|
import pandas as pd |
|
import numpy as np |
|
from dotenv import load_dotenv |
|
|
|
from langchain_community.document_loaders import TextLoader |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_text_splitters import CharacterTextSplitter |
|
from langchain_chroma import Chroma |
|
|
|
import gradio as gr |
|
|
|
|
|
load_dotenv() |
|
|
|
books = pd.read_csv("books_with_emotions.csv") |
|
books["large_thumbnail"] = books["thumbnail"] + "&fife=w800" |
|
books["large_thumbnail"] = np.where( |
|
books["large_thumbnail"].isna(), |
|
"cover-not-found.jpg", |
|
books["large_thumbnail"], |
|
) |
|
|
|
raw_documents = TextLoader("tagged_description.txt", encoding = 'utf-8').load() |
|
|
|
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=0, chunk_overlap=0) |
|
documents = text_splitter.split_documents(raw_documents) |
|
|
|
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L3-v2") |
|
db_books = Chroma.from_documents( |
|
documents, |
|
embedding=embedding_model |
|
) |
|
|
|
def retrieve_semantic_recommendations( |
|
query: str, |
|
category: str = None, |
|
tone: str = None, |
|
initial_top_k: int = 50, |
|
final_top_k: int = 16, |
|
) -> pd.DataFrame: |
|
|
|
recs = db_books.similarity_search(query, k=initial_top_k) |
|
books_list = [int(rec.page_content.strip('"').split()[0]) for rec in recs] |
|
book_recs = books[books["isbn13"].isin(books_list)].head(initial_top_k) |
|
|
|
if category != "All": |
|
book_recs = book_recs[book_recs["simple_categories"] == category].head(final_top_k) |
|
else: |
|
book_recs = book_recs.head(final_top_k) |
|
|
|
if tone == "Happy": |
|
book_recs.sort_values(by="joy", ascending=False, inplace=True) |
|
elif tone == "Surprising": |
|
book_recs.sort_values(by="surprise", ascending=False, inplace=True) |
|
elif tone == "Angry": |
|
book_recs.sort_values(by="anger", ascending=False, inplace=True) |
|
elif tone == "Suspenseful": |
|
book_recs.sort_values(by="fear", ascending=False, inplace=True) |
|
elif tone == "Sad": |
|
book_recs.sort_values(by="sadness", ascending=False, inplace=True) |
|
|
|
return book_recs |
|
|
|
def recommend_books(query:str, category:str,tone:str ): |
|
|
|
recommendations = retrieve_semantic_recommendations(query, category, tone) |
|
results = [] |
|
|
|
for _, row in recommendations.iterrows(): |
|
description = row["description"] |
|
truncated_desc_split = description.split() |
|
truncated_description = " ".join(truncated_desc_split[:30]) + "..." |
|
|
|
authors_split = row["authors"].split(";") |
|
if len(authors_split) == 2: |
|
authors_str = f"{authors_split[0]} and {authors_split[1]}" |
|
elif len(authors_split) > 2: |
|
authors_str = f"{', '.join(authors_split[:-1])}, and {authors_split[-1]}" |
|
else: |
|
authors_str = row["authors"] |
|
caption = f"{row['title']} by {authors_str}: {truncated_description}" |
|
results.append((row["large_thumbnail"], caption)) |
|
return results |
|
|
|
categories = ["All"] + sorted(books["simple_categories"].unique()) |
|
tones = ["All"] + ["Happy", "Surprising", "Angry", "Suspenseful", "Sad"] |
|
|
|
with gr.Blocks(theme = gr.themes.Glass()) as dashboard: |
|
gr.Markdown("# Semantic book recommender") |
|
|
|
with gr.Row(): |
|
user_query = gr.Textbox(label = "Please enter a description of a book:", |
|
placeholder = "e.g., A story about forgiveness") |
|
category_dropdown = gr.Dropdown(choices = categories, label = "Select a category:", value = "All") |
|
tone_dropdown = gr.Dropdown(choices = tones, label = "Select an emotional tone:", value = "All") |
|
submit_button = gr.Button("Find recommendations") |
|
|
|
gr.Markdown("## Recommendations") |
|
output = gr.Gallery(label = "Recommended books", columns = 8, rows = 2) |
|
|
|
submit_button.click(fn = recommend_books, |
|
inputs = [user_query, category_dropdown, tone_dropdown], |
|
outputs = output) |
|
|
|
|
|
if __name__ == "__main__": |
|
dashboard.launch() |