sema-api / sema_translation_api.py
kamau1's picture
refactor(docker): apply multi-stage build, offline caching, update model loading and variable cleanup
7dd7ca0
raw
history blame
10.1 kB
"""
Sema Translation API - New Implementation
Created for testing consolidated sema-utils repository
Uses HuggingFace Hub for model downloading
"""
import os
import time
from datetime import datetime
import pytz
from typing import Optional
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from huggingface_hub import hf_hub_download
import ctranslate2
import sentencepiece as spm
import fasttext
# --- Data Models ---
class TranslationRequest(BaseModel):
text: str = Field(..., example="Habari ya asubuhi", description="Text to translate")
target_language: str = Field(..., example="eng_Latn", description="FLORES-200 target language code")
source_language: Optional[str] = Field(None, example="swh_Latn", description="Optional FLORES-200 source language code")
class TranslationResponse(BaseModel):
translated_text: str
source_language: str
target_language: str
inference_time: float
timestamp: str
# --- FastAPI App Setup ---
app = FastAPI(
title="Sema Translation API",
description="Translation API using consolidated sema-utils models from HuggingFace",
version="2.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=False,
allow_methods=["*"],
allow_headers=["*"],
)
# --- Global Variables ---
REPO_ID = "sematech/sema-utils"
beam_size = 1
device = "cpu"
# Model instances (will be loaded on startup)
lang_model = None
sp_model = None
translator = None
def get_nairobi_time():
"""Get current time in Nairobi timezone"""
nairobi_timezone = pytz.timezone('Africa/Nairobi')
current_time_nairobi = datetime.now(nairobi_timezone)
curr_day = current_time_nairobi.strftime('%A')
curr_date = current_time_nairobi.strftime('%Y-%m-%d')
curr_time = current_time_nairobi.strftime('%H:%M:%S')
full_date = f"{curr_day} | {curr_date} | {curr_time}"
return full_date, curr_time
def get_model_paths():
"""Get model paths from HuggingFace cache (models pre-downloaded in Docker)"""
print("πŸ”„ Loading models from cache...")
try:
# Check if we're in offline mode (Docker environment)
offline_mode = os.environ.get("HF_HUB_OFFLINE", "0") == "1"
if offline_mode:
print("πŸ“¦ Running in offline mode - using cached models")
# In offline mode, models are already downloaded and cached
# We need to find them in the cache directory
# Get paths from cache using hf_hub_download with local_files_only=True
spm_path = hf_hub_download(
repo_id=REPO_ID,
filename="spm.model",
local_files_only=True
)
ft_path = hf_hub_download(
repo_id=REPO_ID,
filename="lid218e.bin",
local_files_only=True
)
# Get the translation model path
model_bin_path = hf_hub_download(
repo_id=REPO_ID,
filename="translation_models/sematrans-3.3B/model.bin",
local_files_only=True
)
# The model directory is the parent of the model.bin file
ct_model_full_path = os.path.dirname(model_bin_path)
else:
print("🌐 Running in online mode - downloading models")
# Online mode - download models (for local development)
spm_path = hf_hub_download(
repo_id=REPO_ID,
filename="spm.model"
)
ft_path = hf_hub_download(
repo_id=REPO_ID,
filename="lid218e.bin"
)
# Download all necessary CTranslate2 files
model_bin_path = hf_hub_download(
repo_id=REPO_ID,
filename="translation_models/sematrans-3.3B/model.bin"
)
hf_hub_download(
repo_id=REPO_ID,
filename="translation_models/sematrans-3.3B/config.json"
)
hf_hub_download(
repo_id=REPO_ID,
filename="translation_models/sematrans-3.3B/shared_vocabulary.txt"
)
ct_model_full_path = os.path.dirname(model_bin_path)
print(f"πŸ“ Model paths:")
print(f" SentencePiece: {spm_path}")
print(f" Language detection: {ft_path}")
print(f" Translation model: {ct_model_full_path}")
return spm_path, ft_path, ct_model_full_path
except Exception as e:
print(f"❌ Error loading models: {e}")
raise e
def load_models():
"""Load all models into memory"""
global lang_model, sp_model, translator
print("πŸš€ Loading models into memory...")
# Get model paths (from cache or download)
spm_path, ft_path, ct_model_path = get_model_paths()
# Suppress fasttext warnings
fasttext.FastText.eprint = lambda x: None
try:
# Load language detection model
print("1️⃣ Loading language detection model...")
lang_model = fasttext.load_model(ft_path)
# Load SentencePiece model
print("2️⃣ Loading SentencePiece model...")
sp_model = spm.SentencePieceProcessor()
sp_model.load(spm_path)
# Load translation model
print("3️⃣ Loading translation model...")
translator = ctranslate2.Translator(ct_model_path, device)
print("βœ… All models loaded successfully!")
except Exception as e:
print(f"❌ Error loading models: {e}")
raise e
def translate_with_detection(text: str, target_lang: str):
"""Translate text with automatic source language detection"""
start_time = time.time()
# Prepare input
source_sents = [text.strip()]
target_prefix = [[target_lang]]
# Detect source language
predictions = lang_model.predict(text.replace('\n', ' '), k=1)
source_lang = predictions[0][0].replace('__label__', '')
# Tokenize source text
source_sents_subworded = sp_model.encode(source_sents, out_type=str)
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
# Translate
translations = translator.translate_batch(
source_sents_subworded,
batch_type="tokens",
max_batch_size=2048,
beam_size=beam_size,
target_prefix=target_prefix,
)
# Decode translation
translations = [translation[0]['tokens'] for translation in translations]
translations_desubword = sp_model.decode(translations)
translated_text = translations_desubword[0][len(target_lang):]
inference_time = time.time() - start_time
return source_lang, translated_text, inference_time
def translate_with_source(text: str, source_lang: str, target_lang: str):
"""Translate text with provided source language"""
start_time = time.time()
# Prepare input
source_sents = [text.strip()]
target_prefix = [[target_lang]]
# Tokenize source text
source_sents_subworded = sp_model.encode(source_sents, out_type=str)
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
# Translate
translations = translator.translate_batch(
source_sents_subworded,
batch_type="tokens",
max_batch_size=2048,
beam_size=beam_size,
target_prefix=target_prefix
)
# Decode translation
translations = [translation[0]['tokens'] for translation in translations]
translations_desubword = sp_model.decode(translations)
translated_text = translations_desubword[0][len(target_lang):]
inference_time = time.time() - start_time
return translated_text, inference_time
# --- API Endpoints ---
@app.get("/")
async def root():
"""Health check endpoint"""
return {
"status": "ok",
"message": "Sema Translation API is running",
"version": "2.0.0",
"models_loaded": all([lang_model, sp_model, translator])
}
@app.post("/translate", response_model=TranslationResponse)
async def translate_endpoint(request: TranslationRequest):
"""
Main translation endpoint.
Automatically detects source language if not provided.
"""
if not request.text.strip():
raise HTTPException(status_code=400, detail="Input text cannot be empty")
full_date, current_time = get_nairobi_time()
print(f"\nπŸ”„ Request: {full_date}")
print(f"Target: {request.target_language}, Text: {request.text[:50]}...")
try:
if request.source_language:
# Use provided source language
translated_text, inference_time = translate_with_source(
request.text,
request.source_language,
request.target_language
)
source_lang = request.source_language
else:
# Auto-detect source language
source_lang, translated_text, inference_time = translate_with_detection(
request.text,
request.target_language
)
_, response_time = get_nairobi_time()
print(f"βœ… Response: {response_time}")
print(f"Source: {source_lang}, Translation: {translated_text[:50]}...\n")
return TranslationResponse(
translated_text=translated_text,
source_language=source_lang,
target_language=request.target_language,
inference_time=inference_time,
timestamp=full_date
)
except Exception as e:
print(f"❌ Translation error: {e}")
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
# --- Startup Event ---
@app.on_event("startup")
async def startup_event():
"""Load models when the application starts"""
print("\n🎡 Starting Sema Translation API...")
print("🎼 Loading the Orchestra... πŸ¦‹")
load_models()
print("πŸŽ‰ API started successfully!\n")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)