import pandas as pd import numpy as np from dotenv import load_dotenv from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_text_splitters import CharacterTextSplitter from langchain_chroma import Chroma import gradio as gr load_dotenv() books = pd.read_csv("books_with_emotions.csv") books["large_thumbnail"] = books["thumbnail"] + "&fife=w800" books["large_thumbnail"] = np.where( books["large_thumbnail"].isna(), "cover-not-found.jpg", books["large_thumbnail"], ) raw_documents = TextLoader("tagged_description.txt", encoding = 'utf-8').load() text_splitter = CharacterTextSplitter(separator="\n", chunk_size=0, chunk_overlap=0) documents = text_splitter.split_documents(raw_documents) # use opensource embedding model instead of openai embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L3-v2") db_books = Chroma.from_documents( documents, embedding=embedding_model ) def retrieve_semantic_recommendations( query: str, category: str = None, tone: str = None, initial_top_k: int = 50, final_top_k: int = 16, ) -> pd.DataFrame: recs = db_books.similarity_search(query, k=initial_top_k) books_list = [int(rec.page_content.strip('"').split()[0]) for rec in recs] book_recs = books[books["isbn13"].isin(books_list)].head(initial_top_k) if category != "All": book_recs = book_recs[book_recs["simple_categories"] == category].head(final_top_k) else: book_recs = book_recs.head(final_top_k) if tone == "Happy": book_recs.sort_values(by="joy", ascending=False, inplace=True) elif tone == "Surprising": book_recs.sort_values(by="surprise", ascending=False, inplace=True) elif tone == "Angry": book_recs.sort_values(by="anger", ascending=False, inplace=True) elif tone == "Suspenseful": book_recs.sort_values(by="fear", ascending=False, inplace=True) elif tone == "Sad": book_recs.sort_values(by="sadness", ascending=False, inplace=True) return book_recs def recommend_books(query:str, category:str,tone:str ): recommendations = retrieve_semantic_recommendations(query, category, tone) results = [] for _, row in recommendations.iterrows(): description = row["description"] truncated_desc_split = description.split() truncated_description = " ".join(truncated_desc_split[:30]) + "..." authors_split = row["authors"].split(";") if len(authors_split) == 2: authors_str = f"{authors_split[0]} and {authors_split[1]}" elif len(authors_split) > 2: authors_str = f"{', '.join(authors_split[:-1])}, and {authors_split[-1]}" else: authors_str = row["authors"] caption = f"{row['title']} by {authors_str}: {truncated_description}" results.append((row["large_thumbnail"], caption)) return results categories = ["All"] + sorted(books["simple_categories"].unique()) tones = ["All"] + ["Happy", "Surprising", "Angry", "Suspenseful", "Sad"] with gr.Blocks(theme = gr.themes.Glass()) as dashboard: gr.Markdown("# Semantic book recommender") with gr.Row(): user_query = gr.Textbox(label = "Please enter a description of a book:", placeholder = "e.g., A story about forgiveness") category_dropdown = gr.Dropdown(choices = categories, label = "Select a category:", value = "All") tone_dropdown = gr.Dropdown(choices = tones, label = "Select an emotional tone:", value = "All") submit_button = gr.Button("Find recommendations") gr.Markdown("## Recommendations") output = gr.Gallery(label = "Recommended books", columns = 8, rows = 2) submit_button.click(fn = recommend_books, inputs = [user_query, category_dropdown, tone_dropdown], outputs = output) if __name__ == "__main__": dashboard.launch()