src/backend/run_eval_suite.py CHANGED
@@ -17,22 +17,16 @@ def process_results_decorator(func):
17
  end_to_end_time = sum([r[1] for r in results]) / len(results)
18
  prefilling_time = sum([r[2] for r in results]) / len(results)
19
  decoding_throughput = sum([r[3] for r in results]) / len(results)
20
- decoding_mfu = sum([r[4] for r in results]) / len(results)
21
- decoding_mbu = sum([r[5] for r in results]) / len(results)
22
- prefill_throughput = sum([r[6] for r in results]) / len(results)
23
- prefill_mfu = sum([r[7] for r in results]) / len(results)
24
- prefill_mbu = sum([r[8] for r in results]) / len(results)
25
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
26
 
27
  result_dict = func(self, doc, processed_results, *args, **kwargs)
28
  result_dict["end_to_end_time"] = end_to_end_time
29
  result_dict["prefilling_time"] = prefilling_time
30
  result_dict["decoding_throughput"] = decoding_throughput
31
- result_dict["decoding_mfu"] = decoding_mfu
32
- result_dict["decoding_mbu"] = decoding_mbu
33
- result_dict["prefill_throughput"] = prefill_throughput
34
- result_dict["prefill_mfu"] = prefill_mfu
35
- result_dict["prefill_mbu"] = prefill_mbu
36
  return result_dict
37
  return wrapper
38
  ConfigurableTask.process_results = process_results_decorator(orig_process_results)
@@ -43,11 +37,8 @@ def aggregation_decorator(func):
43
  aggregation_list["end_to_end_time"] = mean
44
  aggregation_list["prefilling_time"] = mean
45
  aggregation_list["decoding_throughput"] = mean
46
- aggregation_list["decoding_mfu"] = mean
47
- aggregation_list["decoding_mbu"] = mean
48
- aggregation_list["prefill_throughput"] = mean
49
- aggregation_list["prefill_mfu"] = mean
50
- aggregation_list["prefill_mbu"] = mean
51
  return aggregation_list
52
  return wrapper
53
  ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
@@ -58,11 +49,8 @@ def higher_is_better_decorator(func):
58
  higher_is_better_dict["end_to_end_time"] = False
59
  higher_is_better_dict["prefilling_time"] = False
60
  higher_is_better_dict["decoding_throughput"] = True
61
- higher_is_better_dict["decoding_mfu"] = True
62
- higher_is_better_dict["decoding_mbu"] = True
63
- higher_is_better_dict["prefill_throughput"] = True
64
- higher_is_better_dict["prefill_mfu"] = True
65
- higher_is_better_dict["prefill_mbu"] = True
66
  return higher_is_better_dict
67
  return wrapper
68
  ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
@@ -77,8 +65,6 @@ from src.backend.tasks.selfcheckgpt.task import SelfCheckGPT
77
 
78
  from src.backend.huggingface_generate_until import HFLMwithChatTemplate
79
  from src.backend.moe_infinity import MoEHFLM
80
- from src.backend.vllm import VLLM_MOE
81
- from src.backend.sglang import SGLangMoE
82
 
83
  def run_evaluation(
84
  eval_request: EvalRequest,
 
17
  end_to_end_time = sum([r[1] for r in results]) / len(results)
18
  prefilling_time = sum([r[2] for r in results]) / len(results)
19
  decoding_throughput = sum([r[3] for r in results]) / len(results)
20
+ mfu = sum([r[4] for r in results]) / len(results)
21
+ mbu = sum([r[5] for r in results]) / len(results)
 
 
 
22
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
23
 
24
  result_dict = func(self, doc, processed_results, *args, **kwargs)
25
  result_dict["end_to_end_time"] = end_to_end_time
26
  result_dict["prefilling_time"] = prefilling_time
27
  result_dict["decoding_throughput"] = decoding_throughput
28
+ result_dict["mfu"] = mfu
29
+ result_dict["mbu"] = mbu
 
 
 
30
  return result_dict
31
  return wrapper
32
  ConfigurableTask.process_results = process_results_decorator(orig_process_results)
 
37
  aggregation_list["end_to_end_time"] = mean
38
  aggregation_list["prefilling_time"] = mean
39
  aggregation_list["decoding_throughput"] = mean
40
+ aggregation_list["mfu"] = mean
41
+ aggregation_list["mbu"] = mean
 
 
 
42
  return aggregation_list
43
  return wrapper
44
  ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
 
49
  higher_is_better_dict["end_to_end_time"] = False
50
  higher_is_better_dict["prefilling_time"] = False
51
  higher_is_better_dict["decoding_throughput"] = True
52
+ higher_is_better_dict["mfu"] = True
53
+ higher_is_better_dict["mbu"] = True
 
 
 
54
  return higher_is_better_dict
55
  return wrapper
56
  ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
 
65
 
66
  from src.backend.huggingface_generate_until import HFLMwithChatTemplate
67
  from src.backend.moe_infinity import MoEHFLM
 
 
68
 
69
  def run_evaluation(
70
  eval_request: EvalRequest,
src/backend/tasks/measurement_task_utils.py CHANGED
@@ -12,12 +12,8 @@ def process_results_decorator(func):
12
  end_to_end_time = sum([r[1] for r in results]) / len(results)
13
  prefilling_time = sum([r[2] for r in results]) / len(results)
14
  decoding_throughput = sum([r[3] for r in results]) / len(results)
15
- decoding_mfu = sum([r[4] for r in results]) / len(results)
16
- decoding_mbu = sum([r[5] for r in results]) / len(results)
17
- prefill_throughput = sum([r[6] for r in results]) / len(results)
18
- prefill_mfu = sum([r[7] for r in results]) / len(results)
19
- prefill_mbu = sum([r[8] for r in results]) / len(results)
20
-
21
 
22
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
23
 
@@ -26,11 +22,8 @@ def process_results_decorator(func):
26
  result_dict["end_to_end_time"] = end_to_end_time
27
  result_dict["prefilling_time"] = prefilling_time
28
  result_dict["decoding_throughput"] = decoding_throughput
29
- result_dict["decoding_mfu"] = decoding_mfu
30
- result_dict["decoding_mbu"] = decoding_mbu
31
- result_dict["prefill_throughput"] = prefill_throughput
32
- result_dict["prefill_mfu"] = prefill_mfu
33
- result_dict["prefill_mbu"] = prefill_mbu
34
  return result_dict
35
  return wrapper
36
 
@@ -42,11 +35,8 @@ def aggregation_decorator(func):
42
  aggregation_list["end_to_end_time"] = mean
43
  aggregation_list["prefilling_time"] = mean
44
  aggregation_list["decoding_throughput"] = mean
45
- aggregation_list["decoding_mfu"] = mean
46
- aggregation_list["decoding_mbu"] = mean
47
- aggregation_list["prefill_throughput"] = mean
48
- aggregation_list["prefill_mfu"] = mean
49
- aggregation_list["prefill_mbu"] = mean
50
  return aggregation_list
51
  return wrapper
52
 
@@ -58,11 +48,8 @@ def higher_is_better_decorator(func):
58
  higher_is_better_dict["end_to_end_time"] = False
59
  higher_is_better_dict["prefilling_time"] = False
60
  higher_is_better_dict["decoding_throughput"] = True
61
- higher_is_better_dict["decoding_mfu"] = True
62
- higher_is_better_dict["decoding_mbu"] = True
63
- higher_is_better_dict["prefill_throughput"] = True
64
- higher_is_better_dict["prefill_mfu"] = True
65
- higher_is_better_dict["prefill_mbu"] = True
66
  return higher_is_better_dict
67
  return wrapper
68
 
 
12
  end_to_end_time = sum([r[1] for r in results]) / len(results)
13
  prefilling_time = sum([r[2] for r in results]) / len(results)
14
  decoding_throughput = sum([r[3] for r in results]) / len(results)
15
+ mfu = sum([r[4] for r in results]) / len(results)
16
+ mbu = sum([r[5] for r in results]) / len(results)
 
 
 
 
17
 
18
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
19
 
 
22
  result_dict["end_to_end_time"] = end_to_end_time
23
  result_dict["prefilling_time"] = prefilling_time
24
  result_dict["decoding_throughput"] = decoding_throughput
25
+ result_dict["mfu"] = mfu
26
+ result_dict["mbu"] = mbu
 
 
 
27
  return result_dict
28
  return wrapper
29
 
 
35
  aggregation_list["end_to_end_time"] = mean
36
  aggregation_list["prefilling_time"] = mean
37
  aggregation_list["decoding_throughput"] = mean
38
+ aggregation_list["mfu"] = mean
39
+ aggregation_list["mbu"] = mean
 
 
 
40
  return aggregation_list
41
  return wrapper
42
 
 
48
  higher_is_better_dict["end_to_end_time"] = False
49
  higher_is_better_dict["prefilling_time"] = False
50
  higher_is_better_dict["decoding_throughput"] = True
51
+ higher_is_better_dict["mfu"] = True
52
+ higher_is_better_dict["mbu"] = True
 
 
 
53
  return higher_is_better_dict
54
  return wrapper
55
 
src/display/about.py CHANGED
@@ -18,13 +18,10 @@ Columns and Metrics:
18
  - Method: The MOE LLMs inference framework.
19
  - E2E(s): Average End to End generation time in seconds.
20
  - PRE(s): Prefilling Time of input prompt in seconds.
21
- - Decoding T/s: Tokens throughout per second for decoding.
22
- - Decoding S-MBU(%): Sparse Model Bandwidth Utilization for decoding.
23
- - Decoding S-MFU(%): Sparse Model FLOPs Utilization for decoding.
24
- - Prefill T/s: Tokens throughout per second for Prefilling.
25
- - Prefill S-MBU(%): Sparse Model Bandwidth Utilization for Prefilling.
26
- - Prefill S-MFU(%): Sparse Model FLOPs Utilization for Prefilling.
27
- - Precision: The precision of used model.
28
 
29
  """
30
 
 
18
  - Method: The MOE LLMs inference framework.
19
  - E2E(s): Average End to End generation time in seconds.
20
  - PRE(s): Prefilling Time of input prompt in seconds.
21
+ - T/s: Tokens throughout per second.
22
+ - S-MBU(%): Sparse Model Bandwidth Utilization.
23
+ - S-MFU(%): Sparse Model FLOPs Utilization.
24
+ - Precision: The precison of used model.
 
 
 
25
 
26
  """
27
 
src/display/utils.py CHANGED
@@ -9,32 +9,25 @@ def fields(raw_class):
9
 
10
  E2Es = "E2E(s)" #"End-to-end time (s)"
11
  PREs = "PRE(s)" #"Prefilling time (s)"
12
- TS = "Decoding T/s" #Decoding throughput (tok/s)
13
- PTS = "Prefill T/s" #Prefill throughput (tok/s)
14
  InFrame = "Method" #"Inference framework"
15
  MULTIPLE_CHOICEs = ["mmlu"]
16
 
17
-
18
  GPU_TEMP = 'Temp(C)'
19
  GPU_Power = 'Power(W)'
20
  GPU_Mem = 'Mem(G)'
21
  GPU_Name = "GPU"
22
  GPU_Util = 'Util(%)'
23
- DSMFU = 'Decoding S-MFU(%)'
24
- DSMBU = 'Decoding S-MBU(%)'
25
- PSMFU = 'Prefill S-MFU(%)'
26
- PSMBU = 'Prefill S-MBU(%)'
27
  BATCH_SIZE = 'bs'
28
  PRECISION = "Precision"
29
  system_metrics_to_name_map = {
30
  "end_to_end_time": f"{E2Es}",
31
  "prefilling_time": f"{PREs}",
32
  "decoding_throughput": f"{TS}",
33
- "decoding_mfu": f"{DSMFU}",
34
- "decoding_mbu": f"{DSMBU}",
35
- "prefill_throughput": f"{PTS}",
36
- "prefill_mfu": f"{PSMFU}",
37
- "prefill_mbu": f"{PSMBU}",
38
  }
39
 
40
  gpu_metrics_to_name_map = {
@@ -85,11 +78,10 @@ class Tasks(Enum):
85
 
86
  # # XXX include me back at some point
87
  # selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
88
- # selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
89
  gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (5-shot)
90
  # gsm8k_cot = Task("gsm8k_cot", "em", "GSM8K COT") #GSM8K COT/EM (5-shot)
91
  arena_hard = Task("arena_hard", "score", "Arena Hard") #Arena Hard/Score
92
- mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)
93
 
94
 
95
  # These classes are for user facing column names,
@@ -125,18 +117,12 @@ for task in Tasks:
125
  # auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True, hidden=True)])
126
  auto_eval_column_dict.append([f"{task.name}_gpu", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Name}", "str", True, hidden=True)])
127
  # auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)])
128
- auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
129
  if task.value.benchmark in MULTIPLE_CHOICEs:
130
  continue
 
131
  auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
132
- # if task.value.benchmark != "gsm8k_custom":
133
- # continue
134
- auto_eval_column_dict.append([f"{task.name}_decoding_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {DSMBU}", "number", True, hidden=True)])
135
- auto_eval_column_dict.append([f"{task.name}_decoding_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {DSMFU}", "number", True, hidden=True)])
136
- auto_eval_column_dict.append([f"{task.name}_prefill_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {PTS}", "number", True, hidden=True)])
137
- auto_eval_column_dict.append([f"{task.name}_prefill_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {PSMBU}", "number", True, hidden=True)])
138
- auto_eval_column_dict.append([f"{task.name}_prefill_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {PSMFU}", "number", True, hidden=True)])
139
-
140
 
141
 
142
  # Model information
@@ -201,9 +187,8 @@ class InferenceFramework(Enum):
201
  # MoE_Infinity = ModelDetails("moe-infinity")
202
  HF_Chat = ModelDetails("hf-chat")
203
  VLLM = ModelDetails("vllm_moe")
204
- VLLM_FIX = ModelDetails("vllm_moe_fixbs")
205
  TRTLLM = ModelDetails("tensorrt_llm")
206
- SGLANG = ModelDetails("sglang")
207
  Unknown = ModelDetails("?")
208
 
209
  def to_str(self):
@@ -221,13 +206,10 @@ class InferenceFramework(Enum):
221
  return InferenceFramework.VLLM
222
  if inference_framework in ["vllm_moe_fixbs"]:
223
  return InferenceFramework.VLLM_FIX
224
- if inference_framework in ["sglang"]:
225
- return InferenceFramework.SGLANG
226
  return InferenceFramework.Unknown
227
 
228
  class GPUType(Enum):
229
  A100_sxm = ModelDetails("NVIDIA-A100-SXM4-80GB")
230
- A100_sxm4 = ModelDetails("NVIDIA-A100-SMX4-80GB")
231
  A100_pcie = ModelDetails("NVIDIA-A100-PCIe-80GB")
232
  Unknown = ModelDetails("?")
233
 
 
9
 
10
  E2Es = "E2E(s)" #"End-to-end time (s)"
11
  PREs = "PRE(s)" #"Prefilling time (s)"
12
+ TS = "T/s" #Decoding throughput (tok/s)
 
13
  InFrame = "Method" #"Inference framework"
14
  MULTIPLE_CHOICEs = ["mmlu"]
15
 
 
16
  GPU_TEMP = 'Temp(C)'
17
  GPU_Power = 'Power(W)'
18
  GPU_Mem = 'Mem(G)'
19
  GPU_Name = "GPU"
20
  GPU_Util = 'Util(%)'
21
+ MFU = 'S-MFU(%)'
22
+ MBU = 'S-MBU(%)'
 
 
23
  BATCH_SIZE = 'bs'
24
  PRECISION = "Precision"
25
  system_metrics_to_name_map = {
26
  "end_to_end_time": f"{E2Es}",
27
  "prefilling_time": f"{PREs}",
28
  "decoding_throughput": f"{TS}",
29
+ "mfu": f"{MFU}",
30
+ "mbu": f"{MBU}"
 
 
 
31
  }
32
 
33
  gpu_metrics_to_name_map = {
 
78
 
79
  # # XXX include me back at some point
80
  # selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
81
+ mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)
82
  gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (5-shot)
83
  # gsm8k_cot = Task("gsm8k_cot", "em", "GSM8K COT") #GSM8K COT/EM (5-shot)
84
  arena_hard = Task("arena_hard", "score", "Arena Hard") #Arena Hard/Score
 
85
 
86
 
87
  # These classes are for user facing column names,
 
117
  # auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True, hidden=True)])
118
  auto_eval_column_dict.append([f"{task.name}_gpu", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Name}", "str", True, hidden=True)])
119
  # auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)])
 
120
  if task.value.benchmark in MULTIPLE_CHOICEs:
121
  continue
122
+ auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
123
  auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
124
+ auto_eval_column_dict.append([f"{task.name}_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {MBU}", "number", True, hidden=True)])
125
+ auto_eval_column_dict.append([f"{task.name}_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {MFU}", "number", True, hidden=True)])
 
 
 
 
 
 
126
 
127
 
128
  # Model information
 
187
  # MoE_Infinity = ModelDetails("moe-infinity")
188
  HF_Chat = ModelDetails("hf-chat")
189
  VLLM = ModelDetails("vllm_moe")
 
190
  TRTLLM = ModelDetails("tensorrt_llm")
191
+ VLLM_FIX = ModelDetails("vllm_moe_fixbs")
192
  Unknown = ModelDetails("?")
193
 
194
  def to_str(self):
 
206
  return InferenceFramework.VLLM
207
  if inference_framework in ["vllm_moe_fixbs"]:
208
  return InferenceFramework.VLLM_FIX
 
 
209
  return InferenceFramework.Unknown
210
 
211
  class GPUType(Enum):
212
  A100_sxm = ModelDetails("NVIDIA-A100-SXM4-80GB")
 
213
  A100_pcie = ModelDetails("NVIDIA-A100-PCIe-80GB")
214
  Unknown = ModelDetails("?")
215
 
src/populate.py CHANGED
@@ -75,7 +75,7 @@ def get_leaderboard_df(
75
  df[col] = np.nan
76
 
77
  if not df.empty:
78
- df = df.map(lambda x: round(x, 2) if isinstance(x, (int, float)) else x)
79
 
80
  # filter out if any of the benchmarks have not been produced
81
  # df = df[has_no_nan_values(df, benchmark_cols)]
 
75
  df[col] = np.nan
76
 
77
  if not df.empty:
78
+ df = df.round(decimals=2)
79
 
80
  # filter out if any of the benchmarks have not been produced
81
  # df = df[has_no_nan_values(df, benchmark_cols)]
src/utils.py CHANGED
@@ -4,8 +4,6 @@ import subprocess
4
  import re
5
  import os
6
  import GPUtil
7
- from transformers import AutoConfig
8
- from typing import List
9
 
10
  try:
11
  from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
@@ -14,63 +12,44 @@ except:
14
  from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
15
 
16
  MEM_BW_DICT ={
17
- "NVIDIA-A100-PCIe-80GB": 1935e9,
18
- "NVIDIA-A100-SXM4-80GB": 2039e9,
19
- "NVIDIA-H100-PCIe-80GB": 2039e9,
20
- "NVIDIA-RTX-A5000-24GB": 768e9,
21
- "NVIDIA-RTX-A6000-48GB": 768e9,
22
  }
23
 
24
  PEAK_FLOPS_DICT = {
25
  "float32":{
26
  "NVIDIA-A100-PCIe-80GB": 312e12,
27
- "NVIDIA-A100-SXM4-80GB": 312e12,
28
  "NVIDIA-H100-PCIe-80GB": 756e12,
29
- "NVIDIA-RTX-A5000-24GB": 222.2e12,
30
- "NVIDIA-RTX-A6000-48GB": 309.7e12
31
  },
32
  "float16":{
33
  "NVIDIA-A100-PCIe-80GB": 624e12,
34
- "NVIDIA-A100-SXM4-80GB": 624e12,
35
  "NVIDIA-H100-PCIe-80GB": 1513e12,
36
- "NVIDIA-RTX-A5000-24GB": 222.2e12,
37
- "NVIDIA-RTX-A6000-48GB": 309.7e12
38
  },
39
  "bfloat16":{
40
  "NVIDIA-A100-PCIe-80GB": 624e12,
41
- "NVIDIA-A100-SXM4-80GB": 624e12,
42
  "NVIDIA-H100-PCIe-80GB": 1513e12,
43
- "NVIDIA-RTX-A5000-24GB": 222.2e12,
44
- "NVIDIA-RTX-A6000-48GB": 309.7e12
45
  },
46
- "int8":{
47
  "NVIDIA-A100-PCIe-80GB": 1248e12,
48
- "NVIDIA-A100-SXM4-80GB": 1248e12,
49
  "NVIDIA-H100-PCIe-80GB": 3026e12,
50
- "NVIDIA-RTX-A5000-24GB": 222.2e12,
51
- "NVIDIA-RTX-A6000-48GB": 309.7e12
52
  },
53
- "fp8":{
54
- "NVIDIA-A100-PCIe-80GB": 1248e12,
55
- "NVIDIA-A100-SXM4-80GB": 1248e12,
56
- "NVIDIA-H100-PCIe-80GB": 3026e12,
57
- "NVIDIA-RTX-A5000-24GB": 0,
58
- "NVIDIA-RTX-A6000-48GB": 0
59
- },
60
- "fp4": {
61
- "NVIDIA-A100-PCIe-80GB": 1248e12,
62
- "NVIDIA-A100-SXM4-80GB": 1248e12,
63
- "NVIDIA-H100-PCIe-80GB": 3026e12,
64
- "NVIDIA-RTX-A5000-24GB": 0,
65
- "NVIDIA-RTX-A6000-48GB": 0
66
- },
67
- "int4": {
68
- "NVIDIA-A100-PCIe-80GB": 1248e12,
69
- "NVIDIA-A100-SXM4-80GB": 1248e12,
70
- "NVIDIA-H100-PCIe-80GB": 3026e12,
71
- "NVIDIA-RTX-A5000-24GB": 222.2e12,
72
- "NVIDIA-RTX-A6000-48GB": 309.7e12
73
  }
 
74
  }
75
 
76
  def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
@@ -118,7 +97,7 @@ def parse_nvidia_smi():
118
  # print(f"gpu_indices: {gpu_indices}")
119
  gpu_stats = []
120
 
121
- gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W\s*/\s*\d+W\s*\|\s*(\d+)MiB\s*/\s*\d+MiB\s*\|\s*(\d+)%')
122
  # gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
123
  gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')
124
 
@@ -216,790 +195,17 @@ def get_peak_bw(gpu_name):
216
  def get_peak_flops(gpu_name, precision):
217
  return PEAK_FLOPS_DICT[precision][gpu_name]
218
 
219
- def _calculate_batch_metrics(outputs, decoding_tp, n_layers, d_model,
220
- n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
221
- avg_activated_experts, hf_config, num_gpus, model_name,
222
- used_dtype, batch_size, precision):
223
- """Calculate metrics for a batch of outputs"""
224
- gpu_type = get_gpu_details()
225
- hardware_specs = {
226
- "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
227
- "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
228
- }
229
- kvs = []
230
- true_kvs = []
231
- attn_score = []
232
-
233
- # Calculate KV sizes
234
- per_token_kv_size = 2 * n_layers * d_head * n_kv_heads # Default calculation
235
-
236
- if "DeepSeek" in model_name:
237
- if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
238
- per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
239
-
240
- # Process each output
241
- for x in outputs:
242
- output_len = len(x.outputs[0].token_ids)
243
- context_prefill_size = len(x.prompt_token_ids)
244
-
245
- # Calculate attention scores
246
- if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
247
- q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
248
- origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
249
- origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
250
- attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
251
- attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
252
- attention_score = attention_score / 1e12
253
- else:
254
- origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
255
- attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
256
- attention_score = attention_score * 2 / 1e12
257
-
258
- # Store attention scores and KV sizes
259
- attn_score.append(attention_score)
260
- kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
261
- kv_size = kv_size / 1e12
262
- true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
263
- kvs.append(kv_size)
264
- true_kvs.append(true_kv)
265
-
266
- # Calculate aggregate values
267
- kv_size = sum(kvs)
268
- true_kv_size = sum(true_kvs) * 1e3
269
- attention_score = sum(attn_score) / len(attn_score)
270
-
271
- # Calculate attention size per token
272
- if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
273
- q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
274
- if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
275
- attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
276
- (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
277
- (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
278
- (hf_config.v_head_dim * n_attn_heads * d_model)
279
- attention_size_per_token = attention_size_per_token / 1e12
280
- else:
281
- attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
282
- (hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
283
- (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
284
- (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
285
- (hf_config.v_head_dim * n_attn_heads * d_model)
286
- attention_size_per_token = attention_size_per_token / 1e12
287
- else:
288
- attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
289
- attention_size_per_token = attention_size_per_token / 1e12
290
-
291
- # Calculate expert sizes
292
- expert_size = d_ff * 3 * d_model / 1e12
293
- shared_experts_size_total = 0
294
- deepseek_dense_ffn_size = 0
295
- deepseek_sparse_layer_num = 0
296
-
297
- if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
298
- d_ff = hf_config.moe_intermediate_size
299
- d_ff_share = hf_config.shared_expert_intermediate_size
300
- shared_experts_size = d_ff_share * 3 * d_model
301
- expert_size = d_ff * 3 * d_model
302
- shared_experts_size_total = shared_experts_size / 1e12
303
- expert_size = expert_size / 1e12
304
- elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
305
- d_ff = hf_config.moe_intermediate_size
306
- expert_size = d_ff * 3 * d_model
307
- expert_size = expert_size / 1e12
308
- elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
309
- d_ff = hf_config.moe_intermediate_size
310
- d_ff_dense = hf_config.intermediate_size
311
- deepseek_num_dense_layer = hf_config.first_k_dense_replace
312
- shared_experts_size = d_ff * 3 * d_model
313
- expert_size = d_ff * 3 * d_model
314
- shared_experts = 2
315
- shared_experts_size_total = shared_experts_size * shared_experts / 1e12
316
- expert_size = expert_size / 1e12
317
- deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
318
- deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
319
-
320
- # Calculate S-MBU and S-MFU
321
- if "Qwen" in model_name and not "Qwen3" in model_name:
322
- smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) +
323
- kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
324
- smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
325
- * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
326
- elif "Qwen3" in model_name:
327
- smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) +
328
- kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
329
- smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
330
- * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
331
- elif "DeepSeek" in model_name:
332
- smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
333
- (avg_activated_experts * expert_size + shared_experts_size_total) + \
334
- deepseek_num_dense_layer * deepseek_dense_ffn_size + \
335
- kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
336
- smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
337
- (n_experts_per_tok * expert_size + shared_experts_size_total) + \
338
- deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
339
- * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
340
- else:
341
- smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) +
342
- kv_size) * precision/ (batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
343
- smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
344
- * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
345
-
346
- return {
347
- 'smbu': smbu,
348
- 'smfu': smfu,
349
- 'kv_size': true_kv_size,
350
- 'decoding_throughput': decoding_tp
351
- }
352
-
353
- def _calculate_batch_metrics_sglang(outputs, decoding_tp, n_layers, d_model,
354
- n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
355
- avg_activated_experts, hf_config, num_gpus, model_name,
356
- used_dtype, batch_size, precision, ttft=None, prefill_tp=None):
357
- """Calculate metrics for a batch of outputs"""
358
- # Initialize hardware specs and output lists
359
- hardware_specs = _get_hardware_specs(used_dtype)
360
- output_data = _extract_output_data(outputs)
361
-
362
- # Calculate model-specific sizes
363
- per_token_kv_size = _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads)
364
- attention_size_per_token = _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads)
365
- expert_config = _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers)
366
-
367
- # Process outputs and calculate metrics
368
- metrics_data = _process_outputs(output_data, per_token_kv_size, attention_size_per_token,
369
- model_name, hf_config, n_layers, n_attn_heads, d_head)
370
-
371
- # Calculate throughput metrics
372
- if ttft is None or prefill_tp is None:
373
- ttft, prefill_tp = _calculate_throughput_metrics(batch_size, output_data['prefill_lengths'],
374
- output_data['max_duration'])
375
-
376
-
377
- # Calculate S-MBU and S-MFU
378
- smbu_smfu_metrics = _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token,
379
- expert_config, avg_activated_experts, metrics_data,
380
- hardware_specs, num_gpus, precision, ttft, prefill_tp,
381
- batch_size, decoding_tp)
382
-
383
- return {
384
- 'prefill_smbu': smbu_smfu_metrics['prefill_smbu'],
385
- 'prefill_smfu': smbu_smfu_metrics['prefill_smfu'],
386
- 'decoding_smbu': smbu_smfu_metrics['decoding_smbu'],
387
- 'decoding_smfu': smbu_smfu_metrics['decoding_smfu'],
388
- 'kv_size': metrics_data['true_kv_size'],
389
- 'decoding_throughput': decoding_tp,
390
- 'prefill_tp': prefill_tp,
391
- 'ttft': ttft
392
- }
393
-
394
-
395
- def _get_hardware_specs(used_dtype):
396
- """Get hardware specifications"""
397
- gpu_type = get_gpu_details()
398
- return {
399
- "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
400
- "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
401
- }
402
-
403
-
404
- def _extract_output_data(outputs):
405
- """Extract relevant data from outputs"""
406
- prefill_lengths = []
407
- output_lengths = []
408
- max_duration = 0.0
409
-
410
- for x in outputs:
411
- output_lengths.append(x['meta_info']['completion_tokens'])
412
- prefill_lengths.append(x['meta_info']['prompt_tokens'])
413
- max_duration = max(max_duration, x['meta_info']['e2e_latency'])
414
-
415
- return {
416
- 'prefill_lengths': prefill_lengths,
417
- 'output_lengths': output_lengths,
418
- 'max_duration': max_duration
419
- }
420
-
421
-
422
- def _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads):
423
- """Calculate per-token KV size based on model type"""
424
- if "DeepSeek" in model_name and hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
425
- return n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
426
- return 2 * n_layers * d_head * n_kv_heads
427
-
428
-
429
- def _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads):
430
- """Calculate attention size per token based on model type"""
431
- if ("DeepSeek" in model_name and
432
- hasattr(hf_config, "qk_rope_head_dim") and
433
- hasattr(hf_config, "qk_nope_head_dim") and
434
- hasattr(hf_config, "v_head_dim") and
435
- hasattr(hf_config, "kv_lora_rank")):
436
-
437
- return _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads)
438
-
439
- return (d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) +
440
- n_attn_heads * d_head * d_model) / 1e12
441
-
442
-
443
- def _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads):
444
- """Calculate DeepSeek-specific attention size"""
445
- q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
446
-
447
- base_size = ((d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) +
448
- (hf_config.kv_lora_rank * n_attn_heads *
449
- (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) +
450
- (hf_config.v_head_dim * n_attn_heads * d_model))
451
-
452
- if hasattr(hf_config, "q_lora_rank") and hf_config.q_lora_rank:
453
- q_size = (d_model * hf_config.q_lora_rank +
454
- hf_config.q_lora_rank * n_attn_heads * q_head_dim)
455
- else:
456
- q_size = d_model * n_attn_heads * q_head_dim
457
-
458
- return (base_size + q_size) / 1e12
459
-
460
-
461
- def _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers):
462
- """Calculate expert configuration based on model type"""
463
- config = {
464
- 'expert_size': d_ff * 3 * d_model / 1e12,
465
- 'shared_experts_size_total': 0,
466
- 'deepseek_dense_ffn_size': 0,
467
- 'deepseek_sparse_layer_num': 0,
468
- 'deepseek_num_dense_layer': 0
469
- }
470
-
471
- if "Qwen" in model_name and not "Qwen3" in model_name:
472
- config.update(_get_qwen_expert_config(hf_config, d_model))
473
- elif "Qwen3" in model_name:
474
- config.update(_get_qwen3_expert_config(hf_config, d_model))
475
- elif "DeepSeek" in model_name:
476
- config.update(_get_deepseek_expert_config(hf_config, d_model, n_layers))
477
-
478
- return config
479
-
480
-
481
- def _get_qwen_expert_config(hf_config, d_model):
482
- """Get Qwen-specific expert configuration"""
483
- if (hasattr(hf_config, "moe_intermediate_size") and
484
- hasattr(hf_config, "shared_expert_intermediate_size")):
485
-
486
- return {
487
- 'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
488
- 'shared_experts_size_total': hf_config.shared_expert_intermediate_size * 3 * d_model / 1e12
489
- }
490
- return {}
491
-
492
-
493
- def _get_qwen3_expert_config(hf_config, d_model):
494
- """Get Qwen3-specific expert configuration"""
495
- if hasattr(hf_config, "moe_intermediate_size"):
496
- return {
497
- 'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12
498
- }
499
- return {}
500
-
501
-
502
- def _get_deepseek_expert_config(hf_config, d_model, n_layers):
503
- """Get DeepSeek-specific expert configuration"""
504
- if (hasattr(hf_config, "moe_intermediate_size") and
505
- hasattr(hf_config, "intermediate_size") and
506
- hasattr(hf_config, "first_k_dense_replace")):
507
-
508
- deepseek_num_dense_layer = hf_config.first_k_dense_replace
509
- return {
510
- 'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
511
- 'shared_experts_size_total': hf_config.moe_intermediate_size * 3 * d_model * 2 / 1e12,
512
- 'deepseek_dense_ffn_size': hf_config.intermediate_size * 3 * d_model / 1e12,
513
- 'deepseek_sparse_layer_num': n_layers - deepseek_num_dense_layer,
514
- 'deepseek_num_dense_layer': deepseek_num_dense_layer
515
- }
516
- return {}
517
-
518
-
519
- def _process_outputs(output_data, per_token_kv_size, attention_size_per_token,
520
- model_name, hf_config, n_layers, n_attn_heads, d_head):
521
- """Process outputs to calculate KV sizes and attention scores"""
522
- kvs = []
523
- true_kvs = []
524
- attn_scores = []
525
-
526
- for prefill_len, output_len in zip(output_data['prefill_lengths'], output_data['output_lengths']):
527
- # Calculate attention score
528
- attn_score = _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
529
- n_layers, n_attn_heads, d_head)
530
- attn_scores.append(attn_score)
531
-
532
- # Calculate KV sizes
533
- kv_size = (prefill_len * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2) / 1e12
534
- true_kv = (prefill_len * per_token_kv_size + output_len * per_token_kv_size) / 1e9
535
-
536
- kvs.append(kv_size)
537
- true_kvs.append(true_kv)
538
-
539
- return {
540
- 'kv_size': sum(kvs),
541
- 'true_kv_size': sum(true_kvs) * 1e3,
542
- 'attention_score': sum(attn_scores) / len(attn_scores)
543
- }
544
-
545
-
546
- def _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
547
- n_layers, n_attn_heads, d_head):
548
- """Calculate attention score for a single output"""
549
- if ("DeepSeek" in model_name and
550
- hasattr(hf_config, "qk_rope_head_dim") and
551
- hasattr(hf_config, "qk_nope_head_dim") and
552
- hasattr(hf_config, "v_head_dim")):
553
-
554
- q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
555
- k_size = n_layers * n_attn_heads * q_head_dim
556
- v_size = n_layers * n_attn_heads * hf_config.v_head_dim
557
-
558
- score = (prefill_len * k_size + (output_len - 1) * k_size / 2 +
559
- prefill_len * v_size + (output_len - 1) * v_size / 2)
560
- else:
561
- kv_size = n_layers * n_attn_heads * d_head
562
- score = (prefill_len * kv_size + (output_len - 1) * kv_size / 2) * 2
563
-
564
- return score / 1e12
565
-
566
-
567
- def _calculate_throughput_metrics(batch_size, prefill_lengths, max_duration):
568
- """Calculate throughput metrics"""
569
- total_prefill = sum(prefill_lengths)
570
- prefill_tp = total_prefill / (max_duration)
571
- ttft = max_duration / batch_size
572
- return ttft, prefill_tp
573
-
574
-
575
- def _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token, expert_config,
576
- avg_activated_experts, metrics_data, hardware_specs, num_gpus,
577
- precision, ttft, prefill_tp, batch_size, decoding_tp):
578
- """Calculate S-MBU and S-MFU metrics"""
579
- prefill_activation = avg_activated_experts[1]
580
- decode_steps_activation = avg_activated_experts[2:]
581
-
582
- # Calculate prefill metrics
583
- prefill_smbu, prefill_smfu = _calculate_prefill_metrics(
584
- model_name, n_layers, attention_size_per_token, expert_config,
585
- prefill_activation, metrics_data['attention_score'], hardware_specs,
586
- num_gpus, precision, ttft, prefill_tp
587
- )
588
-
589
- # Calculate decoding metrics
590
- decoding_smbu, decoding_smfu = _calculate_decoding_metrics(
591
- model_name, n_layers, attention_size_per_token, expert_config,
592
- decode_steps_activation, metrics_data, hardware_specs,
593
- num_gpus, precision, batch_size, decoding_tp
594
- )
595
-
596
- return {
597
- 'prefill_smbu': prefill_smbu,
598
- 'prefill_smfu': prefill_smfu,
599
- 'decoding_smbu': decoding_smbu,
600
- 'decoding_smfu': decoding_smfu
601
- }
602
-
603
-
604
- def _calculate_prefill_metrics(model_name, n_layers, attention_size_per_token, expert_config,
605
- prefill_activation, attention_score, hardware_specs,
606
- num_gpus, precision, ttft, prefill_tp):
607
- """Calculate prefill S-MBU and S-MFU"""
608
- model_calculators = {
609
- 'Qwen': _calculate_qwen_prefill,
610
- 'Qwen3': _calculate_qwen3_prefill,
611
- 'DeepSeek': _calculate_deepseek_prefill
612
- }
613
-
614
- for model_type, calculator in model_calculators.items():
615
- if model_type in model_name and (model_type != 'Qwen' or 'Qwen3' not in model_name):
616
- return calculator(n_layers, attention_size_per_token, expert_config,
617
- prefill_activation, attention_score, hardware_specs,
618
- num_gpus, precision, ttft, prefill_tp)
619
-
620
- # Default case
621
- return _calculate_default_prefill(n_layers, attention_size_per_token, expert_config,
622
- prefill_activation, attention_score, hardware_specs,
623
- num_gpus, precision, ttft, prefill_tp)
624
-
625
-
626
- def _calculate_decoding_metrics(model_name, n_layers, attention_size_per_token, expert_config,
627
- decode_steps_activation, metrics_data, hardware_specs,
628
- num_gpus, precision, batch_size, decoding_tp):
629
- """Calculate decoding S-MBU and S-MFU"""
630
- decoding_smbus = []
631
-
632
- for activation in decode_steps_activation:
633
- if "Qwen" in model_name and "Qwen3" not in model_name:
634
- smbu, smfu = _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config,
635
- activation, metrics_data, hardware_specs, num_gpus,
636
- precision, batch_size, decoding_tp)
637
- elif "Qwen3" in model_name:
638
- smbu, smfu = _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config,
639
- activation, metrics_data, hardware_specs, num_gpus,
640
- precision, batch_size, decoding_tp)
641
- elif "DeepSeek" in model_name:
642
- smbu, smfu = _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config,
643
- activation, metrics_data, hardware_specs, num_gpus,
644
- precision, batch_size, decoding_tp)
645
- else:
646
- smbu, smfu = _calculate_default_decoding(n_layers, attention_size_per_token, expert_config,
647
- activation, metrics_data, hardware_specs, num_gpus,
648
- precision, batch_size, decoding_tp)
649
- decoding_smbus.append(smbu)
650
-
651
- return sum(decoding_smbus) / len(decoding_smbus), smfu
652
-
653
-
654
- # Helper functions for specific model calculations
655
- def _calculate_qwen_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
656
- attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
657
- smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
658
- expert_config['shared_experts_size_total'] +
659
- attention_size_per_token)) * precision / ttft
660
- smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
661
-
662
- smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size'] +
663
- expert_config['shared_experts_size_total']) + attention_score) * 2 * prefill_tp
664
- smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
665
-
666
- return smbu, smfu
667
-
668
-
669
- def _calculate_qwen3_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
670
- attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
671
- smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
672
- attention_size_per_token)) * precision / ttft
673
- smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
674
-
675
- smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) +
676
- attention_score) * 2 * prefill_tp
677
- smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
678
-
679
- return smbu, smfu
680
-
681
-
682
- def _calculate_deepseek_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
683
- attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
684
- smbu_numerator = ((n_layers * attention_size_per_token +
685
- expert_config['deepseek_sparse_layer_num'] *
686
- (prefill_activation * expert_config['expert_size'] +
687
- expert_config['shared_experts_size_total']) +
688
- expert_config['deepseek_num_dense_layer'] *
689
- expert_config['deepseek_dense_ffn_size']) * precision / ttft)
690
- smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
691
-
692
- smfu_numerator = ((n_layers * attention_size_per_token +
693
- expert_config['deepseek_sparse_layer_num'] *
694
- (expert_config['expert_size'] + expert_config['shared_experts_size_total']) +
695
- expert_config['deepseek_num_dense_layer'] *
696
- expert_config['deepseek_dense_ffn_size'] + attention_score) * 2 * prefill_tp)
697
- smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
698
-
699
- return smbu, smfu
700
-
701
-
702
- def _calculate_default_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
703
- attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
704
- # Default implementation
705
- smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
706
- attention_size_per_token)) * precision / ttft
707
- smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
708
-
709
- smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) +
710
- attention_score) * 2 * prefill_tp
711
- smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
712
-
713
- return smbu, smfu
714
-
715
-
716
- def _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config, activation,
717
- metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
718
- smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
719
- expert_config['shared_experts_size_total'] +
720
- attention_size_per_token) +
721
- metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
722
- smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
723
-
724
- smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size'] +
725
- expert_config['shared_experts_size_total']) +
726
- metrics_data['attention_score']) * 2 * decoding_tp)
727
- smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
728
-
729
- return smbu, smfu
730
-
731
-
732
- def _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config, activation,
733
- metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
734
- smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
735
- attention_size_per_token) +
736
- metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
737
- smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
738
-
739
- smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) +
740
- metrics_data['attention_score']) * 2 * decoding_tp)
741
- smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
742
-
743
- return smbu, smfu
744
-
745
-
746
- def _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config, activation,
747
- metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
748
- smbu_numerator = ((n_layers * attention_size_per_token +
749
- expert_config['deepseek_sparse_layer_num'] *
750
- (activation * expert_config['expert_size'] +
751
- expert_config['shared_experts_size_total']) +
752
- expert_config['deepseek_num_dense_layer'] *
753
- expert_config['deepseek_dense_ffn_size'] +
754
- metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
755
- smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
756
-
757
- smfu_numerator = ((n_layers * attention_size_per_token +
758
- expert_config['deepseek_sparse_layer_num'] *
759
- (expert_config['expert_size'] + expert_config['shared_experts_size_total']) +
760
- expert_config['deepseek_num_dense_layer'] *
761
- expert_config['deepseek_dense_ffn_size'] +
762
- metrics_data['attention_score']) * 2 * decoding_tp)
763
- smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
764
-
765
- return smbu, smfu
766
-
767
-
768
- def _calculate_default_decoding(n_layers, attention_size_per_token, expert_config, activation,
769
- metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
770
- smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
771
- attention_size_per_token) +
772
- metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
773
- smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
774
-
775
- smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) +
776
- metrics_data['attention_score']) * 2 * decoding_tp)
777
- smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
778
-
779
- return smbu, smfu
780
-
781
- def _calculate_batch_metrics_hflm(output_len, context_prefill_size, decoding_tp, n_layers, d_model,
782
- n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
783
- avg_activated_experts, hf_config, num_gpus, model_name,
784
- used_dtype, batch_size, precision):
785
- """Calculate metrics for a batch of outputs"""
786
- gpu_type = get_gpu_details()
787
- hardware_specs = {
788
- "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
789
- "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
790
- }
791
-
792
- # Calculate KV sizes
793
- per_token_kv_size = 2 * n_layers * d_head * n_kv_heads # Default calculation
794
-
795
- if "DeepSeek" in model_name:
796
- if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
797
- per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
798
-
799
-
800
- # Calculate attention scores
801
- if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
802
- q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
803
- origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
804
- origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
805
- attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
806
- attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
807
- attention_score = attention_score / 1e12
808
  else:
809
- origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
810
- attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
811
- attention_score = attention_score * 2 / 1e12
812
-
813
- # Store attention scores and KV sizes
814
- kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
815
- kv_size = kv_size / 1e12
816
- true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
817
-
818
- # Calculate aggregate values
819
- kv_size = kv_size * batch_size
820
- true_kv_size = true_kv * batch_size * 1e3
821
- # Calculate attention size per token
822
- if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
823
- q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
824
- if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
825
- attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
826
- (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
827
- (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
828
- (hf_config.v_head_dim * n_attn_heads * d_model)
829
- attention_size_per_token = attention_size_per_token / 1e12
830
- else:
831
- attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
832
- (hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
833
- (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
834
- (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
835
- (hf_config.v_head_dim * n_attn_heads * d_model)
836
- attention_size_per_token = attention_size_per_token / 1e12
837
- else:
838
- attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
839
- attention_size_per_token = attention_size_per_token / 1e12
840
-
841
- # Calculate expert sizes
842
- expert_size = d_ff * 3 * d_model / 1e12
843
- shared_experts_size_total = 0
844
- deepseek_dense_ffn_size = 0
845
- deepseek_sparse_layer_num = 0
846
-
847
- if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
848
- d_ff = hf_config.moe_intermediate_size
849
- d_ff_share = hf_config.shared_expert_intermediate_size
850
- shared_experts_size = d_ff_share * 3 * d_model
851
- expert_size = d_ff * 3 * d_model
852
- shared_experts_size_total = shared_experts_size / 1e12
853
- expert_size = expert_size / 1e12
854
- elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
855
- d_ff = hf_config.moe_intermediate_size
856
- expert_size = d_ff * 3 * d_model
857
- expert_size = expert_size / 1e12
858
- elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
859
- d_ff = hf_config.moe_intermediate_size
860
- d_ff_dense = hf_config.intermediate_size
861
- deepseek_num_dense_layer = hf_config.first_k_dense_replace
862
- shared_experts_size = d_ff * 3 * d_model
863
- expert_size = d_ff * 3 * d_model
864
- shared_experts = 2
865
- shared_experts_size_total = shared_experts_size * shared_experts / 1e12
866
- expert_size = expert_size / 1e12
867
- deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
868
- deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
869
-
870
- # Calculate S-MBU and S-MFU
871
- if "Qwen" in model_name:
872
- smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) +
873
- kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
874
- smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
875
- * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
876
- elif "Qwen3" in model_name:
877
- smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) +
878
- kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
879
- smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
880
- * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
881
- elif "DeepSeek" in model_name:
882
- smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
883
- (avg_activated_experts * expert_size + shared_experts_size_total) + \
884
- deepseek_num_dense_layer * deepseek_dense_ffn_size + \
885
- kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
886
- smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
887
- (n_experts_per_tok * expert_size + shared_experts_size_total) + \
888
- deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
889
- * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
890
- else:
891
- smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) +
892
- kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
893
- smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
894
- * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
895
-
896
- return {
897
- 'smbu': smbu,
898
- 'smfu': smfu,
899
- 'kv_size': true_kv_size,
900
- 'decoding_throughput': decoding_tp,
901
- 'ttft': 0
902
- }
903
- class ModelInfoRetriever:
904
- def __init__(self, model_name: str, precision: str = 'float16'):
905
- if precision not in ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']:
906
- raise ValueError("Precision must be one of ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']")
907
- self.model_name = model_name
908
- self.precision = precision
909
- self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
910
- self.model_type = self.config.model_type
911
-
912
- def get_model_precision_bits(self):
913
- """Returns bit width used by the given quantization format."""
914
- if self.precision == 'float32':
915
- return 4
916
- if self.precision in ['float16', 'bfloat16']:
917
- return 2
918
- if self.precision in ['int8', 'fp8']:
919
- return 1
920
- if self.precision in ['int4', 'fp4', 'gptq', 'awq']:
921
- return 0.5
922
- raise ValueError(f"Unsupported precision: {self.precision}")
923
-
924
- def get_attention_info(self):
925
- """Returns attention-related info"""
926
- return {
927
- 'num_attention_heads': getattr(self.config, "num_attention_heads", None),
928
- 'num_key_value_heads': getattr(self.config, "num_key_value_heads", getattr(self.config, "num_kv_heads", None)),
929
- 'head_dim': getattr(self.config, "head_dim", getattr(self.config, "hidden_size", None) // getattr(self.config, "num_attention_heads", 1))
930
- }
931
-
932
- def get_rope_info(self):
933
- """Returns RoPE (rotary embedding) info if available"""
934
- if hasattr(self.config, "rope_scaling"):
935
- return {
936
- "type": self.config.rope_scaling.get("type"),
937
- "factor": self.config.rope_scaling.get("factor")
938
- }
939
- elif hasattr(self.config, "use_alibi"):
940
- return {"type": "alibi", "enabled": self.config.use_alibi}
941
- else:
942
- return {"type": "none"}
943
-
944
- def get_moe_info(self, d_model=None):
945
- """Returns MoE configuration such as number of experts and FFN dim"""
946
- if d_model is None:
947
- d_model = getattr(self.config, "hidden_size", None)
948
-
949
- num_experts = (
950
- getattr(self.config, "num_local_experts", None) or
951
- getattr(self.config, "num_experts", None) or
952
- getattr(self.config, "n_routed_experts", None) or
953
- getattr(getattr(self.config, "ffn_config", {}), "moe_num_experts", None) or
954
- 1
955
- )
956
- n_experts_per_tok = (
957
- getattr(self.config, "num_experts_per_tok", None) or
958
- getattr(self.config, "num_selected_experts", None) or
959
- getattr(getattr(self.config, "ffn_config", {}), "moe_top_k", None) or
960
- 1
961
- )
962
- d_ff = (
963
- getattr(self.config, "ffn_dim", None) or
964
- getattr(self.config, "intermediate_size", None) or
965
- getattr(self.config, "d_ff", None) or
966
- (d_model * getattr(self.config, "ff_ratio", 4)) or
967
- getattr(getattr(self.config, "ffn_config", {}), "ffn_hidden_size", None) or
968
- (4 * d_model)
969
- )
970
-
971
- return {
972
- "num_experts": num_experts,
973
- "experts_per_token": n_experts_per_tok,
974
- "ffn_dim": d_ff
975
- }
976
-
977
- def get_architecture_info(self):
978
- """Returns model-wide architecture info"""
979
- return {
980
- "model_type": self.model_type,
981
- "hidden_size": getattr(self.config, "hidden_size", None),
982
- "num_hidden_layers": getattr(self.config, "num_hidden_layers", None),
983
- "max_position_embeddings": getattr(self.config, "max_position_embeddings", None),
984
- "vocab_size": getattr(self.config, "vocab_size", None),
985
- "architectures": getattr(self.config, "architectures", []),
986
- }
987
-
988
- def summarize(self):
989
- """Aggregate all extracted info in a dictionary"""
990
- d_model = getattr(self.config, "hidden_size", None)
991
- return {
992
- "model_name": self.model_name,
993
- "model_type": self.model_type,
994
- "precision_bits": self.get_model_precision_bits(),
995
- "architecture": self.get_architecture_info(),
996
- "attention": self.get_attention_info(),
997
- "rope": self.get_rope_info(),
998
- "moe": self.get_moe_info(d_model)
999
- }
1000
-
1001
-
1002
 
1003
- # if __name__ == "__main__":
1004
- # print(analyze_gpu_stats(parse_nvidia_smi()))
1005
- # print(get_gpu_details())
 
4
  import re
5
  import os
6
  import GPUtil
 
 
7
 
8
  try:
9
  from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
 
12
  from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
13
 
14
  MEM_BW_DICT ={
15
+ "NVIDIA-A100-PCIe-80GB": 1935,
16
+ "NVIDIA-A100-SXM-80GB": 2039,
17
+ "NVIDIA-H100-PCIe-80GB": 2039,
18
+ "NVIDIA-RTX-A5000-24GB": 768
 
19
  }
20
 
21
  PEAK_FLOPS_DICT = {
22
  "float32":{
23
  "NVIDIA-A100-PCIe-80GB": 312e12,
24
+ "NVIDIA-A100-SXM-80GB": 312e12,
25
  "NVIDIA-H100-PCIe-80GB": 756e12,
26
+ "NVIDIA-RTX-A5000-24GB": 222.2e12
 
27
  },
28
  "float16":{
29
  "NVIDIA-A100-PCIe-80GB": 624e12,
30
+ "NVIDIA-A100-SXM-80GB": 624e12,
31
  "NVIDIA-H100-PCIe-80GB": 1513e12,
32
+ "NVIDIA-RTX-A5000-24GB": 444.4e12
 
33
  },
34
  "bfloat16":{
35
  "NVIDIA-A100-PCIe-80GB": 624e12,
36
+ "NVIDIA-A100-SXM-80GB": 624e12,
37
  "NVIDIA-H100-PCIe-80GB": 1513e12,
38
+ "NVIDIA-RTX-A5000-24GB": 444.4e12
 
39
  },
40
+ "8bit":{
41
  "NVIDIA-A100-PCIe-80GB": 1248e12,
42
+ "NVIDIA-A100-SXM-80GB": 1248e12,
43
  "NVIDIA-H100-PCIe-80GB": 3026e12,
44
+ "NVIDIA-RTX-A5000-24GB": 889e12
 
45
  },
46
+ "4bit": {
47
+ "NVIDIA-A100-PCIe-80GB": 2496e12,
48
+ "NVIDIA-A100-SXM-80GB": 2496e12,
49
+ "NVIDIA-H100-PCIe-80GB": 6052e12,
50
+ "NVIDIA-RTX-A5000-24GB": 1778e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  }
52
+
53
  }
54
 
55
  def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
 
97
  # print(f"gpu_indices: {gpu_indices}")
98
  gpu_stats = []
99
 
100
+ gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W / \d+W\s+\|\s+(\d+)MiB / \d+MiB\s+\|\s+(\d+)%')
101
  # gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
102
  gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')
103
 
 
195
  def get_peak_flops(gpu_name, precision):
196
  return PEAK_FLOPS_DICT[precision][gpu_name]
197
 
198
+ def transfer_precision2bytes(precision):
199
+ if precision == "float32":
200
+ return 4
201
+ elif precision in ["float16", "bfloat16"]:
202
+ return 2
203
+ elif precision == "8bit":
204
+ return 1
205
+ elif precision == "4bit":
206
+ return 0.5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207
  else:
208
+ raise ValueError(f"Unsupported precision: {precision}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
 
210
+ if __name__ == "__main__":
211
+ print(analyze_gpu_stats(parse_nvidia_smi()))