File size: 10,135 Bytes
937c29e 5aa0409 937c29e 7dd7ca0 937c29e 7dd7ca0 937c29e 7dd7ca0 937c29e 7dd7ca0 937c29e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
"""
Sema Translation API - New Implementation
Created for testing consolidated sema-utils repository
Uses HuggingFace Hub for model downloading
"""
import os
import time
from datetime import datetime
import pytz
from typing import Optional
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from huggingface_hub import hf_hub_download
import ctranslate2
import sentencepiece as spm
import fasttext
# --- Data Models ---
class TranslationRequest(BaseModel):
text: str = Field(..., example="Habari ya asubuhi", description="Text to translate")
target_language: str = Field(..., example="eng_Latn", description="FLORES-200 target language code")
source_language: Optional[str] = Field(None, example="swh_Latn", description="Optional FLORES-200 source language code")
class TranslationResponse(BaseModel):
translated_text: str
source_language: str
target_language: str
inference_time: float
timestamp: str
# --- FastAPI App Setup ---
app = FastAPI(
title="Sema Translation API",
description="Translation API using consolidated sema-utils models from HuggingFace",
version="2.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=False,
allow_methods=["*"],
allow_headers=["*"],
)
# --- Global Variables ---
REPO_ID = "sematech/sema-utils"
beam_size = 1
device = "cpu"
# Model instances (will be loaded on startup)
lang_model = None
sp_model = None
translator = None
def get_nairobi_time():
"""Get current time in Nairobi timezone"""
nairobi_timezone = pytz.timezone('Africa/Nairobi')
current_time_nairobi = datetime.now(nairobi_timezone)
curr_day = current_time_nairobi.strftime('%A')
curr_date = current_time_nairobi.strftime('%Y-%m-%d')
curr_time = current_time_nairobi.strftime('%H:%M:%S')
full_date = f"{curr_day} | {curr_date} | {curr_time}"
return full_date, curr_time
def get_model_paths():
"""Get model paths from HuggingFace cache (models pre-downloaded in Docker)"""
print("π Loading models from cache...")
try:
# Check if we're in offline mode (Docker environment)
offline_mode = os.environ.get("HF_HUB_OFFLINE", "0") == "1"
if offline_mode:
print("π¦ Running in offline mode - using cached models")
# In offline mode, models are already downloaded and cached
# We need to find them in the cache directory
# Get paths from cache using hf_hub_download with local_files_only=True
spm_path = hf_hub_download(
repo_id=REPO_ID,
filename="spm.model",
local_files_only=True
)
ft_path = hf_hub_download(
repo_id=REPO_ID,
filename="lid218e.bin",
local_files_only=True
)
# Get the translation model path
model_bin_path = hf_hub_download(
repo_id=REPO_ID,
filename="translation_models/sematrans-3.3B/model.bin",
local_files_only=True
)
# The model directory is the parent of the model.bin file
ct_model_full_path = os.path.dirname(model_bin_path)
else:
print("π Running in online mode - downloading models")
# Online mode - download models (for local development)
spm_path = hf_hub_download(
repo_id=REPO_ID,
filename="spm.model"
)
ft_path = hf_hub_download(
repo_id=REPO_ID,
filename="lid218e.bin"
)
# Download all necessary CTranslate2 files
model_bin_path = hf_hub_download(
repo_id=REPO_ID,
filename="translation_models/sematrans-3.3B/model.bin"
)
hf_hub_download(
repo_id=REPO_ID,
filename="translation_models/sematrans-3.3B/config.json"
)
hf_hub_download(
repo_id=REPO_ID,
filename="translation_models/sematrans-3.3B/shared_vocabulary.txt"
)
ct_model_full_path = os.path.dirname(model_bin_path)
print(f"π Model paths:")
print(f" SentencePiece: {spm_path}")
print(f" Language detection: {ft_path}")
print(f" Translation model: {ct_model_full_path}")
return spm_path, ft_path, ct_model_full_path
except Exception as e:
print(f"β Error loading models: {e}")
raise e
def load_models():
"""Load all models into memory"""
global lang_model, sp_model, translator
print("π Loading models into memory...")
# Get model paths (from cache or download)
spm_path, ft_path, ct_model_path = get_model_paths()
# Suppress fasttext warnings
fasttext.FastText.eprint = lambda x: None
try:
# Load language detection model
print("1οΈβ£ Loading language detection model...")
lang_model = fasttext.load_model(ft_path)
# Load SentencePiece model
print("2οΈβ£ Loading SentencePiece model...")
sp_model = spm.SentencePieceProcessor()
sp_model.load(spm_path)
# Load translation model
print("3οΈβ£ Loading translation model...")
translator = ctranslate2.Translator(ct_model_path, device)
print("β
All models loaded successfully!")
except Exception as e:
print(f"β Error loading models: {e}")
raise e
def translate_with_detection(text: str, target_lang: str):
"""Translate text with automatic source language detection"""
start_time = time.time()
# Prepare input
source_sents = [text.strip()]
target_prefix = [[target_lang]]
# Detect source language
predictions = lang_model.predict(text.replace('\n', ' '), k=1)
source_lang = predictions[0][0].replace('__label__', '')
# Tokenize source text
source_sents_subworded = sp_model.encode(source_sents, out_type=str)
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
# Translate
translations = translator.translate_batch(
source_sents_subworded,
batch_type="tokens",
max_batch_size=2048,
beam_size=beam_size,
target_prefix=target_prefix,
)
# Decode translation
translations = [translation[0]['tokens'] for translation in translations]
translations_desubword = sp_model.decode(translations)
translated_text = translations_desubword[0][len(target_lang):]
inference_time = time.time() - start_time
return source_lang, translated_text, inference_time
def translate_with_source(text: str, source_lang: str, target_lang: str):
"""Translate text with provided source language"""
start_time = time.time()
# Prepare input
source_sents = [text.strip()]
target_prefix = [[target_lang]]
# Tokenize source text
source_sents_subworded = sp_model.encode(source_sents, out_type=str)
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
# Translate
translations = translator.translate_batch(
source_sents_subworded,
batch_type="tokens",
max_batch_size=2048,
beam_size=beam_size,
target_prefix=target_prefix
)
# Decode translation
translations = [translation[0]['tokens'] for translation in translations]
translations_desubword = sp_model.decode(translations)
translated_text = translations_desubword[0][len(target_lang):]
inference_time = time.time() - start_time
return translated_text, inference_time
# --- API Endpoints ---
@app.get("/")
async def root():
"""Health check endpoint"""
return {
"status": "ok",
"message": "Sema Translation API is running",
"version": "2.0.0",
"models_loaded": all([lang_model, sp_model, translator])
}
@app.post("/translate", response_model=TranslationResponse)
async def translate_endpoint(request: TranslationRequest):
"""
Main translation endpoint.
Automatically detects source language if not provided.
"""
if not request.text.strip():
raise HTTPException(status_code=400, detail="Input text cannot be empty")
full_date, current_time = get_nairobi_time()
print(f"\nπ Request: {full_date}")
print(f"Target: {request.target_language}, Text: {request.text[:50]}...")
try:
if request.source_language:
# Use provided source language
translated_text, inference_time = translate_with_source(
request.text,
request.source_language,
request.target_language
)
source_lang = request.source_language
else:
# Auto-detect source language
source_lang, translated_text, inference_time = translate_with_detection(
request.text,
request.target_language
)
_, response_time = get_nairobi_time()
print(f"β
Response: {response_time}")
print(f"Source: {source_lang}, Translation: {translated_text[:50]}...\n")
return TranslationResponse(
translated_text=translated_text,
source_language=source_lang,
target_language=request.target_language,
inference_time=inference_time,
timestamp=full_date
)
except Exception as e:
print(f"β Translation error: {e}")
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
# --- Startup Event ---
@app.on_event("startup")
async def startup_event():
"""Load models when the application starts"""
print("\nπ΅ Starting Sema Translation API...")
print("πΌ Loading the Orchestra... π¦")
load_models()
print("π API started successfully!\n")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|