image_to_text / app.py
snehasanjana's picture
Update app.py
b5d2f15 verified
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq
from PIL import Image
import torch
import re
# Load model and processor
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224")
model.eval()
def clean_caption(caption):
# Remove non-alphanumeric characters and extra whitespace, capitalize result
return re.sub(r'[^\w\s]', '', caption).strip().capitalize()
def grounding(image, prompt):
inputs = processor(text=prompt, images=image, return_tensors="pt")
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return clean_caption(generated_text)
# Gradio Interface
gr.Interface(
fn=grounding,
inputs=[gr.Image(type="pil"), gr.Textbox(label="Text Prompt")],
outputs="text",
title="Image to Text Generation",
description="Kosmos-2: Upload an image and provide a text prompt for grounded captioning."
).launch()