SongGeneration / generate_lowmem.py
waytan22's picture
fix some typo
93f7efb
raw
history blame
9.86 kB
import sys
import os
import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from codeclm.models import builders
from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml
auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto']
class Separator:
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
self.device = torch.device(f"cuda:{gpu_id}")
else:
self.device = torch.device("cpu")
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)
def init_demucs_model(self, model_path, config_path):
model = get_model_from_yaml(config_path, model_path)
model.to(self.device)
model.eval()
return model
def load_audio(self, f):
a, fs = torchaudio.load(f)
if (fs != 48000):
a = torchaudio.functional.resample(a, fs, 48000)
if a.shape[-1] >= 48000*10:
a = a[..., :48000*10]
else:
a = torch.cat([a, a], -1)
return a[:, 0:48000*10]
def run(self, audio_path, output_dir='tmp', ext=".flac"):
os.makedirs(output_dir, exist_ok=True)
name, _ = os.path.splitext(os.path.split(audio_path)[-1])
output_paths = []
for stem in self.demucs_model.sources:
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
if os.path.exists(output_path):
output_paths.append(output_path)
if len(output_paths) == 1: # 4
vocal_path = output_paths[0]
else:
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
for path in [drums_path, bass_path, other_path]:
os.remove(path)
full_audio = self.load_audio(audio_path)
vocal_audio = self.load_audio(vocal_path)
bgm_audio = full_audio - vocal_audio
return full_audio, vocal_audio, bgm_audio
if __name__ == "__main__":
torch.backends.cudnn.enabled = False
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
np.random.seed(int(time.time()))
ckpt_path = sys.argv[1]
input_jsonl = sys.argv[2]
save_dir = sys.argv[3]
cfg_path = os.path.join(ckpt_path, 'config.yaml')
ckpt_path = os.path.join(ckpt_path, 'model.pt')
cfg = OmegaConf.load(cfg_path)
cfg.mode = 'inference'
max_duration = cfg.max_dur
separator = Separator()
auto_prompt = torch.load('ckpt/prompt.pt')
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg)
if "audio_tokenizer_checkpoint_sep" in cfg.keys():
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
else:
seperate_tokenizer = None
audio_tokenizer = audio_tokenizer.eval().cuda()
if seperate_tokenizer is not None:
seperate_tokenizer = seperate_tokenizer.eval().cuda()
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
new_items = []
for line in lines:
item = json.loads(line)
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
# get prompt audio
if "prompt_audio_path" in item:
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
item['raw_pmt_wav'] = pmt_wav
item['raw_vocal_wav'] = vocal_wav
item['raw_bgm_wav'] = bgm_wav
if pmt_wav.dim() == 2:
pmt_wav = pmt_wav[None]
if pmt_wav.dim() != 3:
raise ValueError("Melody wavs should have a shape [B, C, T].")
pmt_wav = list(pmt_wav)
if vocal_wav.dim() == 2:
vocal_wav = vocal_wav[None]
if vocal_wav.dim() != 3:
raise ValueError("Vocal wavs should have a shape [B, C, T].")
vocal_wav = list(vocal_wav)
if bgm_wav.dim() == 2:
bgm_wav = bgm_wav[None]
if bgm_wav.dim() != 3:
raise ValueError("BGM wavs should have a shape [B, C, T].")
bgm_wav = list(bgm_wav)
if type(pmt_wav) == list:
pmt_wav = torch.stack(pmt_wav, dim=0)
if type(vocal_wav) == list:
vocal_wav = torch.stack(vocal_wav, dim=0)
if type(bgm_wav) == list:
bgm_wav = torch.stack(bgm_wav, dim=0)
pmt_wav = pmt_wav.cuda()
vocal_wav = vocal_wav.cuda()
bgm_wav = bgm_wav.cuda()
pmt_wav, _ = audio_tokenizer.encode(pmt_wav)
vocal_wav, bgm_wav = seperate_tokenizer.encode(vocal_wav, bgm_wav)
melody_is_wav = False
elif "auto_prompt_audio_type" in item:
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
if item["auto_prompt_audio_type"] == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
item['pmt_wav'] = pmt_wav
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
item['melody_is_wav'] = melody_is_wav
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
new_items.append(item)
del audio_tokenizer
del seperate_tokenizer
del separator
# Define model or load pretrained model
model_light = CodecLM_PL(cfg, ckpt_path)
model_light = model_light.eval()
model_light.audiolm.cfg = cfg
model = CodecLM(name = "tmp",
lm = model_light.audiolm,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = None,
)
del model_light
model.lm = model.lm.cuda().to(torch.float16)
cfg_coef = 1.5 #25
temp = 0.9
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
for item in new_items:
lyric = item["gt_lyric"]
descriptions = item["descriptions"] if "descriptions" in item else None
pmt_wav = item['pmt_wav']
vocal_wav = item['vocal_wav']
bgm_wav = item['bgm_wav']
melody_is_wav = item['melody_is_wav']
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
with torch.autocast(device_type="cuda", dtype=torch.float16):
tokens = model.generate(**generate_inp, return_tokens=True)
item['tokens'] = tokens
del model
torch.cuda.empty_cache()
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
seperate_tokenizer = seperate_tokenizer.eval().cuda()
model = CodecLM(name = "tmp",
lm = None,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = seperate_tokenizer,
)
for item in new_items:
with torch.no_grad():
if 'raw_pmt_wav' in item:
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True)
del item['raw_pmt_wav']
del item['raw_vocal_wav']
del item['raw_bgm_wav']
else:
wav_seperate = model.generate_audio(item['tokens'], chunked=True)
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
del item['tokens']
del item['pmt_wav']
del item['vocal_wav']
del item['bgm_wav']
del item['melody_is_wav']
torch.cuda.empty_cache()
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")