Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
from PIL import Image | |
import torch | |
import re | |
# Load model and processor | |
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") | |
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224") | |
model.eval() | |
def clean_caption(caption): | |
# Remove non-alphanumeric characters and extra whitespace, capitalize result | |
return re.sub(r'[^\w\s]', '', caption).strip().capitalize() | |
def grounding(image, prompt): | |
inputs = processor(text=prompt, images=image, return_tensors="pt") | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=256) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return clean_caption(generated_text) | |
# Gradio Interface | |
gr.Interface( | |
fn=grounding, | |
inputs=[gr.Image(type="pil"), gr.Textbox(label="Text Prompt")], | |
outputs="text", | |
title="Image to Text Generation", | |
description="Kosmos-2: Upload an image and provide a text prompt for grounded captioning." | |
).launch() | |