Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,59 @@
|
|
1 |
-
import torch
|
2 |
-
from PIL import Image
|
3 |
-
import gradio as gr
|
4 |
-
from transformers import Blip2Processor, Blip2ForConditionalGeneration, pipeline
|
5 |
-
from gtts import gTTS
|
6 |
-
import os
|
7 |
-
|
8 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
|
10 |
-
# Load BLIP-2
|
11 |
-
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
12 |
-
model = Blip2ForConditionalGeneration.from_pretrained(
|
13 |
-
"Salesforce/blip2-opt-2.7b",
|
14 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
15 |
-
).to(device)
|
16 |
-
|
17 |
-
# Load Whisper pipeline for speech-to-text
|
18 |
-
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
19 |
-
|
20 |
-
# Store image globally
|
21 |
-
current_image = {"image": None}
|
22 |
-
|
23 |
-
def load_image(image):
|
24 |
-
current_image["image"] = image
|
25 |
-
return "Image uploaded. Now ask a question via voice."
|
26 |
-
|
27 |
-
def ask_question(audio):
|
28 |
-
if current_image["image"] is None:
|
29 |
-
return "Please upload an image first.", None
|
30 |
-
|
31 |
-
# Transcribe speech
|
32 |
-
question = whisper_pipe(audio)["text"]
|
33 |
-
|
34 |
-
# Ask BLIP-2
|
35 |
-
inputs = processor(current_image["image"], question, return_tensors="pt").to(device, torch.float16 if device == "cuda" else torch.float32)
|
36 |
-
output = model.generate(**inputs, max_new_tokens=100)
|
37 |
-
answer = processor.decode(output[0], skip_special_tokens=True)
|
38 |
-
|
39 |
-
# Convert to speech
|
40 |
-
tts = gTTS(answer)
|
41 |
-
tts.save("answer.mp3")
|
42 |
-
|
43 |
-
return f"Q: {question}\nA: {answer}", "answer.mp3"
|
44 |
-
|
45 |
-
# Gradio UI
|
46 |
-
with gr.Blocks() as app:
|
47 |
-
gr.Markdown("# 🧠🖼️ Ask-the-Image with BLIP-2 + Whisper + gTTS")
|
48 |
-
with gr.Row():
|
49 |
-
image_input = gr.Image(type="pil", label="Upload Image")
|
50 |
-
image_status = gr.Textbox(label="Status", interactive=False)
|
51 |
-
|
52 |
-
audio_input = gr.Audio(
|
53 |
-
output_text = gr.Textbox(label="Q&A", lines=4)
|
54 |
-
output_audio = gr.Audio(label="Answer (speech)")
|
55 |
-
|
56 |
-
image_input.change(fn=load_image, inputs=image_input, outputs=image_status)
|
57 |
-
audio_input.change(fn=ask_question, inputs=audio_input, outputs=[output_text, output_audio])
|
58 |
-
|
59 |
-
app.launch()
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration, pipeline
|
5 |
+
from gtts import gTTS
|
6 |
+
import os
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Load BLIP-2
|
11 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
12 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
13 |
+
"Salesforce/blip2-opt-2.7b",
|
14 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
15 |
+
).to(device)
|
16 |
+
|
17 |
+
# Load Whisper pipeline for speech-to-text
|
18 |
+
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
19 |
+
|
20 |
+
# Store image globally
|
21 |
+
current_image = {"image": None}
|
22 |
+
|
23 |
+
def load_image(image):
|
24 |
+
current_image["image"] = image
|
25 |
+
return "Image uploaded. Now ask a question via voice."
|
26 |
+
|
27 |
+
def ask_question(audio):
|
28 |
+
if current_image["image"] is None:
|
29 |
+
return "Please upload an image first.", None
|
30 |
+
|
31 |
+
# Transcribe speech
|
32 |
+
question = whisper_pipe(audio)["text"]
|
33 |
+
|
34 |
+
# Ask BLIP-2
|
35 |
+
inputs = processor(current_image["image"], question, return_tensors="pt").to(device, torch.float16 if device == "cuda" else torch.float32)
|
36 |
+
output = model.generate(**inputs, max_new_tokens=100)
|
37 |
+
answer = processor.decode(output[0], skip_special_tokens=True)
|
38 |
+
|
39 |
+
# Convert to speech
|
40 |
+
tts = gTTS(answer)
|
41 |
+
tts.save("answer.mp3")
|
42 |
+
|
43 |
+
return f"Q: {question}\nA: {answer}", "answer.mp3"
|
44 |
+
|
45 |
+
# Gradio UI
|
46 |
+
with gr.Blocks() as app:
|
47 |
+
gr.Markdown("# 🧠🖼️ Ask-the-Image with BLIP-2 + Whisper + gTTS")
|
48 |
+
with gr.Row():
|
49 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
50 |
+
image_status = gr.Textbox(label="Status", interactive=False)
|
51 |
+
|
52 |
+
audio_input = gr.Audio(type="filepath", label="Ask a Question (voice)", microphone=True)
|
53 |
+
output_text = gr.Textbox(label="Q&A", lines=4)
|
54 |
+
output_audio = gr.Audio(label="Answer (speech)")
|
55 |
+
|
56 |
+
image_input.change(fn=load_image, inputs=image_input, outputs=image_status)
|
57 |
+
audio_input.change(fn=ask_question, inputs=audio_input, outputs=[output_text, output_audio])
|
58 |
+
|
59 |
+
app.launch()
|