File size: 3,533 Bytes
53a7eb8
 
 
 
 
 
687fccd
57faddd
 
82134da
53a7eb8
c3aaf4b
53a7eb8
 
 
57faddd
53a7eb8
 
 
 
 
 
 
 
 
 
 
 
57faddd
53a7eb8
 
 
 
 
 
c3aaf4b
687fccd
 
 
 
 
 
 
 
53a7eb8
 
57faddd
 
 
5ed3b00
53a7eb8
2ceeece
 
 
 
57faddd
 
 
 
 
 
 
 
 
5ed3b00
57faddd
 
 
 
 
 
 
 
 
 
 
 
 
53a7eb8
 
 
 
 
 
 
c3aaf4b
53a7eb8
 
 
82134da
 
 
 
687fccd
53a7eb8
 
 
 
 
 
 
 
 
 
 
2ceeece
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import sys
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms.base import LLM
from huggingface_hub import InferenceClient
import gradio as gr

# workaround for sqlite in HF spaces
__import__('pysqlite3')
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

# πŸ“„ Load documents
docs = []
for f in os.listdir("multiple_docs"):
    if f.endswith(".pdf"):
        loader = PyPDFLoader(os.path.join("multiple_docs", f))
        docs.extend(loader.load())
    elif f.endswith(".docx") or f.endswith(".doc"):
        loader = Docx2txtLoader(os.path.join("multiple_docs", f))
        docs.extend(loader.load())
    elif f.endswith(".txt"):
        loader = TextLoader(os.path.join("multiple_docs", f))
        docs.extend(loader.load())

# πŸ”— Split into chunks
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
docs = splitter.split_documents(docs)

texts = [doc.page_content for doc in docs]
metadatas = [{"id": i} for i in range(len(texts))]

# 🧠 Embeddings
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# πŸ—ƒοΈ Vectorstore
vectorstore = Chroma(
    persist_directory="./db",
    embedding_function=embedding_function
)
vectorstore.add_texts(texts=texts, metadatas=metadatas)
vectorstore.persist()

# πŸ” Get HF token from env variable
HF_API_KEY = os.getenv("HF_API_KEY")
if HF_API_KEY is None:
    raise ValueError("HF_API_KEY environment variable is not set.")

HF_MODEL = "deepseek-ai/deepseek-llm-7b-instruct"  # or any other hosted model

# πŸ€– Create InferenceClient bound to model
client = InferenceClient(model=HF_MODEL, token=HF_API_KEY)

# πŸ”· Wrap HF client into LangChain LLM interface
class HuggingFaceInferenceLLM(LLM):
    """LLM that queries HuggingFace Inference API."""

    client: InferenceClient = client

    def _call(self, prompt, stop=None, run_manager=None, **kwargs):
        response = self.client.text_generation(
            prompt,
            max_new_tokens=512,
            temperature=0.7,
            do_sample=True,
        )
        return response

    @property
    def _llm_type(self) -> str:
        return "huggingface_inference_api"

llm = HuggingFaceInferenceLLM()

# πŸ”— Conversational chain
chain = ConversationalRetrievalChain.from_llm(
    llm,
    retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
    return_source_documents=True,
    verbose=False
)

# πŸ’¬ Gradio UI
chat_history = []

with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
        [("", "Hello, I'm Thierry Decae's chatbot. Ask me about my experience, skills, eligibility, etc.")],
        avatar_images=["./multiple_docs/Guest.jpg", "./multiple_docs/Thierry Picture.jpg"]
    )
    msg = gr.Textbox(placeholder="Type your question here...")
    clear = gr.Button("Clear")

    def user(query, chat_history):
        chat_history_tuples = [(m[0], m[1]) for m in chat_history]
        result = chain({"question": query, "chat_history": chat_history_tuples})
        chat_history.append((query, result["answer"]))
        return gr.update(value=""), chat_history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch(debug=True)  # remove share=True if running in HF Spaces