import gradio as gr from transformers import AutoProcessor, AutoModelForVision2Seq from PIL import Image import torch import re # Load model and processor processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224") model.eval() def clean_caption(caption): # Remove non-alphanumeric characters and extra whitespace, capitalize result return re.sub(r'[^\w\s]', '', caption).strip().capitalize() def grounding(image, prompt): inputs = processor(text=prompt, images=image, return_tensors="pt") with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=256) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return clean_caption(generated_text) # Gradio Interface gr.Interface( fn=grounding, inputs=[gr.Image(type="pil"), gr.Textbox(label="Text Prompt")], outputs="text", title="Image to Text Generation", description="Kosmos-2: Upload an image and provide a text prompt for grounded captioning." ).launch()