Spaces:
Running
Running
File size: 3,533 Bytes
53a7eb8 687fccd 57faddd 82134da 53a7eb8 c3aaf4b 53a7eb8 57faddd 53a7eb8 57faddd 53a7eb8 c3aaf4b 687fccd 53a7eb8 57faddd 5ed3b00 53a7eb8 2ceeece 57faddd 5ed3b00 57faddd 53a7eb8 c3aaf4b 53a7eb8 82134da 687fccd 53a7eb8 2ceeece |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import os
import sys
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms.base import LLM
from huggingface_hub import InferenceClient
import gradio as gr
# workaround for sqlite in HF spaces
__import__('pysqlite3')
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
# π Load documents
docs = []
for f in os.listdir("multiple_docs"):
if f.endswith(".pdf"):
loader = PyPDFLoader(os.path.join("multiple_docs", f))
docs.extend(loader.load())
elif f.endswith(".docx") or f.endswith(".doc"):
loader = Docx2txtLoader(os.path.join("multiple_docs", f))
docs.extend(loader.load())
elif f.endswith(".txt"):
loader = TextLoader(os.path.join("multiple_docs", f))
docs.extend(loader.load())
# π Split into chunks
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
docs = splitter.split_documents(docs)
texts = [doc.page_content for doc in docs]
metadatas = [{"id": i} for i in range(len(texts))]
# π§ Embeddings
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# ποΈ Vectorstore
vectorstore = Chroma(
persist_directory="./db",
embedding_function=embedding_function
)
vectorstore.add_texts(texts=texts, metadatas=metadatas)
vectorstore.persist()
# π Get HF token from env variable
HF_API_KEY = os.getenv("HF_API_KEY")
if HF_API_KEY is None:
raise ValueError("HF_API_KEY environment variable is not set.")
HF_MODEL = "deepseek-ai/deepseek-llm-7b-instruct" # or any other hosted model
# π€ Create InferenceClient bound to model
client = InferenceClient(model=HF_MODEL, token=HF_API_KEY)
# π· Wrap HF client into LangChain LLM interface
class HuggingFaceInferenceLLM(LLM):
"""LLM that queries HuggingFace Inference API."""
client: InferenceClient = client
def _call(self, prompt, stop=None, run_manager=None, **kwargs):
response = self.client.text_generation(
prompt,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
)
return response
@property
def _llm_type(self) -> str:
return "huggingface_inference_api"
llm = HuggingFaceInferenceLLM()
# π Conversational chain
chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True,
verbose=False
)
# π¬ Gradio UI
chat_history = []
with gr.Blocks() as demo:
chatbot = gr.Chatbot(
[("", "Hello, I'm Thierry Decae's chatbot. Ask me about my experience, skills, eligibility, etc.")],
avatar_images=["./multiple_docs/Guest.jpg", "./multiple_docs/Thierry Picture.jpg"]
)
msg = gr.Textbox(placeholder="Type your question here...")
clear = gr.Button("Clear")
def user(query, chat_history):
chat_history_tuples = [(m[0], m[1]) for m in chat_history]
result = chain({"question": query, "chat_history": chat_history_tuples})
chat_history.append((query, result["answer"]))
return gr.update(value=""), chat_history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch(debug=True) # remove share=True if running in HF Spaces
|