File size: 2,045 Bytes
10458eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import torch
from PIL import Image
import gradio as gr
from transformers import Blip2Processor, Blip2ForConditionalGeneration, pipeline
from gtts import gTTS
import os
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load BLIP-2
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b",
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
# Load Whisper pipeline for speech-to-text
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base")
# Store image globally
current_image = {"image": None}
def load_image(image):
current_image["image"] = image
return "Image uploaded. Now ask a question via voice."
def ask_question(audio):
if current_image["image"] is None:
return "Please upload an image first.", None
# Transcribe speech
question = whisper_pipe(audio)["text"]
# Ask BLIP-2
inputs = processor(current_image["image"], question, return_tensors="pt").to(device, torch.float16 if device == "cuda" else torch.float32)
output = model.generate(**inputs, max_new_tokens=100)
answer = processor.decode(output[0], skip_special_tokens=True)
# Convert to speech
tts = gTTS(answer)
tts.save("answer.mp3")
return f"Q: {question}\nA: {answer}", "answer.mp3"
# Gradio UI
with gr.Blocks() as app:
gr.Markdown("# 🧠🖼️ Ask-the-Image with BLIP-2 + Whisper + gTTS")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Image")
image_status = gr.Textbox(label="Status", interactive=False)
audio_input = gr.Audio(type="filepath", label="Ask a Question (voice)", microphone=True)
output_text = gr.Textbox(label="Q&A", lines=4)
output_audio = gr.Audio(label="Answer (speech)")
image_input.change(fn=load_image, inputs=image_input, outputs=image_status)
audio_input.change(fn=ask_question, inputs=audio_input, outputs=[output_text, output_audio])
app.launch()
|