start7 / app.py
suprimedev's picture
Create app.py
802512e verified
import gradio as gr
import os
import json
import shutil
import subprocess
import requests
import tarfile
from pathlib import Path
import soundfile as sf
import sherpa_onnx
import numpy as np
import uuid
# List of available TTS models
MODELS = [
['mms fa', 'https://huggingface.co/willwade/mms-tts-multilingual-models-onnx/resolve/main/fas', "🌠 راد", 'https://huggingface.co/facebook/mms-tts-fas'],
['coqui-vits-female1-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/persian-tts-female1-vits-coqui', "🌺 نگار", 'https://huggingface.co/Kamtera/persian-tts-female1-vits'],
['coqui-vits-male1-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/persian-tts-male1-vits-coqui', "🌟 آرش", 'https://huggingface.co/Kamtera/persian-tts-male1-vits'],
['coqui-vits-male-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/male-male-coqui-vits', "🦁 کیان", 'https://huggingface.co/Kamtera/persian-tts-male-vits'],
['coqui-vits-female-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/female-female-coqui-vits', "🌷 مهتاب", 'https://huggingface.co/Kamtera/persian-tts-female-vits'],
['coqui-vits-female-GPTInformal-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/female-GPTInformal-coqui-vits', "🌼 شیوا", 'https://huggingface.co/karim23657/persian-tts-female-GPTInformal-Persian-vits'],
['coqui-vits-male-SmartGitiCorp', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/male-SmartGitiCorp-coqui-vits', "🚀 بهمن", 'https://huggingface.co/SmartGitiCorp/persian_tts_vits'],
['vits-piper-fa-ganji', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/vits-piper-fa-ganji', "🚀 برنا", 'https://huggingface.co/SadeghK/persian-text-to-speech'],
['vits-piper-fa-ganji-adabi', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/vits-piper-fa-ganji-adabi', "🚀 برنا-1", 'https://huggingface.co/SadeghK/persian-text-to-speech'],
['vits-piper-fa-gyro-medium', 'https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_IR-gyro-medium.tar.bz2', "💧 نیما", 'https://huggingface.co/gyroing/Persian-Piper-Model-gyro'],
['piper-fa-amir-medium', 'https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_IR-amir-medium.tar.bz2', "⚡️ آریا", 'https://huggingface.co/SadeghK/persian-text-to-speech'],
['vits-mimic3-fa-haaniye_low', 'https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-mimic3-fa-haaniye_low.tar.bz2', "🌹 ریما", 'https://github.com/MycroftAI/mimic3'],
['vits-piper-fa_en-rezahedayatfar-ibrahimwalk-medium', 'https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_en-rezahedayatfar-ibrahimwalk-medium.tar.bz2', "🌠 پیام", 'https://huggingface.co/mah92/persian-english-piper-tts-model'],
]
def download_and_extract_model(url, destination):
"""Download and extract the model files."""
print(f"Downloading from URL: {url}")
print(f"Destination: {destination}")
# Convert Hugging Face URL format if needed
if "huggingface.co" in url:
base_url = url.replace("/tree/main/", "/resolve/main/")
model_id = base_url.split("/")[-1]
# Check if this is an MMS model
is_mms_model = True
if is_mms_model:
# MMS models have both model.onnx and tokens.txt
model_url = f"{base_url}/model.onnx"
tokens_url = f"{base_url}/tokens.txt"
# Download model.onnx
print("Downloading model.onnx...")
model_path = os.path.join(destination, "model.onnx")
response = requests.get(model_url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download model from {model_url}. Status code: {response.status_code}")
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
downloaded = 0
print(f"Total size: {total_size / (1024*1024):.1f} MB")
with open(model_path, "wb") as f:
for chunk in response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
percent = int((downloaded / total_size) * 100)
if percent % 10 == 0:
print(f" {percent}%", end="", flush=True)
print("\nModel download complete")
# Download tokens.txt
print("Downloading tokens.txt...")
tokens_path = os.path.join(destination, "tokens.txt")
response = requests.get(tokens_url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download tokens from {tokens_url}. Status code: {response.status_code}")
with open(tokens_path, "wb") as f:
f.write(response.content)
print("Tokens download complete")
return
else:
# Other models are stored as tar.bz2 files
url = f"{base_url}.tar.bz2"
# Try the URL
response = requests.get(url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download model from {url}. Status code: {response.status_code}")
# Check if this is a Git LFS file pointer
content_start = response.content[:100].decode('utf-8', errors='ignore')
if content_start.startswith('version https://git-lfs.github.com/spec/v1'):
raise Exception(f"Received Git LFS pointer instead of file content from {url}")
# Create model directory if it doesn't exist
os.makedirs(destination, exist_ok=True)
# For non-MMS models, handle tar.bz2 files
tar_path = os.path.join(destination, "model.tar.bz2")
# Download the file
print("Downloading model archive...")
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
downloaded = 0
print(f"Total size: {total_size / (1024*1024):.1f} MB")
with open(tar_path, "wb") as f:
for chunk in response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
percent = int((downloaded / total_size) * 100)
if percent % 10 == 0:
print(f" {percent}%", end="", flush=True)
print("\nDownload complete")
# Extract the tar.bz2 file
print(f"Extracting {tar_path} to {destination}")
try:
with tarfile.open(tar_path, "r:bz2") as tar:
tar.extractall(path=destination)
os.remove(tar_path)
print("Extraction complete")
except Exception as e:
print(f"Error during extraction: {str(e)}")
raise
print("Contents of destination directory:")
for root, dirs, files in os.walk(destination):
print(f"\nDirectory: {root}")
if dirs:
print(" Subdirectories:", dirs)
if files:
print(" Files:", files)
def find_model_files(model_dir):
"""Find model files in the given directory and its subdirectories."""
model_files = {}
# Check if this is an MMS model
is_mms = True
for root, _, files in os.walk(model_dir):
for file in files:
file_path = os.path.join(root, file)
# Model file
if file.endswith('.onnx'):
model_files['model'] = file_path
# Tokens file
elif file == 'tokens.txt':
model_files['tokens'] = file_path
# Lexicon file (only for non-MMS models)
elif file == 'lexicon.txt' and not is_mms:
model_files['lexicon'] = file_path
# Create empty lexicon file if needed (only for non-MMS models)
if not is_mms and 'model' in model_files and 'lexicon' not in model_files:
model_dir = os.path.dirname(model_files['model'])
lexicon_path = os.path.join(model_dir, 'lexicon.txt')
with open(lexicon_path, 'w', encoding='utf-8') as f:
pass # Create empty file
model_files['lexicon'] = lexicon_path
return model_files if 'model' in model_files else {}
def generate_audio(text, model_info):
"""Generate audio from text using the specified model."""
try:
model_dir = os.path.join("./models", model_info)
print(f"\nLooking for model in: {model_dir}")
# Download model if it doesn't exist
if not os.path.exists(model_dir):
print(f"Model directory doesn't exist, downloading {model_info}...")
os.makedirs(model_dir, exist_ok=True)
model_url = None
for model in MODELS:
if model_info == model[2]:
model_url = model[1]
break
if not model_url:
raise ValueError(f"Model {model_info} not found in the model list")
download_and_extract_model(model_url, model_dir)
print(f"Contents of {model_dir}:")
for item in os.listdir(model_dir):
item_path = os.path.join(model_dir, item)
if os.path.isdir(item_path):
print(f" Directory: {item}")
print(f" Contents: {os.listdir(item_path)}")
else:
print(f" File: {item}")
# Find and validate model files
model_files = find_model_files(model_dir)
if not model_files or 'model' not in model_files:
raise ValueError(f"Could not find required model files in {model_dir}")
print("\nFound model files:")
print(f"Model: {model_files['model']}")
print(f"Tokens: {model_files.get('tokens', 'Not found')}")
print(f"Lexicon: {model_files.get('lexicon', 'Not required for MMS')}\n")
# Check if this is an MMS model
is_mms = 'mms' in os.path.basename(model_dir).lower()
# Create configuration based on model type
if is_mms:
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
raise ValueError("tokens.txt is required for MMS models")
# MMS models use tokens.txt and no lexicon
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
model_files['model'], # model
'', # lexicon
model_files['tokens'], # tokens
'', # data_dir
'', # dict_dir
0.667, # noise_scale
0.8, # noise_scale_w
1.0 # length_scale
)
else:
# Non-MMS models use lexicon.txt
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
raise ValueError("tokens.txt is required for VITS models")
# Set data dir if it exists
espeak_data = os.path.join(os.path.dirname(model_files['model']), 'espeak-ng-data')
data_dir = espeak_data if os.path.exists(espeak_data) else 'espeak-ng-data'
# Get lexicon path if it exists
lexicon = model_files.get('lexicon', '') if os.path.exists(model_files.get('lexicon', '')) else ''
# Create VITS model config
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
model_files['model'], # model
lexicon, # lexicon
model_files['tokens'], # tokens
data_dir, # data_dir
'', # dict_dir
0.667, # noise_scale
0.8, # noise_scale_w
1.0 # length_scale
)
# Create the model config with VITS
model_config = sherpa_onnx.OfflineTtsModelConfig()
model_config.vits = vits_config
# Create TTS configuration
config = sherpa_onnx.OfflineTtsConfig(
model=model_config,
max_num_sentences=2
)
# Initialize TTS engine
tts = sherpa_onnx.OfflineTts(config)
# Generate audio
audio_data = tts.generate(text)
# Ensure we have valid audio data
if audio_data is None or len(audio_data.samples) == 0:
raise ValueError("Failed to generate audio - no data generated")
# Convert samples list to numpy array and normalize
audio_array = np.array(audio_data.samples, dtype=np.float32)
if np.any(audio_array): # Check if array is not all zeros
audio_array = audio_array / np.abs(audio_array).max()
else:
raise ValueError("Generated audio is empty")
# Return audio array and sample rate
return (audio_array, audio_data.sample_rate)
except Exception as e:
error_msg = str(e)
# Check for OOV or token conversion errors
if "out of vocabulary" in error_msg.lower() or "token" in error_msg.lower():
error_msg = f"Text contains unsupported characters: {error_msg}"
print(f"Error generating audio: {error_msg}")
raise
def tts_interface(selected_model, text):
"""Gradio interface for Persian text-to-speech."""
try:
if not text.strip():
return None, "لطفا متنی برای تبدیل به گفتار وارد کنید"
# Store original text for status message
original_text = text
try:
# Update status with language info
voice_name = selected_model
# Generate audio
audio_data, sample_rate = generate_audio(text, voice_name)
# Create audio file
audio_filename = f"tts_output_{uuid.uuid4()}.wav"
sf.write(audio_filename, audio_data, samplerate=sample_rate, subtype="PCM_16")
# Get model URL for display
model_url = ""
for model in MODELS:
if selected_model == model[2]:
model_url = model[3]
break
status = f"مدل: {selected_model}\nمنبع مدل: {model_url}\nمتن: '{text}'"
return audio_filename, status
except ValueError as e:
# Handle known errors with user-friendly messages
error_msg = str(e)
if "cannot process some words" in error_msg.lower():
return None, error_msg
return None, f"خطا: {error_msg}"
except Exception as e:
print(f"Error in TTS generation: {str(e)}")
error_msg = str(e)
return None, f"خطا: {error_msg}"
def create_gradio_interface():
"""Create the Gradio interface."""
# Prepare voice options from models
voice_options = [model[2] for model in MODELS]
# Create Gradio interface
with gr.Blocks(title="تبدیل متن به گفتار فارسی", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# تبدیل متن به گفتار فارسی
با استفاده از مدل‌های مختلف متن را به گفتار تبدیل کنید
""")
with gr.Row():
with gr.Column():
text_input = gr.TextArea(
label="متن فارسی",
placeholder="متن خود را اینجا وارد کنید...",
lines=5
)
voice_dropdown = gr.Dropdown(
label="صدا",
choices=voice_options,
value=voice_options[0]
)
generate_button = gr.Button("تبدیل به گفتار")
with gr.Column():
audio_output = gr.Audio(
label="خروجی صوتی",
interactive=False
)
status_output = gr.Textbox(
label="وضعیت",
interactive=False
)
generate_button.click(
fn=tts_interface,
inputs=[voice_dropdown, text_input],
outputs=[audio_output, status_output]
)
gr.Examples(
examples=[
["سلام. این یک نمونه متن برای نمایش سیستم تبدیل متن به گفتار فارسی است.", voice_options[0]],
["تبدیل متن به گفتار یکی از کاربردهای مهم پردازش زبان طبیعی است.", voice_options[1]],
["این پروژه از مدل‌های متنوعی برای تولید صدای طبیعی استفاده می‌کند.", voice_options[5]]
],
inputs=[text_input, voice_dropdown],
outputs=[audio_output, status_output],
fn=tts_interface,
cache_examples=False
)
return demo
if __name__ == "__main__":
# Create models directory if it doesn't exist
os.makedirs("models", exist_ok=True)
# Launch Gradio interface
demo = create_gradio_interface()
demo.launch(server_name="0.0.0.0", server_port=7860)