Spaces:
Running
on
L40S
Running
on
L40S
File size: 9,861 Bytes
93f7efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import sys
import os
import time
import json
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from codeclm.models import builders
from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from third_party.demucs.models.pretrained import get_model_from_yaml
auto_prompt_type = ['Pop', 'R&B', 'Dance', 'Jazz', 'Folk', 'Rock', 'Chinese Style', 'Chinese Tradition', 'Metal', 'Reggae', 'Chinese Opera', 'Auto']
class Separator:
def __init__(self, dm_model_path='third_party/demucs/ckpt/htdemucs.pth', dm_config_path='third_party/demucs/ckpt/htdemucs.yaml', gpu_id=0) -> None:
if torch.cuda.is_available() and gpu_id < torch.cuda.device_count():
self.device = torch.device(f"cuda:{gpu_id}")
else:
self.device = torch.device("cpu")
self.demucs_model = self.init_demucs_model(dm_model_path, dm_config_path)
def init_demucs_model(self, model_path, config_path):
model = get_model_from_yaml(config_path, model_path)
model.to(self.device)
model.eval()
return model
def load_audio(self, f):
a, fs = torchaudio.load(f)
if (fs != 48000):
a = torchaudio.functional.resample(a, fs, 48000)
if a.shape[-1] >= 48000*10:
a = a[..., :48000*10]
else:
a = torch.cat([a, a], -1)
return a[:, 0:48000*10]
def run(self, audio_path, output_dir='tmp', ext=".flac"):
os.makedirs(output_dir, exist_ok=True)
name, _ = os.path.splitext(os.path.split(audio_path)[-1])
output_paths = []
for stem in self.demucs_model.sources:
output_path = os.path.join(output_dir, f"{name}_{stem}{ext}")
if os.path.exists(output_path):
output_paths.append(output_path)
if len(output_paths) == 1: # 4
vocal_path = output_paths[0]
else:
drums_path, bass_path, other_path, vocal_path = self.demucs_model.separate(audio_path, output_dir, device=self.device)
for path in [drums_path, bass_path, other_path]:
os.remove(path)
full_audio = self.load_audio(audio_path)
vocal_audio = self.load_audio(vocal_path)
bgm_audio = full_audio - vocal_audio
return full_audio, vocal_audio, bgm_audio
if __name__ == "__main__":
torch.backends.cudnn.enabled = False
OmegaConf.register_new_resolver("eval", lambda x: eval(x))
OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
OmegaConf.register_new_resolver("get_fname", lambda: os.path.splitext(os.path.basename(sys.argv[1]))[0])
OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))
np.random.seed(int(time.time()))
ckpt_path = sys.argv[1]
input_jsonl = sys.argv[2]
save_dir = sys.argv[3]
cfg_path = os.path.join(ckpt_path, 'config.yaml')
ckpt_path = os.path.join(ckpt_path, 'model.pt')
cfg = OmegaConf.load(cfg_path)
cfg.mode = 'inference'
max_duration = cfg.max_dur
separator = Separator()
auto_prompt = torch.load('ckpt/prompt.pt')
audio_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint, cfg)
if "audio_tokenizer_checkpoint_sep" in cfg.keys():
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
else:
seperate_tokenizer = None
audio_tokenizer = audio_tokenizer.eval().cuda()
if seperate_tokenizer is not None:
seperate_tokenizer = seperate_tokenizer.eval().cuda()
merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
with open(input_jsonl, "r") as fp:
lines = fp.readlines()
new_items = []
for line in lines:
item = json.loads(line)
target_wav_name = f"{save_dir}/audios/{item['idx']}.flac"
# get prompt audio
if "prompt_audio_path" in item:
assert os.path.exists(item['prompt_audio_path']), f"prompt_audio_path {item['prompt_audio_path']} not found"
assert 'auto_prompt_audio_type' not in item, f"auto_prompt_audio_type and prompt_audio_path cannot be used together"
pmt_wav, vocal_wav, bgm_wav = separator.run(item['prompt_audio_path'])
item['raw_pmt_wav'] = pmt_wav
item['raw_vocal_wav'] = vocal_wav
item['raw_bgm_wav'] = bgm_wav
if pmt_wav.dim() == 2:
pmt_wav = pmt_wav[None]
if pmt_wav.dim() != 3:
raise ValueError("Melody wavs should have a shape [B, C, T].")
pmt_wav = list(pmt_wav)
if vocal_wav.dim() == 2:
vocal_wav = vocal_wav[None]
if vocal_wav.dim() != 3:
raise ValueError("Vocal wavs should have a shape [B, C, T].")
vocal_wav = list(vocal_wav)
if bgm_wav.dim() == 2:
bgm_wav = bgm_wav[None]
if bgm_wav.dim() != 3:
raise ValueError("BGM wavs should have a shape [B, C, T].")
bgm_wav = list(bgm_wav)
if type(pmt_wav) == list:
pmt_wav = torch.stack(pmt_wav, dim=0)
if type(vocal_wav) == list:
vocal_wav = torch.stack(vocal_wav, dim=0)
if type(bgm_wav) == list:
bgm_wav = torch.stack(bgm_wav, dim=0)
pmt_wav = pmt_wav.cuda()
vocal_wav = vocal_wav.cuda()
bgm_wav = bgm_wav.cuda()
pmt_wav, _ = audio_tokenizer.encode(pmt_wav)
vocal_wav, bgm_wav = seperate_tokenizer.encode(vocal_wav, bgm_wav)
melody_is_wav = False
elif "auto_prompt_audio_type" in item:
assert item["auto_prompt_audio_type"] in auto_prompt_type, f"auto_prompt_audio_type {item['auto_prompt_audio_type']} not found"
if item["auto_prompt_audio_type"] == "Auto":
prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
else:
prompt_token = auto_prompt[item["auto_prompt_audio_type"]][np.random.randint(0, len(auto_prompt[item["auto_prompt_audio_type"]]))]
pmt_wav = prompt_token[:,[0],:]
vocal_wav = prompt_token[:,[1],:]
bgm_wav = prompt_token[:,[2],:]
melody_is_wav = False
else:
pmt_wav = None
vocal_wav = None
bgm_wav = None
melody_is_wav = True
item['pmt_wav'] = pmt_wav
item['vocal_wav'] = vocal_wav
item['bgm_wav'] = bgm_wav
item['melody_is_wav'] = melody_is_wav
item["idx"] = f"{item['idx']}"
item["wav_path"] = target_wav_name
new_items.append(item)
del audio_tokenizer
del seperate_tokenizer
del separator
# Define model or load pretrained model
model_light = CodecLM_PL(cfg, ckpt_path)
model_light = model_light.eval()
model_light.audiolm.cfg = cfg
model = CodecLM(name = "tmp",
lm = model_light.audiolm,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = None,
)
del model_light
model.lm = model.lm.cuda().to(torch.float16)
cfg_coef = 1.5 #25
temp = 0.9
top_k = 50
top_p = 0.0
record_tokens = True
record_window = 50
model.set_generation_params(duration=max_duration, extend_stride=5, temperature=temp, cfg_coef=cfg_coef,
top_k=top_k, top_p=top_p, record_tokens=record_tokens, record_window=record_window)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(save_dir + "/audios", exist_ok=True)
os.makedirs(save_dir + "/jsonl", exist_ok=True)
for item in new_items:
lyric = item["gt_lyric"]
descriptions = item["descriptions"] if "descriptions" in item else None
pmt_wav = item['pmt_wav']
vocal_wav = item['vocal_wav']
bgm_wav = item['bgm_wav']
melody_is_wav = item['melody_is_wav']
generate_inp = {
'lyrics': [lyric.replace(" ", " ")],
'descriptions': [descriptions],
'melody_wavs': pmt_wav,
'vocal_wavs': vocal_wav,
'bgm_wavs': bgm_wav,
'melody_is_wav': melody_is_wav,
}
with torch.autocast(device_type="cuda", dtype=torch.float16):
tokens = model.generate(**generate_inp, return_tokens=True)
item['tokens'] = tokens
del model
torch.cuda.empty_cache()
seperate_tokenizer = builders.get_audio_tokenizer_model(cfg.audio_tokenizer_checkpoint_sep, cfg)
seperate_tokenizer = seperate_tokenizer.eval().cuda()
model = CodecLM(name = "tmp",
lm = None,
audiotokenizer = None,
max_duration = max_duration,
seperate_tokenizer = seperate_tokenizer,
)
for item in new_items:
with torch.no_grad():
if 'raw_pmt_wav' in item:
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True)
del item['raw_pmt_wav']
del item['raw_vocal_wav']
del item['raw_bgm_wav']
else:
wav_seperate = model.generate_audio(item['tokens'], chunked=True)
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
del item['tokens']
del item['pmt_wav']
del item['vocal_wav']
del item['bgm_wav']
del item['melody_is_wav']
torch.cuda.empty_cache()
src_jsonl_name = os.path.split(input_jsonl)[-1]
with open(f"{save_dir}/jsonl/{src_jsonl_name}.jsonl", "w", encoding='utf-8') as fw:
for item in new_items:
fw.writelines(json.dumps(item, ensure_ascii=False)+"\n")
|