Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from langchain.chains import ConversationalRetrievalChain
|
4 |
+
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
import torch
|
11 |
+
|
12 |
+
# sqlite workaround for HuggingFace Spaces
|
13 |
+
__import__('pysqlite3')
|
14 |
+
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
15 |
+
|
16 |
+
# Load documents
|
17 |
+
docs = []
|
18 |
+
for f in os.listdir("multiple_docs"):
|
19 |
+
if f.endswith(".pdf"):
|
20 |
+
loader = PyPDFLoader(os.path.join("multiple_docs", f))
|
21 |
+
docs.extend(loader.load())
|
22 |
+
elif f.endswith(".docx") or f.endswith(".doc"):
|
23 |
+
loader = Docx2txtLoader(os.path.join("multiple_docs", f))
|
24 |
+
docs.extend(loader.load())
|
25 |
+
elif f.endswith(".txt"):
|
26 |
+
loader = TextLoader(os.path.join("multiple_docs", f))
|
27 |
+
docs.extend(loader.load())
|
28 |
+
|
29 |
+
# Split docs
|
30 |
+
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
31 |
+
docs = splitter.split_documents(docs)
|
32 |
+
|
33 |
+
# Embeddings
|
34 |
+
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
35 |
+
texts = [doc.page_content for doc in docs]
|
36 |
+
metadatas = [{"id": i} for i in range(len(texts))]
|
37 |
+
embeddings = embedding_model.encode(texts)
|
38 |
+
|
39 |
+
# Vectorstore
|
40 |
+
vectorstore = Chroma(persist_directory="./db")
|
41 |
+
vectorstore.add_texts(texts=texts, metadatas=metadatas, embeddings=embeddings)
|
42 |
+
vectorstore.persist()
|
43 |
+
|
44 |
+
|
45 |
+
model_name = "deepseek-ai/deepseek-llm-7b-instruct"
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
48 |
+
|
49 |
+
def generate(prompt):
|
50 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
51 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
52 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
+
|
54 |
+
class HuggingFaceLLMWrapper:
|
55 |
+
def __call__(self, prompt, **kwargs):
|
56 |
+
return generate(prompt)
|
57 |
+
|
58 |
+
llm = HuggingFaceLLMWrapper()
|
59 |
+
|
60 |
+
# QA chain
|
61 |
+
chain = ConversationalRetrievalChain.from_llm(
|
62 |
+
llm,
|
63 |
+
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
64 |
+
return_source_documents=True,
|
65 |
+
verbose=False
|
66 |
+
)
|
67 |
+
|
68 |
+
chat_history = []
|
69 |
+
|
70 |
+
with gr.Blocks() as demo:
|
71 |
+
chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot. Ask me about my experience, skills, eligibility, etc.")],
|
72 |
+
avatar_images=["./multiple_docs/Guest.jpg", "./multiple_docs/Thierry Picture.jpg"])
|
73 |
+
msg = gr.Textbox()
|
74 |
+
clear = gr.Button("Clear")
|
75 |
+
|
76 |
+
def user(query, chat_history):
|
77 |
+
chat_history_tuples = [(m[0], m[1]) for m in chat_history]
|
78 |
+
result = chain({"question": query, "chat_history": chat_history_tuples})
|
79 |
+
chat_history.append((query, result["answer"]))
|
80 |
+
return gr.update(value=""), chat_history
|
81 |
+
|
82 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
|
83 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
84 |
+
|
85 |
+
demo.launch(debug=True)
|