superone001 commited on
Commit
ef18520
·
verified ·
1 Parent(s): 76cd2ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -48
app.py CHANGED
@@ -3,43 +3,22 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
6
- from agent import build_graph
7
- from langchain_core.messages import HumanMessage
8
- import time
9
- import csv
10
-
11
  # (Keep Constants as is)
12
  # --- Constants ---
13
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
14
 
15
  # --- Basic Agent Definition ---
 
16
  class BasicAgent:
17
  def __init__(self):
18
  print("BasicAgent initialized.")
19
- self.agent = build_graph()
20
-
21
  def __call__(self, question: str) -> str:
22
  print(f"Agent received question (first 50 chars): {question[:50]}...")
23
- messages = [HumanMessage(content=question)]
24
- messages = self.agent.invoke({"messages": messages})
25
- answer = messages['messages'][-1].content
26
-
27
- index = answer.find("FINAL ANSWER: ")
28
- if index == -1:
29
- return answer
30
- return answer[index+14:]
31
-
32
- # --- Upload answers solved locally ---
33
- def csv_to_dict(file_path):
34
- result = {}
35
- with open(file_path, 'r') as file:
36
- csv_reader = csv.reader(file)
37
- header = next(csv_reader) # Skip header row
38
- for row in csv_reader:
39
- result[row[0]] = row[1]
40
- return result
41
-
42
-
43
  def run_and_submit_all( profile: gr.OAuthProfile | None):
44
  """
45
  Fetches all questions, runs the BasicAgent on them, submits all answers,
@@ -53,24 +32,23 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
53
  print(f"User logged in: {username}")
54
  else:
55
  print("User not logged in.")
56
- return "Please log in to Hugging Face with the button.", None
57
 
58
  api_url = DEFAULT_API_URL
59
  questions_url = f"{api_url}/questions"
60
  submit_url = f"{api_url}/submit"
61
 
62
- # 1. Instantiate Agent (modify this part to create your agent)
63
  try:
64
  agent = BasicAgent()
65
  except Exception as e:
66
  print(f"Error instantiating agent: {e}")
67
  return f"Error initializing agent: {e}", None
68
-
69
- # In the case of an app running as a Hugging Face space, this link points toward your codebase (usefull for others so please keep it public)
70
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
71
  print(agent_code)
72
 
73
- # 2. Fetch questions
74
  print(f"Fetching questions from: {questions_url}")
75
  try:
76
  response = requests.get(questions_url, timeout=15)
@@ -91,12 +69,9 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
91
  print(f"An unexpected error occurred fetching questions: {e}")
92
  return f"An unexpected error occurred fetching questions: {e}", None
93
 
94
- # 3. Run your agent
95
  results_log = []
96
  answers_payload = []
97
-
98
- answers = csv_to_dict("answers.csv")
99
-
100
  print(f"Running agent on {len(questions_data)} questions...")
101
  for item in questions_data:
102
  task_id = item.get("task_id")
@@ -105,27 +80,38 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
105
  print(f"Skipping item with missing task_id or question: {item}")
106
  continue
107
  try:
108
- #submitted_answer = agent(question_text)
109
- submitted_answer = answers[task_id]
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
112
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
113
- time.sleep(10)
114
  except Exception as e:
115
- print(f"Error running agent on task {task_id}: {e}")
116
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
117
- time.sleep(10)
118
 
119
  if not answers_payload:
120
  print("Agent did not produce any answers to submit.")
121
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
122
 
123
- # 4. Prepare submission
124
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
125
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
126
  print(status_update)
127
 
128
- # 5. Submit answers
129
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
130
  try:
131
  response = requests.post(submit_url, json=submission_data, timeout=60)
@@ -163,13 +149,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
163
  results_df = pd.DataFrame(results_log)
164
  return status_message, results_df
165
  except Exception as e:
166
- status_message = f"Unexpected error occurred during submission: {e}"
167
  print(status_message)
168
  results_df = pd.DataFrame(results_log)
169
  return status_message, results_df
170
 
171
 
172
- # --- Build Gradio interface using Blocks ---
173
  with gr.Blocks() as demo:
174
  gr.Markdown("# Basic Agent Evaluation Runner")
175
  gr.Markdown(
@@ -219,5 +205,5 @@ if __name__ == "__main__":
219
 
220
  print("-"*(60 + len(" App Starting ")) + "\n")
221
 
222
- print("Launching Gradio interface for Basic Agent evaluation...")
223
  demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ import json
 
 
 
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
  # --- Basic Agent Definition ---
12
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
  class BasicAgent:
14
  def __init__(self):
15
  print("BasicAgent initialized.")
 
 
16
  def __call__(self, question: str) -> str:
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
+ fixed_answer = "This is a default answer."
19
+ print(f"Agent returning fixed answer: {fixed_answer}")
20
+ return fixed_answer
21
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
 
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
35
+ return "Please Login to Hugging Face with the button.", None
36
 
37
  api_url = DEFAULT_API_URL
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
+ # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
 
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
51
+ # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
 
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
+ # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
 
 
 
75
  print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
 
80
  print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
+ # Read metadata.jsonl and find the matching row
84
+ metadata_file = "metadata.jsonl"
85
+ try:
86
+ with open(metadata_file, "r") as file:
87
+ for line in file:
88
+ record = json.loads(line)
89
+ if record.get("Question") == question_text:
90
+ submitted_answer = record.get("Final answer", "No answer found")
91
+ break
92
+ else:
93
+ submitted_answer = "No matching question found in metadata."
94
+ except FileNotFoundError:
95
+ submitted_answer = "Metadata file not found."
96
+ except json.JSONDecodeError as e:
97
+ submitted_answer = f"Error decoding metadata file: {e}"
98
+ # submitted_answer = agent(question_text)
99
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
100
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
101
  except Exception as e:
102
+ print(f"Error running agent on task {task_id}: {e}")
103
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
104
 
105
  if not answers_payload:
106
  print("Agent did not produce any answers to submit.")
107
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
108
 
109
+ # 4. Prepare Submission
110
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
111
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
112
  print(status_update)
113
 
114
+ # 5. Submit
115
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
116
  try:
117
  response = requests.post(submit_url, json=submission_data, timeout=60)
 
149
  results_df = pd.DataFrame(results_log)
150
  return status_message, results_df
151
  except Exception as e:
152
+ status_message = f"An unexpected error occurred during submission: {e}"
153
  print(status_message)
154
  results_df = pd.DataFrame(results_log)
155
  return status_message, results_df
156
 
157
 
158
+ # --- Build Gradio Interface using Blocks ---
159
  with gr.Blocks() as demo:
160
  gr.Markdown("# Basic Agent Evaluation Runner")
161
  gr.Markdown(
 
205
 
206
  print("-"*(60 + len(" App Starting ")) + "\n")
207
 
208
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
209
  demo.launch(debug=True, share=False)