 |
+
|
305 |
+
plt.title('Processing Time by Question')
|
306 |
+
plt.tight_layout()
|
307 |
+
plt.savefig(output_path / 'processing_times.png', dpi=300)
|
308 |
+
plt.close()
|
309 |
+
|
310 |
+
def _create_question_type_chart(self, output_path: Path) -> None:
|
311 |
+
"""Create question type performance chart."""
|
312 |
+
if not self.question_details:
|
313 |
+
return
|
314 |
+
|
315 |
+
# Group by classification type
|
316 |
+
question_types = {}
|
317 |
+
|
318 |
+
for q_id, details in self.question_details.items():
|
319 |
+
q_type = details.get('classification', 'unknown')
|
320 |
+
if q_type not in question_types:
|
321 |
+
question_types[q_type] = {
|
322 |
+
'total': 0,
|
323 |
+
'correct': 0,
|
324 |
+
'partial': 0,
|
325 |
+
'incorrect': 0,
|
326 |
+
'other': 0
|
327 |
+
}
|
328 |
+
|
329 |
+
question_types[q_type]['total'] += 1
|
330 |
+
|
331 |
+
status = details.get('validation_status')
|
332 |
+
if status == 'correct':
|
333 |
+
question_types[q_type]['correct'] += 1
|
334 |
+
elif status == 'partial':
|
335 |
+
question_types[q_type]['partial'] += 1
|
336 |
+
elif status == 'incorrect':
|
337 |
+
question_types[q_type]['incorrect'] += 1
|
338 |
+
else:
|
339 |
+
question_types[q_type]['other'] += 1
|
340 |
+
|
341 |
+
# Convert to dataframe
|
342 |
+
types = []
|
343 |
+
statuses = []
|
344 |
+
counts = []
|
345 |
+
|
346 |
+
for q_type, stats in question_types.items():
|
347 |
+
for status, count in stats.items():
|
348 |
+
if status != 'total':
|
349 |
+
types.append(q_type)
|
350 |
+
statuses.append(status)
|
351 |
+
counts.append(count)
|
352 |
+
|
353 |
+
df = pd.DataFrame({
|
354 |
+
'Question Type': types,
|
355 |
+
'Status': statuses,
|
356 |
+
'Count': counts
|
357 |
+
})
|
358 |
+
|
359 |
+
plt.figure(figsize=(12, 8))
|
360 |
+
|
361 |
+
# Create grouped bar chart
|
362 |
+
sns.barplot(x='Question Type', y='Count', hue='Status', data=df)
|
363 |
+
|
364 |
+
plt.title('Performance by Question Type')
|
365 |
+
plt.tight_layout()
|
366 |
+
plt.savefig(output_path / 'question_type_performance.png', dpi=300)
|
367 |
+
plt.close()
|
368 |
+
|
369 |
+
def _create_confidence_distribution(self, output_path: Path) -> None:
|
370 |
+
"""Create confidence score distribution chart."""
|
371 |
+
if not self.question_details:
|
372 |
+
return
|
373 |
+
|
374 |
+
# Extract confidence scores and statuses
|
375 |
+
scores = []
|
376 |
+
statuses = []
|
377 |
+
|
378 |
+
for details in self.question_details.values():
|
379 |
+
conf_score = details.get('confidence_score')
|
380 |
+
if conf_score is not None:
|
381 |
+
scores.append(conf_score)
|
382 |
+
statuses.append(details['validation_status'])
|
383 |
+
|
384 |
+
if not scores:
|
385 |
+
return
|
386 |
+
|
387 |
+
# Create dataframe
|
388 |
+
df = pd.DataFrame({
|
389 |
+
'Confidence Score': scores,
|
390 |
+
'Status': statuses
|
391 |
+
})
|
392 |
+
|
393 |
+
plt.figure(figsize=(10, 6))
|
394 |
+
|
395 |
+
# Create histogram with KDE
|
396 |
+
sns.histplot(data=df, x='Confidence Score', hue='Status', kde=True)
|
397 |
+
|
398 |
+
plt.title('Confidence Score Distribution')
|
399 |
+
plt.tight_layout()
|
400 |
+
plt.savefig(output_path / 'confidence_distribution.png', dpi=300)
|
401 |
+
plt.close()
|
402 |
+
|
403 |
+
def generate_report(self, output_file: Optional[str] = None) -> str:
|
404 |
+
"""
|
405 |
+
Generate a comprehensive evaluation report.
|
406 |
+
|
407 |
+
Args:
|
408 |
+
output_file: Path to save the report (None for no saving)
|
409 |
+
|
410 |
+
Returns:
|
411 |
+
HTML report as string
|
412 |
+
"""
|
413 |
+
if not self.metrics:
|
414 |
+
self.logger.error("No metrics available. Run evaluate() first.")
|
415 |
+
return ""
|
416 |
+
|
417 |
+
# Create report HTML
|
418 |
+
report = f"""
|
419 |
+
<html>
|
420 |
+
<head>
|
421 |
+
<title>GAIA Performance Evaluation Report</title>
|
422 |
+
<style>
|
423 |
+
body {{ font-family: Arial, sans-serif; margin: 20px; }}
|
424 |
+
h1 {{ color: #2c3e50; }}
|
425 |
+
h2 {{ color: #3498db; }}
|
426 |
+
.metric-card {{
|
427 |
+
background-color: #f8f9fa;
|
428 |
+
border-radius: 8px;
|
429 |
+
padding: 15px;
|
430 |
+
margin-bottom: 20px;
|
431 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
432 |
+
}}
|
433 |
+
.metric-title {{ font-weight: bold; margin-bottom: 8px; }}
|
434 |
+
.metric-value {{ font-size: 24px; color: #2c3e50; }}
|
435 |
+
.good {{ color: #2ecc71; }}
|
436 |
+
.medium {{ color: #f39c12; }}
|
437 |
+
.poor {{ color: #e74c3c; }}
|
438 |
+
table {{ border-collapse: collapse; width: 100%; }}
|
439 |
+
th, td {{ padding: 12px; text-align: left; border-bottom: 1px solid #ddd; }}
|
440 |
+
th {{ background-color: #f2f2f2; }}
|
441 |
+
tr:hover {{background-color: #f5f5f5;}}
|
442 |
+
.chart-container {{ margin-top: 30px; margin-bottom: 30px; }}
|
443 |
+
.chart {{ max-width: 100%; height: auto; }}
|
444 |
+
</style>
|
445 |
+
</head>
|
446 |
+
<body>
|
447 |
+
<h1>GAIA Performance Evaluation Report</h1>
|
448 |
+
<p>Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</p>
|
449 |
+
|
450 |
+
<div class="metric-card">
|
451 |
+
<h2>Summary Metrics</h2>
|
452 |
+
<div class="metric-row">
|
453 |
+
<div class="metric-title">Accuracy</div>
|
454 |
+
<div class="metric-value {self._get_color_class(self.metrics['accuracy'])}">
|
455 |
+
{self.metrics['accuracy']:.2f}%
|
456 |
+
</div>
|
457 |
+
</div>
|
458 |
+
<div class="metric-row">
|
459 |
+
<div class="metric-title">Success Rate (Correct + Partial)</div>
|
460 |
+
<div class="metric-value {self._get_color_class(self.metrics['success_rate'])}">
|
461 |
+
{self.metrics['success_rate']:.2f}%
|
462 |
+
</div>
|
463 |
+
</div>
|
464 |
+
<div class="metric-row">
|
465 |
+
<div class="metric-title">Classification Accuracy</div>
|
466 |
+
<div class="metric-value {self._get_color_class(self.metrics['classification_accuracy'])}">
|
467 |
+
{self.metrics['classification_accuracy']:.2f}%
|
468 |
+
</div>
|
469 |
+
</div>
|
470 |
+
<div class="metric-row">
|
471 |
+
<div class="metric-title">Average Processing Time</div>
|
472 |
+
<div class="metric-value">
|
473 |
+
{self.metrics['avg_processing_time']:.2f} seconds
|
474 |
+
</div>
|
475 |
+
</div>
|
476 |
+
</div>
|
477 |
+
|
478 |
+
<div class="metric-card">
|
479 |
+
<h2>Accuracy Breakdown</h2>
|
480 |
+
<table>
|
481 |
+
<tr>
|
482 |
+
<th>Metric</th>
|
483 |
+
<th>Count</th>
|
484 |
+
<th>Percentage</th>
|
485 |
+
</tr>
|
486 |
+
<tr>
|
487 |
+
<td>Correct Answers</td>
|
488 |
+
<td>{self.metrics['correct_answers']}</td>
|
489 |
+
<td>{(self.metrics['correct_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
490 |
+
</tr>
|
491 |
+
<tr>
|
492 |
+
<td>Partial Answers</td>
|
493 |
+
<td>{self.metrics['partial_answers']}</td>
|
494 |
+
<td>{(self.metrics['partial_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
495 |
+
</tr>
|
496 |
+
<tr>
|
497 |
+
<td>Incorrect Answers</td>
|
498 |
+
<td>{self.metrics['incorrect_answers']}</td>
|
499 |
+
<td>{(self.metrics['incorrect_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
500 |
+
</tr>
|
501 |
+
<tr>
|
502 |
+
<td>Errors</td>
|
503 |
+
<td>{self.metrics['errors']}</td>
|
504 |
+
<td>{(self.metrics['errors'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
505 |
+
</tr>
|
506 |
+
<tr>
|
507 |
+
<td>Timeouts</td>
|
508 |
+
<td>{self.metrics['timeouts']}</td>
|
509 |
+
<td>{(self.metrics['timeouts'] / self.metrics['total_questions'] * 100):.2f}%</td>
|
510 |
+
</tr>
|
511 |
+
</table>
|
512 |
+
</div>
|
513 |
+
|
514 |
+
<!-- Include charts if available -->
|
515 |
+
<div class="chart-container">
|
516 |
+
<h2>Performance Visualizations</h2>
|
517 |
+
<img class="chart" src="accuracy_breakdown.png" alt="Accuracy Breakdown" />
|
518 |
+
<img class="chart" src="processing_times.png" alt="Processing Times" />
|
519 |
+
<img class="chart" src="question_type_performance.png" alt="Question Type Performance" />
|
520 |
+
<img class="chart" src="confidence_distribution.png" alt="Confidence Distribution" />
|
521 |
+
</div>
|
522 |
+
|
523 |
+
<!-- Detailed results table -->
|
524 |
+
<div class="metric-card">
|
525 |
+
<h2>Detailed Question Results</h2>
|
526 |
+
<table>
|
527 |
+
<tr>
|
528 |
+
<th>Question ID</th>
|
529 |
+
<th>Status</th>
|
530 |
+
<th>Processing Time (s)</th>
|
531 |
+
<th>Confidence</th>
|
532 |
+
<th>Classification</th>
|
533 |
+
</tr>
|
534 |
+
{self._generate_question_rows()}
|
535 |
+
</table>
|
536 |
+
</div>
|
537 |
+
</body>
|
538 |
+
</html>
|
539 |
+
"""
|
540 |
+
|
541 |
+
# Save if output file provided
|
542 |
+
if output_file:
|
543 |
+
try:
|
544 |
+
with open(output_file, 'w') as f:
|
545 |
+
f.write(report)
|
546 |
+
self.logger.info(f"Report saved to {output_file}")
|
547 |
+
except Exception as e:
|
548 |
+
self.logger.error(f"Error saving report: {e}")
|
549 |
+
|
550 |
+
return report
|
551 |
+
|
552 |
+
def _get_color_class(self, value: float) -> str:
|
553 |
+
"""Get CSS class based on value."""
|
554 |
+
if value >= 80:
|
555 |
+
return "good"
|
556 |
+
elif value >= 60:
|
557 |
+
return "medium"
|
558 |
+
else:
|
559 |
+
return "poor"
|
560 |
+
|
561 |
+
def _generate_question_rows(self) -> str:
|
562 |
+
"""Generate HTML table rows for question details."""
|
563 |
+
rows = ""
|
564 |
+
for q_id, details in self.question_details.items():
|
565 |
+
status = details.get('validation_status', 'unknown')
|
566 |
+
proc_time = f"{details.get('processing_time', 'N/A'):.2f}" if details.get('processing_time') else 'N/A'
|
567 |
+
confidence = f"{details.get('confidence_score', 'N/A'):.2f}" if details.get('confidence_score') is not None else 'N/A'
|
568 |
+
classification = details.get('classification', 'unknown')
|
569 |
+
|
570 |
+
# Get status class
|
571 |
+
status_class = ""
|
572 |
+
if status == 'correct':
|
573 |
+
status_class = "good"
|
574 |
+
elif status == 'partial':
|
575 |
+
status_class = "medium"
|
576 |
+
elif status in ('incorrect', 'error', 'timeout'):
|
577 |
+
status_class = "poor"
|
578 |
+
|
579 |
+
rows += f"""
|
580 |
+
<tr>
|
581 |
+
<td>{q_id}</td>
|
582 |
+
<td class="{status_class}">{status}</td>
|
583 |
+
<td>{proc_time}</td>
|
584 |
+
<td>{confidence}</td>
|
585 |
+
<td>{classification}</td>
|
586 |
+
</tr>
|
587 |
+
"""
|
588 |
+
return rows
|
589 |
+
|
590 |
+
def compare_runs(self, results_files: List[str], labels: List[str]) -> Dict:
|
591 |
+
"""
|
592 |
+
Compare metrics across multiple test runs.
|
593 |
+
|
594 |
+
Args:
|
595 |
+
results_files: List of results files to compare
|
596 |
+
labels: Labels for each run
|
597 |
+
|
598 |
+
Returns:
|
599 |
+
Dict with comparison data
|
600 |
+
"""
|
601 |
+
if len(results_files) != len(labels):
|
602 |
+
self.logger.error("Number of result files must match number of labels")
|
603 |
+
return {}
|
604 |
+
|
605 |
+
comparison_data = {
|
606 |
+
'runs': {},
|
607 |
+
'metrics': ['accuracy', 'success_rate', 'classification_accuracy',
|
608 |
+
'avg_processing_time', 'correct_answers', 'partial_answers',
|
609 |
+
'incorrect_answers', 'errors', 'timeouts']
|
610 |
+
}
|
611 |
+
|
612 |
+
for i, (file_path, label) in enumerate(zip(results_files, labels)):
|
613 |
+
# Create a temporary evaluator to analyze this run
|
614 |
+
temp_evaluator = GAIAEvaluator(validation_file=self.validation_file)
|
615 |
+
results = temp_evaluator.load_results(file_path)
|
616 |
+
metrics = temp_evaluator.evaluate(results)
|
617 |
+
|
618 |
+
if metrics:
|
619 |
+
comparison_data['runs'][label] = metrics
|
620 |
+
|
621 |
+
return comparison_data
|
622 |
+
|
623 |
+
def visualize_comparison(self, comparison_data: Dict, output_dir: str) -> None:
|
624 |
+
"""
|
625 |
+
Create visualizations comparing multiple runs.
|
626 |
+
|
627 |
+
Args:
|
628 |
+
comparison_data: Data from compare_runs method
|
629 |
+
output_dir: Directory to save visualizations
|
630 |
+
"""
|
631 |
+
if not comparison_data or not comparison_data.get('runs'):
|
632 |
+
self.logger.error("No comparison data available")
|
633 |
+
return
|
634 |
+
|
635 |
+
output_path = Path(output_dir)
|
636 |
+
output_path.mkdir(exist_ok=True)
|
637 |
+
|
638 |
+
# Set style
|
639 |
+
sns.set(style="whitegrid")
|
640 |
+
plt.rcParams.update({'font.size': 12})
|
641 |
+
|
642 |
+
# Get run labels and metrics
|
643 |
+
run_labels = list(comparison_data['runs'].keys())
|
644 |
+
all_metrics = comparison_data['metrics']
|
645 |
+
|
646 |
+
# Create bar chart for key metrics
|
647 |
+
key_metrics = ['accuracy', 'success_rate', 'classification_accuracy']
|
648 |
+
|
649 |
+
# Extract data
|
650 |
+
metric_values = {metric: [] for metric in key_metrics}
|
651 |
+
|
652 |
+
for run_label in run_labels:
|
653 |
+
run_data = comparison_data['runs'][run_label]
|
654 |
+
for metric in key_metrics:
|
655 |
+
metric_values[metric].append(run_data.get(metric, 0))
|
656 |
+
|
657 |
+
# Create grouped bar chart
|
658 |
+
plt.figure(figsize=(12, 8))
|
659 |
+
x = np.arange(len(run_labels))
|
660 |
+
width = 0.25
|
661 |
+
|
662 |
+
for i, metric in enumerate(key_metrics):
|
663 |
+
plt.bar(x + i*width - width, metric_values[metric], width, label=metric.replace('_', ' ').title())
|
664 |
+
|
665 |
+
plt.xlabel('Test Run')
|
666 |
+
plt.ylabel('Percentage')
|
667 |
+
plt.title('Key Metrics Comparison')
|
668 |
+
plt.xticks(x, run_labels)
|
669 |
+
plt.legend()
|
670 |
+
plt.tight_layout()
|
671 |
+
plt.savefig(output_path / 'metrics_comparison.png', dpi=300)
|
672 |
+
plt.close()
|
673 |
+
|
674 |
+
# Create processing time comparison
|
675 |
+
times = [comparison_data['runs'][label].get('avg_processing_time', 0) for label in run_labels]
|
676 |
+
|
677 |
+
plt.figure(figsize=(10, 6))
|
678 |
+
plt.bar(run_labels, times)
|
679 |
+
plt.xlabel('Test Run')
|
680 |
+
plt.ylabel('Average Processing Time (s)')
|
681 |
+
plt.title('Processing Time Comparison')
|
682 |
+
plt.tight_layout()
|
683 |
+
plt.savefig(output_path / 'processing_time_comparison.png', dpi=300)
|
684 |
+
plt.close()
|
685 |
+
|
686 |
+
|
687 |
+
if __name__ == "__main__":
|
688 |
+
import argparse
|
689 |
+
|
690 |
+
# Configure logging
|
691 |
+
logging.basicConfig(
|
692 |
+
level=logging.INFO,
|
693 |
+
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
|
694 |
+
handlers=[logging.StreamHandler()]
|
695 |
+
)
|
696 |
+
|
697 |
+
# Parse arguments
|
698 |
+
parser = argparse.ArgumentParser(description="GAIA Benchmark Evaluation Tool")
|
699 |
+
parser.add_argument("--results_dir", type=str, help="Directory containing test results")
|
700 |
+
parser.add_argument("--results_file", type=str, help="Specific results file to evaluate")
|
701 |
+
parser.add_argument("--validation_file", type=str, default="gaia_validation_metadata.jsonl",
|
702 |
+
help="Path to validation metadata file")
|
703 |
+
parser.add_argument("--output_dir", type=str, help="Directory to save evaluation outputs")
|
704 |
+
parser.add_argument("--report_file", type=str, help="Path to save HTML report")
|
705 |
+
parser.add_argument("--compare", action="store_true", help="Compare multiple test runs")
|
706 |
+
parser.add_argument("--compare_files", type=str, nargs="+", help="List of files to compare")
|
707 |
+
parser.add_argument("--compare_labels", type=str, nargs="+", help="Labels for comparison runs")
|
708 |
+
|
709 |
+
args = parser.parse_args()
|
710 |
+
|
711 |
+
# Initialize evaluator
|
712 |
+
evaluator = GAIAEvaluator(
|
713 |
+
results_dir=args.results_dir,
|
714 |
+
validation_file=args.validation_file
|
715 |
+
)
|
716 |
+
|
717 |
+
# Handle comparison mode
|
718 |
+
if args.compare and args.compare_files and args.compare_labels:
|
719 |
+
comparison_data = evaluator.compare_runs(args.compare_files, args.compare_labels)
|
720 |
+
if comparison_data and args.output_dir:
|
721 |
+
evaluator.visualize_comparison(comparison_data, args.output_dir)
|
722 |
+
print(f"Comparison visualizations saved to {args.output_dir}")
|
723 |
+
else:
|
724 |
+
# Regular evaluation
|
725 |
+
if args.results_file:
|
726 |
+
results = evaluator.load_results(args.results_file)
|
727 |
+
else:
|
728 |
+
results = evaluator.load_results()
|
729 |
+
|
730 |
+
if results:
|
731 |
+
metrics = evaluator.evaluate(results)
|
732 |
+
print(f"Evaluation metrics: {metrics}")
|
733 |
+
|
734 |
+
if args.output_dir:
|
735 |
+
evaluator.visualize_performance(args.output_dir)
|
736 |
+
print(f"Performance visualizations saved to {args.output_dir}")
|
737 |
+
|
738 |
+
if args.report_file:
|
739 |
+
evaluator.generate_report(args.report_file)
|
740 |
+
print(f"Report saved to {args.report_file}")
|
app/improved_gaia_batch_test.py
ADDED
File without changes
|