Update agent.py
Browse files
agent.py
CHANGED
@@ -1,269 +1,211 @@
|
|
|
|
|
|
1 |
from dotenv import load_dotenv
|
2 |
-
|
3 |
-
from
|
4 |
-
from
|
|
|
|
|
|
|
|
|
5 |
from langchain_community.document_loaders import WikipediaLoader
|
6 |
from langchain_community.document_loaders import ArxivLoader
|
7 |
-
from langchain_community.
|
8 |
-
from langchain_tavily import TavilyExtract
|
9 |
-
from youtube_transcript_api import YouTubeTranscriptApi
|
10 |
-
|
11 |
from langchain_core.messages import SystemMessage, HumanMessage
|
12 |
-
from
|
13 |
-
from
|
14 |
-
from
|
15 |
-
import base64
|
16 |
-
import httpx
|
17 |
-
|
18 |
|
19 |
load_dotenv()
|
20 |
|
21 |
@tool
|
22 |
-
def
|
23 |
-
"""
|
24 |
-
Add b to a.
|
25 |
-
|
26 |
Args:
|
27 |
-
a: first int
|
28 |
-
b: second int
|
29 |
"""
|
30 |
-
return a
|
31 |
|
32 |
@tool
|
33 |
-
def
|
34 |
-
"""
|
35 |
-
Subtract b from a.
|
36 |
|
37 |
Args:
|
38 |
-
a: first int
|
39 |
-
b: second int
|
40 |
"""
|
41 |
-
return a
|
42 |
|
43 |
@tool
|
44 |
-
def
|
45 |
-
"""
|
46 |
-
Multiply a by b.
|
47 |
|
48 |
Args:
|
49 |
-
a: first int
|
50 |
-
b: second int
|
51 |
"""
|
52 |
-
return a
|
53 |
|
54 |
@tool
|
55 |
def divide(a: int, b: int) -> int:
|
56 |
-
"""
|
57 |
-
Divide a by b.
|
58 |
|
59 |
Args:
|
60 |
-
a: first int
|
61 |
-
b: second int
|
62 |
"""
|
63 |
if b == 0:
|
64 |
-
raise ValueError("
|
65 |
return a / b
|
66 |
|
67 |
@tool
|
68 |
-
def
|
69 |
-
"""
|
70 |
-
Remainder of a devided by b.
|
71 |
|
72 |
Args:
|
73 |
-
a: first int
|
74 |
-
b: second int
|
75 |
"""
|
76 |
return a % b
|
77 |
|
78 |
@tool
|
79 |
def wiki_search(query: str) -> str:
|
80 |
-
"""
|
81 |
-
Search Wikipedia.
|
82 |
|
83 |
Args:
|
84 |
-
query:
|
85 |
-
|
86 |
-
|
87 |
-
formatted_search_docs = "".join(
|
88 |
[
|
89 |
-
f'<
|
90 |
for doc in search_docs
|
91 |
])
|
92 |
return {"wiki_results": formatted_search_docs}
|
93 |
|
94 |
@tool
|
95 |
-
def
|
96 |
-
"""
|
97 |
-
Search arXiv which is online archive of preprint and postprint manuscripts
|
98 |
-
for different fields of science.
|
99 |
|
100 |
Args:
|
101 |
-
query:
|
102 |
-
|
103 |
-
|
104 |
-
formatted_search_docs = "".join(
|
105 |
[
|
106 |
-
f'<
|
107 |
for doc in search_docs
|
108 |
])
|
109 |
-
return {"
|
110 |
|
111 |
@tool
|
112 |
-
def
|
113 |
-
"""
|
114 |
-
Search WEB.
|
115 |
|
116 |
Args:
|
117 |
-
query:
|
118 |
-
|
119 |
-
|
120 |
-
formatted_search_docs = "".join(
|
121 |
[
|
122 |
-
f'<
|
123 |
for doc in search_docs
|
124 |
])
|
125 |
-
return {"
|
126 |
|
127 |
-
@tool
|
128 |
-
def open_web_page(url: str) -> str:
|
129 |
-
"""
|
130 |
-
Open web page and get its content.
|
131 |
-
|
132 |
-
Args:
|
133 |
-
url: web page url in ""
|
134 |
-
"""
|
135 |
-
search_docs = TavilyExtract().invoke({"urls": [url]})
|
136 |
-
formatted_search_docs = f'<START source="{search_docs["results"][0]["url"]}">{search_docs["results"][0]["raw_content"][:1000]}<END>'
|
137 |
-
return {"web_page_content": formatted_search_docs}
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
|
152 |
tools = [
|
153 |
-
add,
|
154 |
-
substract,
|
155 |
multiply,
|
|
|
|
|
156 |
divide,
|
157 |
-
|
158 |
wiki_search,
|
159 |
-
arvix_search,
|
160 |
web_search,
|
161 |
-
|
162 |
-
youtube_transcript,
|
163 |
]
|
164 |
|
165 |
-
#
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
""
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
temperature=0.1, # 直接指定
|
186 |
-
repetition_penalty=1.2, # 直接指定
|
187 |
-
top_p=0.9, # 可选参数
|
188 |
-
# 其他参数也可以直接在这里指定
|
189 |
-
)
|
190 |
-
llm_with_tools = llm.bind_tools(tools, strict=True)
|
191 |
|
192 |
-
#
|
193 |
def assistant(state: MessagesState):
|
194 |
-
"""Assistant node
|
195 |
-
return {"messages": [llm_with_tools.invoke(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
# Graph
|
198 |
builder = StateGraph(MessagesState)
|
|
|
199 |
builder.add_node("assistant", assistant)
|
200 |
builder.add_node("tools", ToolNode(tools))
|
201 |
-
builder.add_edge(START, "
|
202 |
-
builder.
|
|
|
|
|
|
|
|
|
203 |
builder.add_edge("tools", "assistant")
|
204 |
|
205 |
# Compile graph
|
206 |
return builder.compile()
|
207 |
|
208 |
-
|
209 |
-
# Testing and solving particular tasks
|
210 |
if __name__ == "__main__":
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
content_urls = {
|
220 |
-
"image": "https://agents-course-unit4-scoring.hf.space/files/cca530fc-4052-43b2-b130-b30968d8aa44",
|
221 |
-
"audio": None
|
222 |
-
}
|
223 |
-
|
224 |
-
# Define user message and add all the content
|
225 |
-
content = [
|
226 |
-
{
|
227 |
-
"type": "text",
|
228 |
-
"text": question
|
229 |
-
}
|
230 |
-
]
|
231 |
-
if content_urls["image"]:
|
232 |
-
image_data = base64.b64encode(httpx.get(content_urls["image"]).content).decode("utf-8")
|
233 |
-
content.append(
|
234 |
-
{
|
235 |
-
"type": "image",
|
236 |
-
"source_type": "base64",
|
237 |
-
"data": image_data,
|
238 |
-
"mime_type": "image/jpeg"
|
239 |
-
}
|
240 |
-
)
|
241 |
-
if content_urls["audio"]:
|
242 |
-
audio_data = base64.b64encode(httpx.get(content_urls["audio"]).content).decode("utf-8")
|
243 |
-
content.append(
|
244 |
-
{
|
245 |
-
"type": "audio",
|
246 |
-
"source_type": "base64",
|
247 |
-
"data": audio_data,
|
248 |
-
"mime_type": "audio/wav"
|
249 |
-
}
|
250 |
-
)
|
251 |
-
messages = {
|
252 |
-
"role": "user",
|
253 |
-
"content": content
|
254 |
-
}
|
255 |
-
|
256 |
-
# Run agent on the question
|
257 |
-
messages = agent.invoke({"messages": messages})
|
258 |
-
for message in messages["messages"]:
|
259 |
-
message.pretty_print()
|
260 |
-
|
261 |
-
answer = messages["messages"][-1].content
|
262 |
-
index = answer.find("FINAL ANSWER: ")
|
263 |
-
|
264 |
-
print("\n")
|
265 |
-
print("="*30)
|
266 |
-
if index == -1:
|
267 |
-
print(answer)
|
268 |
-
print(answer[index+14:])
|
269 |
-
print("="*30)
|
|
|
1 |
+
"""LangGraph Agent"""
|
2 |
+
import os
|
3 |
from dotenv import load_dotenv
|
4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
+
from langgraph.prebuilt import tools_condition
|
6 |
+
from langgraph.prebuilt import ToolNode
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
from langchain_community.document_loaders import WikipediaLoader
|
12 |
from langchain_community.document_loaders import ArxivLoader
|
13 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
|
|
|
|
|
|
14 |
from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
+
from langchain_core.tools import tool
|
16 |
+
from langchain.tools.retriever import create_retriever_tool
|
17 |
+
from supabase.client import Client, create_client
|
|
|
|
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
21 |
@tool
|
22 |
+
def multiply(a: int, b: int) -> int:
|
23 |
+
"""Multiply two numbers.
|
|
|
|
|
24 |
Args:
|
25 |
+
a: first int
|
26 |
+
b: second int
|
27 |
"""
|
28 |
+
return a * b
|
29 |
|
30 |
@tool
|
31 |
+
def add(a: int, b: int) -> int:
|
32 |
+
"""Add two numbers.
|
|
|
33 |
|
34 |
Args:
|
35 |
+
a: first int
|
36 |
+
b: second int
|
37 |
"""
|
38 |
+
return a + b
|
39 |
|
40 |
@tool
|
41 |
+
def subtract(a: int, b: int) -> int:
|
42 |
+
"""Subtract two numbers.
|
|
|
43 |
|
44 |
Args:
|
45 |
+
a: first int
|
46 |
+
b: second int
|
47 |
"""
|
48 |
+
return a - b
|
49 |
|
50 |
@tool
|
51 |
def divide(a: int, b: int) -> int:
|
52 |
+
"""Divide two numbers.
|
|
|
53 |
|
54 |
Args:
|
55 |
+
a: first int
|
56 |
+
b: second int
|
57 |
"""
|
58 |
if b == 0:
|
59 |
+
raise ValueError("Cannot divide by zero.")
|
60 |
return a / b
|
61 |
|
62 |
@tool
|
63 |
+
def modulus(a: int, b: int) -> int:
|
64 |
+
"""Get the modulus of two numbers.
|
|
|
65 |
|
66 |
Args:
|
67 |
+
a: first int
|
68 |
+
b: second int
|
69 |
"""
|
70 |
return a % b
|
71 |
|
72 |
@tool
|
73 |
def wiki_search(query: str) -> str:
|
74 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
|
|
75 |
|
76 |
Args:
|
77 |
+
query: The search query."""
|
78 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
79 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
|
|
80 |
[
|
81 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
82 |
for doc in search_docs
|
83 |
])
|
84 |
return {"wiki_results": formatted_search_docs}
|
85 |
|
86 |
@tool
|
87 |
+
def web_search(query: str) -> str:
|
88 |
+
"""Search Tavily for a query and return maximum 3 results.
|
|
|
|
|
89 |
|
90 |
Args:
|
91 |
+
query: The search query."""
|
92 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
93 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
|
|
94 |
[
|
95 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
96 |
for doc in search_docs
|
97 |
])
|
98 |
+
return {"web_results": formatted_search_docs}
|
99 |
|
100 |
@tool
|
101 |
+
def arvix_search(query: str) -> str:
|
102 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
|
|
103 |
|
104 |
Args:
|
105 |
+
query: The search query."""
|
106 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
107 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
|
|
108 |
[
|
109 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
110 |
for doc in search_docs
|
111 |
])
|
112 |
+
return {"arvix_results": formatted_search_docs}
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
|
116 |
+
# load the system prompt from the file
|
117 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
118 |
+
system_prompt = f.read()
|
119 |
+
|
120 |
+
# System message
|
121 |
+
sys_msg = SystemMessage(content=system_prompt)
|
122 |
+
|
123 |
+
# build a retriever
|
124 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
125 |
+
supabase: Client = create_client(
|
126 |
+
os.environ.get("SUPABASE_URL"),
|
127 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
128 |
+
vector_store = SupabaseVectorStore(
|
129 |
+
client=supabase,
|
130 |
+
embedding= embeddings,
|
131 |
+
table_name="documents",
|
132 |
+
query_name="match_documents_langchain",
|
133 |
+
)
|
134 |
+
create_retriever_tool = create_retriever_tool(
|
135 |
+
retriever=vector_store.as_retriever(),
|
136 |
+
name="Question Search",
|
137 |
+
description="A tool to retrieve similar questions from a vector store.",
|
138 |
+
)
|
139 |
+
|
140 |
|
141 |
|
142 |
tools = [
|
|
|
|
|
143 |
multiply,
|
144 |
+
add,
|
145 |
+
subtract,
|
146 |
divide,
|
147 |
+
modulus,
|
148 |
wiki_search,
|
|
|
149 |
web_search,
|
150 |
+
arvix_search,
|
|
|
151 |
]
|
152 |
|
153 |
+
# Build graph function
|
154 |
+
def build_graph(provider: str = "huggingface"):
|
155 |
+
"""Build the graph"""
|
156 |
+
# Load environment variables from .env file
|
157 |
+
if provider == "google":
|
158 |
+
# Google Gemini
|
159 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
160 |
+
elif provider == "groq":
|
161 |
+
# Groq https://console.groq.com/docs/models
|
162 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
163 |
+
elif provider == "huggingface":
|
164 |
+
llm = ChatHuggingFace(
|
165 |
+
llm=HuggingFaceEndpoint(
|
166 |
+
repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct"
|
167 |
+
),
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
171 |
+
# Bind tools to LLM
|
172 |
+
llm_with_tools = llm.bind_tools(tools)
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# Node
|
175 |
def assistant(state: MessagesState):
|
176 |
+
"""Assistant node"""
|
177 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
178 |
+
|
179 |
+
def retriever(state: MessagesState):
|
180 |
+
"""Retriever node"""
|
181 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
182 |
+
example_msg = HumanMessage(
|
183 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
184 |
+
)
|
185 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
186 |
|
|
|
187 |
builder = StateGraph(MessagesState)
|
188 |
+
builder.add_node("retriever", retriever)
|
189 |
builder.add_node("assistant", assistant)
|
190 |
builder.add_node("tools", ToolNode(tools))
|
191 |
+
builder.add_edge(START, "retriever")
|
192 |
+
builder.add_edge("retriever", "assistant")
|
193 |
+
builder.add_conditional_edges(
|
194 |
+
"assistant",
|
195 |
+
tools_condition,
|
196 |
+
)
|
197 |
builder.add_edge("tools", "assistant")
|
198 |
|
199 |
# Compile graph
|
200 |
return builder.compile()
|
201 |
|
202 |
+
# test
|
|
|
203 |
if __name__ == "__main__":
|
204 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
205 |
+
# Build the graph
|
206 |
+
graph = build_graph(provider="groq")
|
207 |
+
# Run the graph
|
208 |
+
messages = [HumanMessage(content=question)]
|
209 |
+
messages = graph.invoke({"messages": messages})
|
210 |
+
for m in messages["messages"]:
|
211 |
+
m.pretty_print()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|