File size: 9,861 Bytes
93f7efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import sys
import os

import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from codeclm.models import builders

from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml

auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto']

class Separator:
    def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
        if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
            self.device = torch.device(f"cuda:{gpu_id}")
        else:
            self.device = torch.device("cpu")
        self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)

    def init_demucs_model(self, model_path, config_path):
        model = get_model_from_yaml(config_path, model_path)
        model.to(self.device)
        model.eval()
        return model
    
    def load_audio(self, f):
        a, fs = torchaudio.load(f)
        if (fs != 48000):
            a = torchaudio.functional.resample(a, fs, 48000)
        if a.shape[-1] >= 48000*10:
            a = a[..., :48000*10]
        else:
            a = torch.cat([a, a], -1)
        return a[:, 0:48000*10]
    
    def run(self, audio_path, output_dir='tmp', ext=".flac"):
        os.makedirs(output_dir, exist_ok=True)
        name, _ = os.path.splitext(os.path.split(audio_path)[-1])
        output_paths = []

        for stem in self.demucs_model.sources:
            output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
            if os.path.exists(output_path):
                output_paths.append(output_path)
        if len(output_paths) == 1:  # 4
            vocal_path = output_paths[0]
        else:
            drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
            for path in [drums_path, bass_path, other_path]:
                os.remove(path)
        full_audio = self.load_audio(audio_path)
        vocal_audio = self.load_audio(vocal_path)
        bgm_audio = full_audio - vocal_audio
        return full_audio, vocal_audio, bgm_audio



if __name__ == "__main__":
    torch.backends.cudnn.enabled = False
    OmegaConf.register_new_resolver("eval", lambda x: eval(x))
    OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
    OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
    OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
    np.random.seed(int(time.time()))    
    ckpt_path = sys.argv[1]
    input_jsonl = sys.argv[2]
    save_dir = sys.argv[3]
    cfg_path = os.path.join(ckpt_path, 'config.yaml')
    ckpt_path = os.path.join(ckpt_path, 'model.pt')
    cfg = OmegaConf.load(cfg_path)
    cfg.mode = 'inference'
    max_duration = cfg.max_dur
    
    separator = Separator()
    auto_prompt = torch.load('ckpt/prompt.pt')
    audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg)
    if "audio_tokenizer_checkpoint_sep" in cfg.keys():
        seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
    else:
        seperate_tokenizer = None
    audio_tokenizer = audio_tokenizer.eval().cuda()
    if seperate_tokenizer is not None:
        seperate_tokenizer = seperate_tokenizer.eval().cuda()

    merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
    with open(input_jsonl, "r") as fp:
        lines = fp.readlines()
    new_items = []
    for line in lines:
        item = json.loads(line)
        target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
        # get prompt audio
        if "prompt_audio_path" in item:
            assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
            assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
            pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
            item['raw_pmt_wav'] = pmt_wav
            item['raw_vocal_wav'] = vocal_wav
            item['raw_bgm_wav'] = bgm_wav
            if pmt_wav.dim() == 2:
                pmt_wav = pmt_wav[None]
            if pmt_wav.dim() != 3:
                raise ValueError("Melody wavs should have a shape [B, C, T].")
            pmt_wav = list(pmt_wav)
            if vocal_wav.dim() == 2:
                vocal_wav = vocal_wav[None]
            if vocal_wav.dim() != 3:
                raise ValueError("Vocal wavs should have a shape [B, C, T].")
            vocal_wav = list(vocal_wav)
            if bgm_wav.dim() == 2:
                bgm_wav = bgm_wav[None]
            if bgm_wav.dim() != 3:
                raise ValueError("BGM wavs should have a shape [B, C, T].")
            bgm_wav = list(bgm_wav)
            if type(pmt_wav) == list:
                pmt_wav = torch.stack(pmt_wav, dim=0)
            if type(vocal_wav) == list:
                vocal_wav = torch.stack(vocal_wav, dim=0)
            if type(bgm_wav) == list:
                bgm_wav = torch.stack(bgm_wav, dim=0)
            pmt_wav = pmt_wav.cuda()
            vocal_wav = vocal_wav.cuda()
            bgm_wav = bgm_wav.cuda()
            pmt_wav, _ = audio_tokenizer.encode(pmt_wav)
            vocal_wav, bgm_wav = seperate_tokenizer.encode(vocal_wav, bgm_wav)
            melody_is_wav = False
        elif "auto_prompt_audio_type" in item:
            assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
            if item["auto_prompt_audio_type"] == "Auto": 
                prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
            else:
                prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
            pmt_wav = prompt_token[:,[0],:]
            vocal_wav = prompt_token[:,[1],:]
            bgm_wav = prompt_token[:,[2],:]
            melody_is_wav = False
        else:
            pmt_wav = None
            vocal_wav = None
            bgm_wav = None
            melody_is_wav = True
        item['pmt_wav'] = pmt_wav
        item['vocal_wav'] = vocal_wav
        item['bgm_wav'] = bgm_wav
        item['melody_is_wav'] = melody_is_wav
        item["idx"] = f"{item['idx']}"
        item["wav_path"] = target_wav_name
        new_items.append(item)

    del audio_tokenizer
    del seperate_tokenizer
    del separator

    # Define model or load pretrained model
    model_light = CodecLM_PL(cfg, ckpt_path)
    model_light = model_light.eval()
    model_light.audiolm.cfg = cfg
    model = CodecLM(name = "tmp",
        lm = model_light.audiolm,
        audiotokenizer = None,
        max_duration = max_duration,
        seperate_tokenizer = None,
    )
    del model_light
    model.lm = model.lm.cuda().to(torch.float16)
    
    cfg_coef = 1.5 #25
    temp = 0.9
    top_k = 50
    top_p = 0.0
    record_tokens = True
    record_window = 50

    model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
                                top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
    os.makedirs(save_dir, exist_ok=True)
    os.makedirs(save_dir + "/audios", exist_ok=True)
    os.makedirs(save_dir + "/jsonl", exist_ok=True)

    
    for item in new_items:
        lyric = item["gt_lyric"]
        descriptions = item["descriptions"] if "descriptions" in item else None
        pmt_wav = item['pmt_wav']
        vocal_wav = item['vocal_wav']
        bgm_wav = item['bgm_wav']
        melody_is_wav = item['melody_is_wav']
            
        generate_inp = {
            'lyrics': [lyric.replace("  ", " ")],
            'descriptions': [descriptions],
            'melody_wavs': pmt_wav,
            'vocal_wavs': vocal_wav,
            'bgm_wavs': bgm_wav,
            'melody_is_wav': melody_is_wav,
        }
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            tokens = model.generate(**generate_inp, return_tokens=True)
        item['tokens'] = tokens
    
    del model
    torch.cuda.empty_cache()


    seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
    seperate_tokenizer = seperate_tokenizer.eval().cuda()

    model = CodecLM(name = "tmp",
        lm = None,
        audiotokenizer = None,
        max_duration = max_duration,
        seperate_tokenizer = seperate_tokenizer,
    )
    for item in new_items:
        with torch.no_grad():
            if 'raw_pmt_wav' in item:   
                wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True)
                del item['raw_pmt_wav']
                del item['raw_vocal_wav']
                del item['raw_bgm_wav']
            else:
                wav_seperate = model.generate_audio(item['tokens'], chunked=True)
        torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
        del item['tokens']
        del item['pmt_wav']
        del item['vocal_wav']
        del item['bgm_wav']
        del item['melody_is_wav']
        
    torch.cuda.empty_cache()
    src_jsonl_name = os.path.split(input_jsonl)[-1]
    with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
        for item in new_items:
            fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")