Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import shutil
|
5 |
+
import subprocess
|
6 |
+
import requests
|
7 |
+
import tarfile
|
8 |
+
from pathlib import Path
|
9 |
+
import soundfile as sf
|
10 |
+
import sherpa_onnx
|
11 |
+
import numpy as np
|
12 |
+
import uuid
|
13 |
+
|
14 |
+
# List of available TTS models
|
15 |
+
MODELS = [
|
16 |
+
['mms fa', 'https://huggingface.co/willwade/mms-tts-multilingual-models-onnx/resolve/main/fas', "🌠 راد", 'https://huggingface.co/facebook/mms-tts-fas'],
|
17 |
+
['coqui-vits-female1-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/persian-tts-female1-vits-coqui', "🌺 نگار", 'https://huggingface.co/Kamtera/persian-tts-female1-vits'],
|
18 |
+
['coqui-vits-male1-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/persian-tts-male1-vits-coqui', "🌟 آرش", 'https://huggingface.co/Kamtera/persian-tts-male1-vits'],
|
19 |
+
['coqui-vits-male-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/male-male-coqui-vits', "🦁 کیان", 'https://huggingface.co/Kamtera/persian-tts-male-vits'],
|
20 |
+
['coqui-vits-female-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/female-female-coqui-vits', "🌷 مهتاب", 'https://huggingface.co/Kamtera/persian-tts-female-vits'],
|
21 |
+
['coqui-vits-female-GPTInformal-karim23657', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/female-GPTInformal-coqui-vits', "🌼 شیوا", 'https://huggingface.co/karim23657/persian-tts-female-GPTInformal-Persian-vits'],
|
22 |
+
['coqui-vits-male-SmartGitiCorp', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/male-SmartGitiCorp-coqui-vits', "🚀 بهمن", 'https://huggingface.co/SmartGitiCorp/persian_tts_vits'],
|
23 |
+
['vits-piper-fa-ganji', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/vits-piper-fa-ganji', "🚀 برنا", 'https://huggingface.co/SadeghK/persian-text-to-speech'],
|
24 |
+
['vits-piper-fa-ganji-adabi', 'https://huggingface.co/karim23657/persian-tts-vits/tree/main/vits-piper-fa-ganji-adabi', "🚀 برنا-1", 'https://huggingface.co/SadeghK/persian-text-to-speech'],
|
25 |
+
['vits-piper-fa-gyro-medium', 'https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_IR-gyro-medium.tar.bz2', "💧 نیما", 'https://huggingface.co/gyroing/Persian-Piper-Model-gyro'],
|
26 |
+
['piper-fa-amir-medium', 'https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_IR-amir-medium.tar.bz2', "⚡️ آریا", 'https://huggingface.co/SadeghK/persian-text-to-speech'],
|
27 |
+
['vits-mimic3-fa-haaniye_low', 'https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-mimic3-fa-haaniye_low.tar.bz2', "🌹 ریما", 'https://github.com/MycroftAI/mimic3'],
|
28 |
+
['vits-piper-fa_en-rezahedayatfar-ibrahimwalk-medium', 'https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_en-rezahedayatfar-ibrahimwalk-medium.tar.bz2', "🌠 پیام", 'https://huggingface.co/mah92/persian-english-piper-tts-model'],
|
29 |
+
]
|
30 |
+
|
31 |
+
def download_and_extract_model(url, destination):
|
32 |
+
"""Download and extract the model files."""
|
33 |
+
print(f"Downloading from URL: {url}")
|
34 |
+
print(f"Destination: {destination}")
|
35 |
+
|
36 |
+
# Convert Hugging Face URL format if needed
|
37 |
+
if "huggingface.co" in url:
|
38 |
+
base_url = url.replace("/tree/main/", "/resolve/main/")
|
39 |
+
model_id = base_url.split("/")[-1]
|
40 |
+
|
41 |
+
# Check if this is an MMS model
|
42 |
+
is_mms_model = True
|
43 |
+
|
44 |
+
if is_mms_model:
|
45 |
+
# MMS models have both model.onnx and tokens.txt
|
46 |
+
model_url = f"{base_url}/model.onnx"
|
47 |
+
tokens_url = f"{base_url}/tokens.txt"
|
48 |
+
|
49 |
+
# Download model.onnx
|
50 |
+
print("Downloading model.onnx...")
|
51 |
+
model_path = os.path.join(destination, "model.onnx")
|
52 |
+
response = requests.get(model_url, stream=True)
|
53 |
+
if response.status_code != 200:
|
54 |
+
raise Exception(f"Failed to download model from {model_url}. Status code: {response.status_code}")
|
55 |
+
|
56 |
+
total_size = int(response.headers.get('content-length', 0))
|
57 |
+
block_size = 8192
|
58 |
+
downloaded = 0
|
59 |
+
|
60 |
+
print(f"Total size: {total_size / (1024*1024):.1f} MB")
|
61 |
+
with open(model_path, "wb") as f:
|
62 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
63 |
+
if chunk:
|
64 |
+
f.write(chunk)
|
65 |
+
downloaded += len(chunk)
|
66 |
+
if total_size > 0:
|
67 |
+
percent = int((downloaded / total_size) * 100)
|
68 |
+
if percent % 10 == 0:
|
69 |
+
print(f" {percent}%", end="", flush=True)
|
70 |
+
print("\nModel download complete")
|
71 |
+
|
72 |
+
# Download tokens.txt
|
73 |
+
print("Downloading tokens.txt...")
|
74 |
+
tokens_path = os.path.join(destination, "tokens.txt")
|
75 |
+
response = requests.get(tokens_url, stream=True)
|
76 |
+
if response.status_code != 200:
|
77 |
+
raise Exception(f"Failed to download tokens from {tokens_url}. Status code: {response.status_code}")
|
78 |
+
|
79 |
+
with open(tokens_path, "wb") as f:
|
80 |
+
f.write(response.content)
|
81 |
+
print("Tokens download complete")
|
82 |
+
|
83 |
+
return
|
84 |
+
else:
|
85 |
+
# Other models are stored as tar.bz2 files
|
86 |
+
url = f"{base_url}.tar.bz2"
|
87 |
+
|
88 |
+
# Try the URL
|
89 |
+
response = requests.get(url, stream=True)
|
90 |
+
if response.status_code != 200:
|
91 |
+
raise Exception(f"Failed to download model from {url}. Status code: {response.status_code}")
|
92 |
+
|
93 |
+
# Check if this is a Git LFS file pointer
|
94 |
+
content_start = response.content[:100].decode('utf-8', errors='ignore')
|
95 |
+
if content_start.startswith('version https://git-lfs.github.com/spec/v1'):
|
96 |
+
raise Exception(f"Received Git LFS pointer instead of file content from {url}")
|
97 |
+
|
98 |
+
# Create model directory if it doesn't exist
|
99 |
+
os.makedirs(destination, exist_ok=True)
|
100 |
+
|
101 |
+
# For non-MMS models, handle tar.bz2 files
|
102 |
+
tar_path = os.path.join(destination, "model.tar.bz2")
|
103 |
+
|
104 |
+
# Download the file
|
105 |
+
print("Downloading model archive...")
|
106 |
+
response = requests.get(url, stream=True)
|
107 |
+
total_size = int(response.headers.get('content-length', 0))
|
108 |
+
block_size = 8192
|
109 |
+
downloaded = 0
|
110 |
+
|
111 |
+
print(f"Total size: {total_size / (1024*1024):.1f} MB")
|
112 |
+
with open(tar_path, "wb") as f:
|
113 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
114 |
+
if chunk:
|
115 |
+
f.write(chunk)
|
116 |
+
downloaded += len(chunk)
|
117 |
+
if total_size > 0:
|
118 |
+
percent = int((downloaded / total_size) * 100)
|
119 |
+
if percent % 10 == 0:
|
120 |
+
print(f" {percent}%", end="", flush=True)
|
121 |
+
print("\nDownload complete")
|
122 |
+
|
123 |
+
# Extract the tar.bz2 file
|
124 |
+
print(f"Extracting {tar_path} to {destination}")
|
125 |
+
try:
|
126 |
+
with tarfile.open(tar_path, "r:bz2") as tar:
|
127 |
+
tar.extractall(path=destination)
|
128 |
+
os.remove(tar_path)
|
129 |
+
print("Extraction complete")
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error during extraction: {str(e)}")
|
132 |
+
raise
|
133 |
+
|
134 |
+
print("Contents of destination directory:")
|
135 |
+
for root, dirs, files in os.walk(destination):
|
136 |
+
print(f"\nDirectory: {root}")
|
137 |
+
if dirs:
|
138 |
+
print(" Subdirectories:", dirs)
|
139 |
+
if files:
|
140 |
+
print(" Files:", files)
|
141 |
+
|
142 |
+
def find_model_files(model_dir):
|
143 |
+
"""Find model files in the given directory and its subdirectories."""
|
144 |
+
model_files = {}
|
145 |
+
|
146 |
+
# Check if this is an MMS model
|
147 |
+
is_mms = True
|
148 |
+
|
149 |
+
for root, _, files in os.walk(model_dir):
|
150 |
+
for file in files:
|
151 |
+
file_path = os.path.join(root, file)
|
152 |
+
|
153 |
+
# Model file
|
154 |
+
if file.endswith('.onnx'):
|
155 |
+
model_files['model'] = file_path
|
156 |
+
|
157 |
+
# Tokens file
|
158 |
+
elif file == 'tokens.txt':
|
159 |
+
model_files['tokens'] = file_path
|
160 |
+
|
161 |
+
# Lexicon file (only for non-MMS models)
|
162 |
+
elif file == 'lexicon.txt' and not is_mms:
|
163 |
+
model_files['lexicon'] = file_path
|
164 |
+
|
165 |
+
# Create empty lexicon file if needed (only for non-MMS models)
|
166 |
+
if not is_mms and 'model' in model_files and 'lexicon' not in model_files:
|
167 |
+
model_dir = os.path.dirname(model_files['model'])
|
168 |
+
lexicon_path = os.path.join(model_dir, 'lexicon.txt')
|
169 |
+
with open(lexicon_path, 'w', encoding='utf-8') as f:
|
170 |
+
pass # Create empty file
|
171 |
+
model_files['lexicon'] = lexicon_path
|
172 |
+
|
173 |
+
return model_files if 'model' in model_files else {}
|
174 |
+
|
175 |
+
def generate_audio(text, model_info):
|
176 |
+
"""Generate audio from text using the specified model."""
|
177 |
+
try:
|
178 |
+
model_dir = os.path.join("./models", model_info)
|
179 |
+
|
180 |
+
print(f"\nLooking for model in: {model_dir}")
|
181 |
+
|
182 |
+
# Download model if it doesn't exist
|
183 |
+
if not os.path.exists(model_dir):
|
184 |
+
print(f"Model directory doesn't exist, downloading {model_info}...")
|
185 |
+
os.makedirs(model_dir, exist_ok=True)
|
186 |
+
model_url = None
|
187 |
+
for model in MODELS:
|
188 |
+
if model_info == model[2]:
|
189 |
+
model_url = model[1]
|
190 |
+
break
|
191 |
+
if not model_url:
|
192 |
+
raise ValueError(f"Model {model_info} not found in the model list")
|
193 |
+
|
194 |
+
download_and_extract_model(model_url, model_dir)
|
195 |
+
|
196 |
+
print(f"Contents of {model_dir}:")
|
197 |
+
for item in os.listdir(model_dir):
|
198 |
+
item_path = os.path.join(model_dir, item)
|
199 |
+
if os.path.isdir(item_path):
|
200 |
+
print(f" Directory: {item}")
|
201 |
+
print(f" Contents: {os.listdir(item_path)}")
|
202 |
+
else:
|
203 |
+
print(f" File: {item}")
|
204 |
+
|
205 |
+
# Find and validate model files
|
206 |
+
model_files = find_model_files(model_dir)
|
207 |
+
if not model_files or 'model' not in model_files:
|
208 |
+
raise ValueError(f"Could not find required model files in {model_dir}")
|
209 |
+
|
210 |
+
print("\nFound model files:")
|
211 |
+
print(f"Model: {model_files['model']}")
|
212 |
+
print(f"Tokens: {model_files.get('tokens', 'Not found')}")
|
213 |
+
print(f"Lexicon: {model_files.get('lexicon', 'Not required for MMS')}\n")
|
214 |
+
|
215 |
+
# Check if this is an MMS model
|
216 |
+
is_mms = 'mms' in os.path.basename(model_dir).lower()
|
217 |
+
|
218 |
+
# Create configuration based on model type
|
219 |
+
if is_mms:
|
220 |
+
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
|
221 |
+
raise ValueError("tokens.txt is required for MMS models")
|
222 |
+
|
223 |
+
# MMS models use tokens.txt and no lexicon
|
224 |
+
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
|
225 |
+
model_files['model'], # model
|
226 |
+
'', # lexicon
|
227 |
+
model_files['tokens'], # tokens
|
228 |
+
'', # data_dir
|
229 |
+
'', # dict_dir
|
230 |
+
0.667, # noise_scale
|
231 |
+
0.8, # noise_scale_w
|
232 |
+
1.0 # length_scale
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
# Non-MMS models use lexicon.txt
|
236 |
+
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
|
237 |
+
raise ValueError("tokens.txt is required for VITS models")
|
238 |
+
|
239 |
+
# Set data dir if it exists
|
240 |
+
espeak_data = os.path.join(os.path.dirname(model_files['model']), 'espeak-ng-data')
|
241 |
+
data_dir = espeak_data if os.path.exists(espeak_data) else 'espeak-ng-data'
|
242 |
+
|
243 |
+
# Get lexicon path if it exists
|
244 |
+
lexicon = model_files.get('lexicon', '') if os.path.exists(model_files.get('lexicon', '')) else ''
|
245 |
+
|
246 |
+
# Create VITS model config
|
247 |
+
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
|
248 |
+
model_files['model'], # model
|
249 |
+
lexicon, # lexicon
|
250 |
+
model_files['tokens'], # tokens
|
251 |
+
data_dir, # data_dir
|
252 |
+
'', # dict_dir
|
253 |
+
0.667, # noise_scale
|
254 |
+
0.8, # noise_scale_w
|
255 |
+
1.0 # length_scale
|
256 |
+
)
|
257 |
+
|
258 |
+
# Create the model config with VITS
|
259 |
+
model_config = sherpa_onnx.OfflineTtsModelConfig()
|
260 |
+
model_config.vits = vits_config
|
261 |
+
|
262 |
+
# Create TTS configuration
|
263 |
+
config = sherpa_onnx.OfflineTtsConfig(
|
264 |
+
model=model_config,
|
265 |
+
max_num_sentences=2
|
266 |
+
)
|
267 |
+
|
268 |
+
# Initialize TTS engine
|
269 |
+
tts = sherpa_onnx.OfflineTts(config)
|
270 |
+
|
271 |
+
# Generate audio
|
272 |
+
audio_data = tts.generate(text)
|
273 |
+
|
274 |
+
# Ensure we have valid audio data
|
275 |
+
if audio_data is None or len(audio_data.samples) == 0:
|
276 |
+
raise ValueError("Failed to generate audio - no data generated")
|
277 |
+
|
278 |
+
# Convert samples list to numpy array and normalize
|
279 |
+
audio_array = np.array(audio_data.samples, dtype=np.float32)
|
280 |
+
if np.any(audio_array): # Check if array is not all zeros
|
281 |
+
audio_array = audio_array / np.abs(audio_array).max()
|
282 |
+
else:
|
283 |
+
raise ValueError("Generated audio is empty")
|
284 |
+
|
285 |
+
# Return audio array and sample rate
|
286 |
+
return (audio_array, audio_data.sample_rate)
|
287 |
+
|
288 |
+
except Exception as e:
|
289 |
+
error_msg = str(e)
|
290 |
+
# Check for OOV or token conversion errors
|
291 |
+
if "out of vocabulary" in error_msg.lower() or "token" in error_msg.lower():
|
292 |
+
error_msg = f"Text contains unsupported characters: {error_msg}"
|
293 |
+
print(f"Error generating audio: {error_msg}")
|
294 |
+
raise
|
295 |
+
|
296 |
+
def tts_interface(selected_model, text):
|
297 |
+
"""Gradio interface for Persian text-to-speech."""
|
298 |
+
try:
|
299 |
+
if not text.strip():
|
300 |
+
return None, "لطفا متنی برای تبدیل به گفتار وارد کنید"
|
301 |
+
|
302 |
+
# Store original text for status message
|
303 |
+
original_text = text
|
304 |
+
|
305 |
+
try:
|
306 |
+
# Update status with language info
|
307 |
+
voice_name = selected_model
|
308 |
+
|
309 |
+
# Generate audio
|
310 |
+
audio_data, sample_rate = generate_audio(text, voice_name)
|
311 |
+
|
312 |
+
# Create audio file
|
313 |
+
audio_filename = f"tts_output_{uuid.uuid4()}.wav"
|
314 |
+
sf.write(audio_filename, audio_data, samplerate=sample_rate, subtype="PCM_16")
|
315 |
+
|
316 |
+
# Get model URL for display
|
317 |
+
model_url = ""
|
318 |
+
for model in MODELS:
|
319 |
+
if selected_model == model[2]:
|
320 |
+
model_url = model[3]
|
321 |
+
break
|
322 |
+
|
323 |
+
status = f"مدل: {selected_model}\nمنبع مدل: {model_url}\nمتن: '{text}'"
|
324 |
+
|
325 |
+
return audio_filename, status
|
326 |
+
|
327 |
+
except ValueError as e:
|
328 |
+
# Handle known errors with user-friendly messages
|
329 |
+
error_msg = str(e)
|
330 |
+
if "cannot process some words" in error_msg.lower():
|
331 |
+
return None, error_msg
|
332 |
+
return None, f"خطا: {error_msg}"
|
333 |
+
|
334 |
+
except Exception as e:
|
335 |
+
print(f"Error in TTS generation: {str(e)}")
|
336 |
+
error_msg = str(e)
|
337 |
+
return None, f"خطا: {error_msg}"
|
338 |
+
|
339 |
+
def create_gradio_interface():
|
340 |
+
"""Create the Gradio interface."""
|
341 |
+
# Prepare voice options from models
|
342 |
+
voice_options = [model[2] for model in MODELS]
|
343 |
+
|
344 |
+
# Create Gradio interface
|
345 |
+
with gr.Blocks(title="تبدیل متن به گفتار فارسی", theme=gr.themes.Soft()) as demo:
|
346 |
+
gr.Markdown("""
|
347 |
+
# تبدیل متن به گفتار فارسی
|
348 |
+
با استفاده از مدلهای مختلف متن را به گفتار تبدیل کنید
|
349 |
+
""")
|
350 |
+
|
351 |
+
with gr.Row():
|
352 |
+
with gr.Column():
|
353 |
+
text_input = gr.TextArea(
|
354 |
+
label="متن فارسی",
|
355 |
+
placeholder="متن خود را اینجا وارد کنید...",
|
356 |
+
lines=5
|
357 |
+
)
|
358 |
+
|
359 |
+
voice_dropdown = gr.Dropdown(
|
360 |
+
label="صدا",
|
361 |
+
choices=voice_options,
|
362 |
+
value=voice_options[0]
|
363 |
+
)
|
364 |
+
|
365 |
+
generate_button = gr.Button("تبدیل به گفتار")
|
366 |
+
|
367 |
+
with gr.Column():
|
368 |
+
audio_output = gr.Audio(
|
369 |
+
label="خروجی صوتی",
|
370 |
+
interactive=False
|
371 |
+
)
|
372 |
+
|
373 |
+
status_output = gr.Textbox(
|
374 |
+
label="وضعیت",
|
375 |
+
interactive=False
|
376 |
+
)
|
377 |
+
|
378 |
+
generate_button.click(
|
379 |
+
fn=tts_interface,
|
380 |
+
inputs=[voice_dropdown, text_input],
|
381 |
+
outputs=[audio_output, status_output]
|
382 |
+
)
|
383 |
+
|
384 |
+
gr.Examples(
|
385 |
+
examples=[
|
386 |
+
["سلام. این یک نمونه متن برای نمایش سیستم تبدیل متن به گفتار فارسی است.", voice_options[0]],
|
387 |
+
["تبدیل متن به گفتار یکی از کاربردهای مهم پردازش زبان طبیعی است.", voice_options[1]],
|
388 |
+
["این پروژه از مدلهای متنوعی برای تولید صدای طبیعی استفاده میکند.", voice_options[5]]
|
389 |
+
],
|
390 |
+
inputs=[text_input, voice_dropdown],
|
391 |
+
outputs=[audio_output, status_output],
|
392 |
+
fn=tts_interface,
|
393 |
+
cache_examples=False
|
394 |
+
)
|
395 |
+
|
396 |
+
return demo
|
397 |
+
|
398 |
+
if __name__ == "__main__":
|
399 |
+
# Create models directory if it doesn't exist
|
400 |
+
os.makedirs("models", exist_ok=True)
|
401 |
+
|
402 |
+
# Launch Gradio interface
|
403 |
+
demo = create_gradio_interface()
|
404 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|